|
|
|
|
|
import os |
|
import logging |
|
import argparse |
|
from bleu import _bleu |
|
import json |
|
|
|
logger = logging.getLogger(__name__) |
|
logging.basicConfig(level=logging.INFO) |
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description='Evaluate leaderboard predictions for code completion (line level).') |
|
parser.add_argument('--answers', '-a', required=True, help="filename of the labels, in json format.") |
|
parser.add_argument('--predictions', '-p', required=True, help="filename of the leaderboard predictions, in txt format.") |
|
args = parser.parse_args() |
|
|
|
preds = open(args.predictions, "r").readlines() |
|
gts = open(args.answers, "r").readlines() |
|
|
|
assert len(preds) == len(gts), f"Samples of predictions and answers are not equal, {len(preds)}: {len(gts)}" |
|
|
|
total = len(gts) |
|
EM = 0.0 |
|
with open("ground_truth.txt", "w") as wf: |
|
for pred, gt in zip(preds, gts): |
|
pred = pred.strip() |
|
gt = json.loads(gt)["code"] |
|
wf.write(gt+"\n") |
|
if pred.split() == gt.split(): |
|
EM += 1 |
|
|
|
bleu_score = round(_bleu("ground_truth.txt", args.predictions), 2) |
|
logger.info(f"BLEU: {bleu_score}, EM: {round(EM/total*100, 2)}") |
|
|
|
try: |
|
os.remove("ground_truth.txt") |
|
except Exception: |
|
pass |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|