|
|
|
|
|
import os |
|
|
import torch |
|
|
import numpy as np |
|
|
import pickle as pkl |
|
|
from tqdm import tqdm |
|
|
import time |
|
|
from datetime import timedelta |
|
|
|
|
|
|
|
|
MAX_VOCAB_SIZE = 10000 |
|
|
UNK, PAD = '<UNK>', '<PAD>' |
|
|
|
|
|
|
|
|
def build_vocab(file_path, tokenizer, max_size, min_freq): |
|
|
"""构建词汇表""" |
|
|
vocab_dic = {} |
|
|
with open(file_path, 'r', encoding='UTF-8') as f: |
|
|
for line in tqdm(f): |
|
|
lin = line.strip() |
|
|
if not lin: |
|
|
continue |
|
|
content = lin.split('\t')[0] |
|
|
for word in tokenizer(content): |
|
|
vocab_dic[word] = vocab_dic.get(word, 0) + 1 |
|
|
vocab_list = sorted([_ for _ in vocab_dic.items() if _[1] >= min_freq], key=lambda x: x[1], reverse=True)[:max_size] |
|
|
vocab_dic = {word_count[0]: idx for idx, word_count in enumerate(vocab_list)} |
|
|
vocab_dic.update({UNK: len(vocab_dic), PAD: len(vocab_dic) + 1}) |
|
|
return vocab_dic |
|
|
|
|
|
|
|
|
def load_dataset(path, vocab, tokenizer, pad_size=32): |
|
|
"""加载数据集""" |
|
|
contents = [] |
|
|
with open(path, 'r', encoding='UTF-8') as f: |
|
|
for line in tqdm(f, desc=f"Loading {os.path.basename(path)}"): |
|
|
lin = line.strip() |
|
|
if not lin: |
|
|
continue |
|
|
content, label = lin.split('\t') |
|
|
words_line = [] |
|
|
token = tokenizer(content) |
|
|
seq_len = len(token) |
|
|
if pad_size: |
|
|
if len(token) < pad_size: |
|
|
token.extend([PAD] * (pad_size - len(token))) |
|
|
else: |
|
|
token = token[:pad_size] |
|
|
seq_len = pad_size |
|
|
|
|
|
for word in token: |
|
|
words_line.append(vocab.get(word, vocab.get(UNK))) |
|
|
contents.append((words_line, int(label), seq_len)) |
|
|
return contents |
|
|
|
|
|
|
|
|
def build_dataset(config, use_word=False): |
|
|
"""构建数据集""" |
|
|
if use_word: |
|
|
def tokenizer(x): |
|
|
return x.split(' ') |
|
|
else: |
|
|
def tokenizer(x): |
|
|
return [y for y in x] |
|
|
|
|
|
if os.path.exists(config.vocab_path): |
|
|
vocab = pkl.load(open(config.vocab_path, 'rb')) |
|
|
else: |
|
|
vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1) |
|
|
pkl.dump(vocab, open(config.vocab_path, 'wb')) |
|
|
|
|
|
print(f"词汇表大小: {len(vocab)}") |
|
|
|
|
|
train = load_dataset(config.train_path, vocab, tokenizer, config.pad_size) |
|
|
dev = load_dataset(config.dev_path, vocab, tokenizer, config.pad_size) |
|
|
test = load_dataset(config.test_path, vocab, tokenizer, config.pad_size) |
|
|
|
|
|
return vocab, train, dev, test |
|
|
|
|
|
|
|
|
class DatasetIterator(object): |
|
|
"""数据集迭代器""" |
|
|
def __init__(self, batches, batch_size, device): |
|
|
self.batch_size = batch_size |
|
|
self.batches = batches |
|
|
self.n_batches = len(batches) // batch_size |
|
|
self.residue = False |
|
|
if len(batches) % self.n_batches != 0: |
|
|
self.residue = True |
|
|
self.index = 0 |
|
|
self.device = device |
|
|
|
|
|
def _to_tensor(self, datas): |
|
|
x = torch.LongTensor([_[0] for _ in datas]).to(self.device) |
|
|
y = torch.LongTensor([_[1] for _ in datas]).to(self.device) |
|
|
|
|
|
seq_len = torch.LongTensor([_[2] for _ in datas]).to(self.device) |
|
|
return (x, seq_len), y |
|
|
|
|
|
def __next__(self): |
|
|
if self.residue and self.index == self.n_batches: |
|
|
batches = self.batches[self.index * self.batch_size: len(self.batches)] |
|
|
self.index += 1 |
|
|
batches = self._to_tensor(batches) |
|
|
return batches |
|
|
|
|
|
elif self.index >= self.n_batches: |
|
|
self.index = 0 |
|
|
raise StopIteration |
|
|
else: |
|
|
batches = self.batches[self.index * self.batch_size: (self.index + 1) * self.batch_size] |
|
|
self.index += 1 |
|
|
batches = self._to_tensor(batches) |
|
|
return batches |
|
|
|
|
|
def __iter__(self): |
|
|
return self |
|
|
|
|
|
def __len__(self): |
|
|
if self.residue: |
|
|
return self.n_batches + 1 |
|
|
else: |
|
|
return self.n_batches |
|
|
|
|
|
|
|
|
def build_iterator(dataset, config): |
|
|
"""构建数据迭代器""" |
|
|
iterator = DatasetIterator(dataset, config.batch_size, config.device) |
|
|
return iterator |
|
|
|
|
|
|
|
|
def get_time_dif(start_time): |
|
|
"""获取已使用时间""" |
|
|
end_time = time.time() |
|
|
time_dif = end_time - start_time |
|
|
return timedelta(seconds=int(round(time_dif))) |
|
|
|
|
|
|
|
|
def get_labels_from_dataset(dataset): |
|
|
"""从数据集中提取标签""" |
|
|
labels = [] |
|
|
for _, label, _ in dataset: |
|
|
labels.append(label) |
|
|
return np.array(labels) |
|
|
|