Datasets:
Commit
•
b13bb71
1
Parent(s):
d376211
Support streaming (#2)
Browse files- Support streaming (53ddc13ca7abebfaabe68697786e1ab6b978666e)
- multi_eurlex.py +29 -30
multi_eurlex.py
CHANGED
@@ -16,10 +16,17 @@
|
|
16 |
|
17 |
|
18 |
import json
|
19 |
-
import os
|
20 |
|
21 |
import datasets
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
_CITATION = """\
|
25 |
@InProceedings{chalkidis-etal-2021-multieurlex,
|
@@ -35,13 +42,6 @@ _CITATION = """\
|
|
35 |
location = {Punta Cana, Dominican Republic},
|
36 |
}"""
|
37 |
|
38 |
-
_DESCRIPTION = """\
|
39 |
-
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
|
40 |
-
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
|
41 |
-
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
|
42 |
-
this is multi-label classification task (given the text, predict multiple labels).
|
43 |
-
"""
|
44 |
-
|
45 |
DATA_URL = "https://zenodo.org/record/5363165/files/multi_eurlex.tar.gz"
|
46 |
|
47 |
_LANGUAGES = [
|
@@ -8255,49 +8255,48 @@ class MultiEURLEX(datasets.GeneratorBasedBuilder):
|
|
8255 |
description=_DESCRIPTION,
|
8256 |
features=features,
|
8257 |
supervised_keys=None,
|
8258 |
-
homepage=
|
8259 |
citation=_CITATION,
|
8260 |
)
|
8261 |
|
8262 |
def _split_generators(self, dl_manager):
|
8263 |
-
data_dir = dl_manager.
|
8264 |
return [
|
8265 |
datasets.SplitGenerator(
|
8266 |
name=datasets.Split.TRAIN,
|
8267 |
# These kwargs will be passed to _generate_examples
|
8268 |
-
gen_kwargs={"
|
8269 |
),
|
8270 |
datasets.SplitGenerator(
|
8271 |
name=datasets.Split.TEST,
|
8272 |
# These kwargs will be passed to _generate_examples
|
8273 |
-
gen_kwargs={"
|
8274 |
),
|
8275 |
datasets.SplitGenerator(
|
8276 |
name=datasets.Split.VALIDATION,
|
8277 |
# These kwargs will be passed to _generate_examples
|
8278 |
-
gen_kwargs={"
|
8279 |
),
|
8280 |
]
|
8281 |
|
8282 |
-
def _generate_examples(self,
|
8283 |
"""This function returns the examples in the raw (text) form."""
|
8284 |
-
|
8285 |
-
|
8286 |
-
|
8287 |
-
|
8288 |
-
|
8289 |
-
yield id_, {
|
8290 |
-
"celex_id": data["celex_id"],
|
8291 |
-
"text": {lang: data["text"][lang] for lang in self.config.languages},
|
8292 |
-
"labels": data["eurovoc_concepts"][self.config.label_level],
|
8293 |
-
}
|
8294 |
-
else:
|
8295 |
-
with open(filepath, encoding="utf-8") as f:
|
8296 |
-
for id_, row in enumerate(f):
|
8297 |
-
data = json.loads(row)
|
8298 |
-
if data["text"][self.config.language] is not None:
|
8299 |
yield id_, {
|
8300 |
"celex_id": data["celex_id"],
|
8301 |
-
"text": data["text"][self.config.
|
8302 |
"labels": data["eurovoc_concepts"][self.config.label_level],
|
8303 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
|
18 |
import json
|
|
|
19 |
|
20 |
import datasets
|
21 |
|
22 |
+
_HOMEPAGE = "https://github.io/iliaschalkidis"
|
23 |
+
|
24 |
+
_DESCRIPTION = """\
|
25 |
+
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
|
26 |
+
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
|
27 |
+
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
|
28 |
+
this is multi-label classification task (given the text, predict multiple labels).
|
29 |
+
"""
|
30 |
|
31 |
_CITATION = """\
|
32 |
@InProceedings{chalkidis-etal-2021-multieurlex,
|
|
|
42 |
location = {Punta Cana, Dominican Republic},
|
43 |
}"""
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
DATA_URL = "https://zenodo.org/record/5363165/files/multi_eurlex.tar.gz"
|
46 |
|
47 |
_LANGUAGES = [
|
|
|
8255 |
description=_DESCRIPTION,
|
8256 |
features=features,
|
8257 |
supervised_keys=None,
|
8258 |
+
homepage=_HOMEPAGE,
|
8259 |
citation=_CITATION,
|
8260 |
)
|
8261 |
|
8262 |
def _split_generators(self, dl_manager):
|
8263 |
+
data_dir = dl_manager.download(DATA_URL)
|
8264 |
return [
|
8265 |
datasets.SplitGenerator(
|
8266 |
name=datasets.Split.TRAIN,
|
8267 |
# These kwargs will be passed to _generate_examples
|
8268 |
+
gen_kwargs={"archive": dl_manager.iter_archive(data_dir), "filepath": "train.jsonl"},
|
8269 |
),
|
8270 |
datasets.SplitGenerator(
|
8271 |
name=datasets.Split.TEST,
|
8272 |
# These kwargs will be passed to _generate_examples
|
8273 |
+
gen_kwargs={"archive": dl_manager.iter_archive(data_dir), "filepath": "test.jsonl"},
|
8274 |
),
|
8275 |
datasets.SplitGenerator(
|
8276 |
name=datasets.Split.VALIDATION,
|
8277 |
# These kwargs will be passed to _generate_examples
|
8278 |
+
gen_kwargs={"archive": dl_manager.iter_archive(data_dir), "filepath": "dev.jsonl"},
|
8279 |
),
|
8280 |
]
|
8281 |
|
8282 |
+
def _generate_examples(self, archive, filepath):
|
8283 |
"""This function returns the examples in the raw (text) form."""
|
8284 |
+
for path, f in archive:
|
8285 |
+
if path == filepath:
|
8286 |
+
if self.config.language == "all_languages":
|
8287 |
+
for id_, row in enumerate(f):
|
8288 |
+
data = json.loads(row)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8289 |
yield id_, {
|
8290 |
"celex_id": data["celex_id"],
|
8291 |
+
"text": {lang: data["text"][lang] for lang in self.config.languages},
|
8292 |
"labels": data["eurovoc_concepts"][self.config.label_level],
|
8293 |
}
|
8294 |
+
else:
|
8295 |
+
for id_, row in enumerate(f):
|
8296 |
+
data = json.loads(row)
|
8297 |
+
if data["text"][self.config.language] is not None:
|
8298 |
+
yield id_, {
|
8299 |
+
"celex_id": data["celex_id"],
|
8300 |
+
"text": data["text"][self.config.language],
|
8301 |
+
"labels": data["eurovoc_concepts"][self.config.label_level],
|
8302 |
+
}
|