|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
import numpy as np |
|
|
|
|
|
|
|
|
class Config(object): |
|
|
"""配置参数""" |
|
|
|
|
|
def __init__(self, dataset, embedding): |
|
|
self.model_name = "DPCNN" |
|
|
self.train_path = dataset + "/data/train.txt" |
|
|
self.dev_path = dataset + "/data/dev.txt" |
|
|
self.test_path = dataset + "/data/test.txt" |
|
|
self.class_list = [ |
|
|
x.strip() |
|
|
for x in open(dataset + "/data/class.txt", encoding="utf-8").readlines() |
|
|
] |
|
|
self.vocab_path = dataset + "/data/vocab.pkl" |
|
|
self.save_path = ( |
|
|
dataset + "/saved_dict/" + self.model_name + ".ckpt" |
|
|
) |
|
|
self.log_path = dataset + "/log/" + self.model_name |
|
|
self.embedding_pretrained = ( |
|
|
torch.tensor( |
|
|
np.load(dataset + "/data/" + embedding)["embeddings"].astype("float32") |
|
|
) |
|
|
if embedding != "random" |
|
|
else None |
|
|
) |
|
|
self.device = torch.device( |
|
|
"cuda" if torch.cuda.is_available() else "cpu" |
|
|
) |
|
|
|
|
|
self.dropout = 0.5 |
|
|
self.require_improvement = 1000 |
|
|
self.num_classes = len(self.class_list) |
|
|
self.n_vocab = 0 |
|
|
self.num_epochs = 20 |
|
|
self.batch_size = 128 |
|
|
self.pad_size = 32 |
|
|
self.learning_rate = 1e-3 |
|
|
self.embed = ( |
|
|
self.embedding_pretrained.size(1) |
|
|
if self.embedding_pretrained is not None |
|
|
else 300 |
|
|
) |
|
|
self.num_filters = 250 |
|
|
|
|
|
|
|
|
"""Deep Pyramid Convolutional Neural Networks for Text Categorization""" |
|
|
|
|
|
|
|
|
class DPCNN(nn.Module): |
|
|
def __init__(self, config): |
|
|
super(DPCNN, self).__init__() |
|
|
if config.embedding_pretrained is not None: |
|
|
self.embedding = nn.Embedding.from_pretrained( |
|
|
config.embedding_pretrained, freeze=False |
|
|
) |
|
|
else: |
|
|
self.embedding = nn.Embedding( |
|
|
config.n_vocab, config.embed, padding_idx=config.n_vocab - 1 |
|
|
) |
|
|
self.conv_region = nn.Conv2d(1, config.num_filters, (3, config.embed), stride=1) |
|
|
self.conv = nn.Conv2d(config.num_filters, config.num_filters, (3, 1), stride=1) |
|
|
self.max_pool = nn.MaxPool2d(kernel_size=(3, 1), stride=2) |
|
|
self.padding1 = nn.ZeroPad2d((0, 0, 1, 1)) |
|
|
self.padding2 = nn.ZeroPad2d((0, 0, 0, 1)) |
|
|
self.relu = nn.ReLU() |
|
|
self.fc = nn.Linear(config.num_filters, config.num_classes) |
|
|
|
|
|
def forward(self, x): |
|
|
x = x[0] |
|
|
x = self.embedding(x) |
|
|
x = x.unsqueeze(1) |
|
|
x = self.conv_region(x) |
|
|
|
|
|
x = self.padding1(x) |
|
|
x = self.relu(x) |
|
|
x = self.conv(x) |
|
|
x = self.padding1(x) |
|
|
x = self.relu(x) |
|
|
x = self.conv(x) |
|
|
while x.size()[2] > 2: |
|
|
x = self._block(x) |
|
|
x = x.squeeze() |
|
|
x = self.fc(x) |
|
|
return x |
|
|
|
|
|
def _block(self, x): |
|
|
x = self.padding2(x) |
|
|
px = self.max_pool(x) |
|
|
|
|
|
x = self.padding1(px) |
|
|
x = F.relu(x) |
|
|
x = self.conv(x) |
|
|
|
|
|
x = self.padding1(x) |
|
|
x = F.relu(x) |
|
|
x = self.conv(x) |
|
|
|
|
|
|
|
|
x = x + px |
|
|
return x |
|
|
|
|
|
def feature(self, x): |
|
|
""" |
|
|
提取中间层特征向量,用于可视化 |
|
|
返回最终squeeze后的特征(全连接层前面的那一层) |
|
|
""" |
|
|
with torch.no_grad(): |
|
|
x = x[0] |
|
|
x = self.embedding(x) |
|
|
x = x.unsqueeze(1) |
|
|
x = self.conv_region(x) |
|
|
|
|
|
x = self.padding1(x) |
|
|
x = self.relu(x) |
|
|
x = self.conv(x) |
|
|
x = self.padding1(x) |
|
|
x = self.relu(x) |
|
|
x = self.conv(x) |
|
|
while x.size()[2] > 2: |
|
|
x = self._block(x) |
|
|
features = x.squeeze() |
|
|
return features.cpu().numpy() |
|
|
|
|
|
def get_prediction(self, x): |
|
|
""" |
|
|
获取模型最终层输出向量(logits) |
|
|
""" |
|
|
with torch.no_grad(): |
|
|
x = x[0] |
|
|
x = self.embedding(x) |
|
|
x = x.unsqueeze(1) |
|
|
x = self.conv_region(x) |
|
|
|
|
|
x = self.padding1(x) |
|
|
x = self.relu(x) |
|
|
x = self.conv(x) |
|
|
x = self.padding1(x) |
|
|
x = self.relu(x) |
|
|
x = self.conv(x) |
|
|
while x.size()[2] > 2: |
|
|
x = self._block(x) |
|
|
x = x.squeeze() |
|
|
predictions = self.fc(x) |
|
|
return predictions.cpu().numpy() |
|
|
|
|
|
def prediction(self, features): |
|
|
""" |
|
|
根据中间特征向量预测结果 |
|
|
features: 来自feature()函数的输出 [batch_size, num_filters] |
|
|
""" |
|
|
with torch.no_grad(): |
|
|
features_tensor = torch.tensor(features, dtype=torch.float32).to(next(self.parameters()).device) |
|
|
predictions = self.fc(features_tensor) |
|
|
return predictions.cpu().numpy() |
|
|
|