fix bug
Browse files- Image/ResNet/code/train.py +2 -2
- Image/utils/train_utils.py +3 -3
- ttv_utils/__init__.py +1 -1
- ttv_utils/save_embeddings.py +15 -12
Image/ResNet/code/train.py
CHANGED
@@ -4,14 +4,14 @@ sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(
|
|
4 |
from utils.dataset_utils import get_cifar10_dataloaders
|
5 |
from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
|
6 |
from utils.parse_args import parse_args
|
7 |
-
from model import
|
8 |
|
9 |
def main():
|
10 |
# 解析命令行参数
|
11 |
args = parse_args()
|
12 |
|
13 |
# 创建模型
|
14 |
-
model =
|
15 |
|
16 |
if args.train_type == '0':
|
17 |
# 获取数据加载器
|
|
|
4 |
from utils.dataset_utils import get_cifar10_dataloaders
|
5 |
from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
|
6 |
from utils.parse_args import parse_args
|
7 |
+
from model import ResNet34
|
8 |
|
9 |
def main():
|
10 |
# 解析命令行参数
|
11 |
args = parse_args()
|
12 |
|
13 |
# 创建模型
|
14 |
+
model = ResNet34()
|
15 |
|
16 |
if args.train_type == '0':
|
17 |
# 获取数据加载器
|
Image/utils/train_utils.py
CHANGED
@@ -189,8 +189,8 @@ def train_model(model, trainloader, testloader, epochs=200, lr=0.1, device='cuda
|
|
189 |
logger.info(f'Epoch: {epoch+1} | Test Loss: {test_loss/(batch_idx+1):.3f} | '
|
190 |
f'Test Acc: {acc:.2f}%')
|
191 |
|
192 |
-
# 每
|
193 |
-
if (epoch + 1) %
|
194 |
# 创建一个专门用于收集embedding的顺序dataloader
|
195 |
ordered_loader = torch.utils.data.DataLoader(
|
196 |
trainloader.dataset, # 使用相同的数据集
|
@@ -198,7 +198,7 @@ def train_model(model, trainloader, testloader, epochs=200, lr=0.1, device='cuda
|
|
198 |
shuffle=False, # 确保顺序加载
|
199 |
num_workers=trainloader.num_workers
|
200 |
)
|
201 |
-
save_model = time_travel_saver(model, ordered_loader, device, save_dir, model_name, interval = 1)
|
202 |
save_model.save()
|
203 |
|
204 |
scheduler.step()
|
|
|
189 |
logger.info(f'Epoch: {epoch+1} | Test Loss: {test_loss/(batch_idx+1):.3f} | '
|
190 |
f'Test Acc: {acc:.2f}%')
|
191 |
|
192 |
+
# 每5个epoch保存一次
|
193 |
+
if (epoch + 1) % 5 == 0:
|
194 |
# 创建一个专门用于收集embedding的顺序dataloader
|
195 |
ordered_loader = torch.utils.data.DataLoader(
|
196 |
trainloader.dataset, # 使用相同的数据集
|
|
|
198 |
shuffle=False, # 确保顺序加载
|
199 |
num_workers=trainloader.num_workers
|
200 |
)
|
201 |
+
save_model = time_travel_saver(model, ordered_loader, device, save_dir, model_name, interval = 1, auto_save_embedding = True)
|
202 |
save_model.save()
|
203 |
|
204 |
scheduler.step()
|
ttv_utils/__init__.py
CHANGED
@@ -52,6 +52,6 @@
|
|
52 |
"""
|
53 |
|
54 |
from .feature_predictor import FeaturePredictor, predict_feature
|
55 |
-
from .save_embeddings import
|
56 |
|
57 |
__all__ = ['FeaturePredictor', 'predict_feature', 'time_travel_saver']
|
|
|
52 |
"""
|
53 |
|
54 |
from .feature_predictor import FeaturePredictor, predict_feature
|
55 |
+
from .save_embeddings import time_travel_saver
|
56 |
|
57 |
__all__ = ['FeaturePredictor', 'predict_feature', 'time_travel_saver']
|
ttv_utils/save_embeddings.py
CHANGED
@@ -15,7 +15,7 @@ class time_travel_saver:
|
|
15 |
4. 标签数据 (label/labels.npy)
|
16 |
"""
|
17 |
|
18 |
-
def __init__(self, model, dataloader, device, save_dir, model_name, interval=1):
|
19 |
"""初始化
|
20 |
|
21 |
Args:
|
@@ -32,6 +32,7 @@ class time_travel_saver:
|
|
32 |
self.save_dir = save_dir
|
33 |
self.model_name = model_name
|
34 |
self.interval = interval
|
|
|
35 |
|
36 |
# 创建保存目录结构
|
37 |
self.model_dir = os.path.join(save_dir, 'model')
|
@@ -160,17 +161,19 @@ class time_travel_saver:
|
|
160 |
# 保存模型权重
|
161 |
model_path = os.path.join(self.model_dir, f'{self.current_epoch}.pth')
|
162 |
torch.save(self.model.state_dict(), model_path)
|
|
|
|
|
|
|
|
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
# 保存特征
|
168 |
-
np.save(os.path.join(self.repr_dir, f'{self.current_epoch}.npy'), features)
|
169 |
|
170 |
-
|
171 |
-
|
172 |
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
|
15 |
4. 标签数据 (label/labels.npy)
|
16 |
"""
|
17 |
|
18 |
+
def __init__(self, model, dataloader, device, save_dir, model_name, interval=1, auto_save_embedding=False):
|
19 |
"""初始化
|
20 |
|
21 |
Args:
|
|
|
32 |
self.save_dir = save_dir
|
33 |
self.model_name = model_name
|
34 |
self.interval = interval
|
35 |
+
self.auto_save = auto_save_embedding
|
36 |
|
37 |
# 创建保存目录结构
|
38 |
self.model_dir = os.path.join(save_dir, 'model')
|
|
|
161 |
# 保存模型权重
|
162 |
model_path = os.path.join(self.model_dir, f'{self.current_epoch}.pth')
|
163 |
torch.save(self.model.state_dict(), model_path)
|
164 |
+
|
165 |
+
if self.auto_save:
|
166 |
+
# 提取并保存特征和预测结果
|
167 |
+
features, predictions = self._extract_features_and_predictions()
|
168 |
|
169 |
+
# 保存特征
|
170 |
+
np.save(os.path.join(self.repr_dir, f'{self.current_epoch}.npy'), features)
|
|
|
|
|
|
|
171 |
|
172 |
+
# 保存预测结果
|
173 |
+
np.save(os.path.join(self.pred_dir, f'{self.current_epoch}.npy'), predictions)
|
174 |
|
175 |
+
print(f"Epoch {self.current_epoch * self.interval} 的数据已保存:")
|
176 |
+
print(f"- 模型权重: {model_path}")
|
177 |
+
print(f"- 特征向量: [样本数: {features.shape[0]}, 特征维度: {features.shape[1]}]")
|
178 |
+
print(f"- 预测结果: [样本数: {predictions.shape[0]}, 类别数: {predictions.shape[1]}]")
|
179 |
+
print(f"Epoch {self.current_epoch * self.interval} 的数据已保存")
|