Datasets:

ArXiv:
cloneofsimo commited on
Commit
75fcb6a
1 Parent(s): fbba2c2

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +83 -1
README.md CHANGED
@@ -31,4 +31,86 @@ These include:
31
 
32
  So clearly, it doesn't make sense to download entire Imagenet and do VAE everytime. Just download this, `to('cuda')` the entire dataset just to flex, and call it a day.😌
33
 
34
- (BTW If you think you'll need higher precision, you can always further fine-tune your model on higher precision. But I doubt that.)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
  So clearly, it doesn't make sense to download entire Imagenet and do VAE everytime. Just download this, `to('cuda')` the entire dataset just to flex, and call it a day.😌
33
 
34
+ (BTW If you think you'll need higher precision, you can always further fine-tune your model on higher precision. But I doubt that.)
35
+
36
+
37
+ # How to use?
38
+
39
+ First download this.
40
+
41
+ ```bash
42
+ do huggingface-cli download --repo-type dataset cloneofsimo/imagenet.int8 --local-dir ./vae_mds
43
+ ```
44
+
45
+ Then, you need to install [streaming dataset](https://github.com/mosaicml/streaming) to use this. The dataset is MDS format.
46
+
47
+ ```bash
48
+ pip install mosaicml-streaming
49
+ ```
50
+
51
+ Then, you can use this dataset like this:
52
+
53
+ ```python
54
+
55
+ from streaming.base.format.mds.encodings import Encoding, _encodings
56
+ import numpy as np
57
+ from typing import Any
58
+ import torch
59
+ from streaming import StreamingDataset
60
+ from diffusers.models import AutoencoderKL
61
+ from diffusers.image_processor import VaeImageProcessor
62
+
63
+ class uint8(Encoding):
64
+ def encode(self, obj: Any) -> bytes:
65
+ return obj.tobytes()
66
+
67
+ def decode(self, data: bytes) -> Any:
68
+ x= np.frombuffer(data, np.uint8).astype(np.float32)
69
+ return (x / 255.0 - 0.5) * 24.0
70
+
71
+ _encodings["uint8"] = uint8
72
+
73
+
74
+ remote_train_dir = "./vae_mds" # this is the path you installed this dataset.
75
+ local_train_dir = "./local_train_dir"
76
+
77
+ train_dataset = StreamingDataset(
78
+ local=local_train_dir,
79
+ remote=remote_train_dir,
80
+ split=None,
81
+ shuffle=True,
82
+ shuffle_algo="naive",
83
+ num_canonical_nodes=1,
84
+ batch_size = 32
85
+ )
86
+
87
+ train_dataloader = torch.utils.data.DataLoader(
88
+ train_dataset,
89
+ batch_size=32,
90
+ num_workers=3,
91
+ )
92
+
93
+
94
+
95
+ ###### Example Usage. Let's see if we can get the 5th image. BTW shuffle plz
96
+
97
+
98
+ model = "stabilityai/your-stable-diffusion-model"
99
+ vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae").to("cuda:0")
100
+
101
+
102
+ batch = next(iter(train_dataloader))
103
+
104
+ i = 5
105
+ vae_latent = batch["vae_output"].reshape(-1, 4, 32, 32)[i:i+1].cuda().float()
106
+ idx = batch["label"][i]
107
+ text_label = batch['label_as_text'][i]
108
+
109
+ print(f"idx: {idx}, text_label: {text_label}, latent: {vae_latent.shape}")
110
+ # idx: 402, text_label: acoustic guitar, latent: torch.Size([1, 4, 32, 32])
111
+
112
+ # example decoding
113
+ x = vae.decode(vae_latent.cuda()).sample
114
+ img = VaeImageProcessor().postprocess(image = x.detach(), do_denormalize = [True, True])[0]
115
+ img.save("5th_image.png")
116
+ ```