RRFRRF commited on
Commit
364a6fb
·
1 Parent(s): bb9bb65
Image/ResNet/code/train.py CHANGED
@@ -4,14 +4,14 @@ sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(
4
  from utils.dataset_utils import get_cifar10_dataloaders
5
  from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
6
  from utils.parse_args import parse_args
7
- from model import ResNet
8
 
9
  def main():
10
  # 解析命令行参数
11
  args = parse_args()
12
 
13
  # 创建模型
14
- model = ResNet()
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
 
4
  from utils.dataset_utils import get_cifar10_dataloaders
5
  from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
6
  from utils.parse_args import parse_args
7
+ from model import ResNet34
8
 
9
  def main():
10
  # 解析命令行参数
11
  args = parse_args()
12
 
13
  # 创建模型
14
+ model = ResNet34()
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
Image/utils/train_utils.py CHANGED
@@ -189,8 +189,8 @@ def train_model(model, trainloader, testloader, epochs=200, lr=0.1, device='cuda
189
  logger.info(f'Epoch: {epoch+1} | Test Loss: {test_loss/(batch_idx+1):.3f} | '
190
  f'Test Acc: {acc:.2f}%')
191
 
192
- # 每1个epoch保存一次
193
- if (epoch + 1) % 1 == 0:
194
  # 创建一个专门用于收集embedding的顺序dataloader
195
  ordered_loader = torch.utils.data.DataLoader(
196
  trainloader.dataset, # 使用相同的数据集
@@ -198,7 +198,7 @@ def train_model(model, trainloader, testloader, epochs=200, lr=0.1, device='cuda
198
  shuffle=False, # 确保顺序加载
199
  num_workers=trainloader.num_workers
200
  )
201
- save_model = time_travel_saver(model, ordered_loader, device, save_dir, model_name, interval = 1)
202
  save_model.save()
203
 
204
  scheduler.step()
 
189
  logger.info(f'Epoch: {epoch+1} | Test Loss: {test_loss/(batch_idx+1):.3f} | '
190
  f'Test Acc: {acc:.2f}%')
191
 
192
+ # 每5个epoch保存一次
193
+ if (epoch + 1) % 5 == 0:
194
  # 创建一个专门用于收集embedding的顺序dataloader
195
  ordered_loader = torch.utils.data.DataLoader(
196
  trainloader.dataset, # 使用相同的数据集
 
198
  shuffle=False, # 确保顺序加载
199
  num_workers=trainloader.num_workers
200
  )
201
+ save_model = time_travel_saver(model, ordered_loader, device, save_dir, model_name, interval = 1, auto_save_embedding = True)
202
  save_model.save()
203
 
204
  scheduler.step()
ttv_utils/__init__.py CHANGED
@@ -52,6 +52,6 @@
52
  """
53
 
54
  from .feature_predictor import FeaturePredictor, predict_feature
55
- from .save_embeddings import time_travel_savers
56
 
57
  __all__ = ['FeaturePredictor', 'predict_feature', 'time_travel_saver']
 
52
  """
53
 
54
  from .feature_predictor import FeaturePredictor, predict_feature
55
+ from .save_embeddings import time_travel_saver
56
 
57
  __all__ = ['FeaturePredictor', 'predict_feature', 'time_travel_saver']
ttv_utils/save_embeddings.py CHANGED
@@ -15,7 +15,7 @@ class time_travel_saver:
15
  4. 标签数据 (label/labels.npy)
16
  """
17
 
18
- def __init__(self, model, dataloader, device, save_dir, model_name, interval=1):
19
  """初始化
20
 
21
  Args:
@@ -32,6 +32,7 @@ class time_travel_saver:
32
  self.save_dir = save_dir
33
  self.model_name = model_name
34
  self.interval = interval
 
35
 
36
  # 创建保存目录结构
37
  self.model_dir = os.path.join(save_dir, 'model')
@@ -160,17 +161,19 @@ class time_travel_saver:
160
  # 保存模型权重
161
  model_path = os.path.join(self.model_dir, f'{self.current_epoch}.pth')
162
  torch.save(self.model.state_dict(), model_path)
 
 
 
 
163
 
164
- # 提取并保存特征和预测结果
165
- features, predictions = self._extract_features_and_predictions()
166
-
167
- # 保存特征
168
- np.save(os.path.join(self.repr_dir, f'{self.current_epoch}.npy'), features)
169
 
170
- # 保存预测结果
171
- np.save(os.path.join(self.pred_dir, f'{self.current_epoch}.npy'), predictions)
172
 
173
- print(f"Epoch {self.current_epoch * self.interval} 的数据已保存:")
174
- print(f"- 模型权重: {model_path}")
175
- print(f"- 特征向量: [样本数: {features.shape[0]}, 特征维度: {features.shape[1]}]")
176
- print(f"- 预测结果: [样本数: {predictions.shape[0]}, 类别数: {predictions.shape[1]}]")
 
 
15
  4. 标签数据 (label/labels.npy)
16
  """
17
 
18
+ def __init__(self, model, dataloader, device, save_dir, model_name, interval=1, auto_save_embedding=False):
19
  """初始化
20
 
21
  Args:
 
32
  self.save_dir = save_dir
33
  self.model_name = model_name
34
  self.interval = interval
35
+ self.auto_save = auto_save_embedding
36
 
37
  # 创建保存目录结构
38
  self.model_dir = os.path.join(save_dir, 'model')
 
161
  # 保存模型权重
162
  model_path = os.path.join(self.model_dir, f'{self.current_epoch}.pth')
163
  torch.save(self.model.state_dict(), model_path)
164
+
165
+ if self.auto_save:
166
+ # 提取并保存特征和预测结果
167
+ features, predictions = self._extract_features_and_predictions()
168
 
169
+ # 保存特征
170
+ np.save(os.path.join(self.repr_dir, f'{self.current_epoch}.npy'), features)
 
 
 
171
 
172
+ # 保存预测结果
173
+ np.save(os.path.join(self.pred_dir, f'{self.current_epoch}.npy'), predictions)
174
 
175
+ print(f"Epoch {self.current_epoch * self.interval} 的数据已保存:")
176
+ print(f"- 模型权重: {model_path}")
177
+ print(f"- 特征向量: [样本数: {features.shape[0]}, 特征维度: {features.shape[1]}]")
178
+ print(f"- 预测结果: [样本数: {predictions.shape[0]}, 类别数: {predictions.shape[1]}]")
179
+ print(f"Epoch {self.current_epoch * self.interval} 的数据已保存")