|
|
|
|
|
import logging |
|
import sys, json, os |
|
import numpy as np |
|
import argparse |
|
from sklearn.metrics import recall_score, precision_score, f1_score, accuracy_score |
|
|
|
|
|
def read_answers(filename): |
|
answers = {} |
|
with open(filename, 'r', encoding='utf-8') as f: |
|
for line in f.readlines(): |
|
line = line.strip() |
|
answers[line.split('\t')[0]] = int(line.split('\t')[1]) |
|
return answers |
|
|
|
|
|
def read_predictions(filename): |
|
predictions = {} |
|
with open(filename, 'r', encoding='utf-8') as f: |
|
for line in f.readlines(): |
|
line = line.strip() |
|
predictions[line.split('\t')[0]] = int(line.split('\t')[1]) |
|
return predictions |
|
|
|
|
|
def calculate_scores(answers, predictions): |
|
y_trues, y_preds = [], [] |
|
for key in answers: |
|
if key not in predictions: |
|
logging.error("Missing prediction for index {}.".format(key)) |
|
sys.exit() |
|
y_trues.append(answers[key]) |
|
y_preds.append(predictions[key]) |
|
scores={} |
|
scores['Precision']=precision_score(y_trues, y_preds) |
|
scores['Recall']=recall_score(y_trues, y_preds) |
|
scores['F1']=f1_score(y_trues, y_preds) |
|
scores['Accuracy']=accuracy_score(y_trues, y_preds) |
|
return scores |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description='Evaluate leaderboard predictions for ClozeTest-maxmin dataset.') |
|
parser.add_argument('--answers_webquery', '-aw', help="filename of the labels on webquery test set, in txt format.") |
|
parser.add_argument('--predictions_webquery', '-pw', help="filename of the leaderboard predictions on webquery test set, in txt format.") |
|
args = parser.parse_args() |
|
|
|
answers = read_answers(args.answers_webquery) |
|
predictions = read_predictions(args.predictions_webquery) |
|
acc_webquery = calculate_scores(answers, predictions) |
|
|
|
print('NL-code-search-WebQuery on WebQuery test set:') |
|
print(acc_webquery) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |