id
stringlengths
5
7
query
stringlengths
4.64k
8.32k
answer
stringlengths
392
2.53k
PLOS400
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Non-typhoidal Salmonella (NTS) and Salmonella enterica serovar Typhi bacteremia are the causes of significant morbidity and mortality worldwide. There is a paucity of data regarding NTS bacteremia in South Asia, a region with a high incidence of typhoidal bacteremia. We sought to determine clinical predictors and outcomes associated with NTS bacteremia compared with typhoidal bacteremia. We performed a retrospective age-matched case-control study of patients admitted to the Dhaka Hospital of the International Centre for Diarrhoeal Disease Research, Bangladesh, between February 2009 and March 2013. We compared demographic, clinical, microbiological, and outcome variables of NTS bacteremic patients with age-matched S. Typhi bacteremic patients, and a separate comparison of patients with NTS bacteremia and patients with NTS gastroenteritis. Of 20 patients with NTS bacteremia, 5 died (25% case fatality), compared to none of 60 age-matched cases of S. Typhi bacteremia. In univariate analysis, we found that compared with S. Typhi bacteremia, cases of NTS bacteremia had more severe acute malnutrition (SAM) in children under five years of age, less often presented with a duration of fever ≥ 5 days, and were more likely to have co-morbidities on admission such as pneumonia and clinical signs of sepsis (p<0.05 in all cases). In multivariable logistic regression, SAM, clinical sepsis, and pneumonia were independent risk factors for NTS bacteremia compared with S. Typhi bacteremia (p<0.05 in all cases). Notably, we found marked differences in antibiotic susceptibilities, including NTS strains resistant to antibiotics commonly used for empiric therapy of patients suspected to have typhoid fever. Diarrheal patients with NTS bacteremia more often presented with co-morbidities and had a higher case fatality rate compared to those with typhoidal bacteremia. Clinicians in regions where both typhoid and NTS bacteremia are prevalent need to be vigilant about the possibility of both entities, especially given notable differences in antibiotic susceptibility patterns. Output:
Salmonella are a group of bacteria that cause illnesses and death worldwide. There are two types of Salmonella–Typhi and non-typhoidal (NTS). In humans, the majority of illnesses caused by NTS are related to gastro-intestinal problems, though uncommonly, it also invades the bloodstream. On the other hand, typhoid fever caused by Salmonella typhi commonly invades the bloodstream. Since the treatment of the two types may differ, we wanted to compare the risk factors for each. We studied patients who had NTS or Typhi isolated from blood in a diarrheal hospital in Bangladesh. We observed that patients with NTS bloodstream infection frequently presented with severe malnutrition, clinically diagnosed sepsis and pneumonia compared to those with typhoid fever. We also found that NTS and Typhi differed in what antibiotics they were sensitive to. These observations may help our clinicians to initiate aggressive treatment from the very beginning of the illness in children with NTS bacteremia in order to attain better outcomes.
PLOS401
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: PARN is one of several deadenylase enzymes present in mammalian cells, and as such the contribution it makes to the regulation of gene expression is unclear. To address this, we performed global mRNA expression and half-life analysis on mouse myoblasts depleted of PARN. PARN knockdown resulted in the stabilization of 40 mRNAs, including that encoding the mRNA decay factor ZFP36L2. Additional experiments demonstrated that PARN knockdown induced an increase in Zfp36l2 poly(A) tail length as well as increased translation. The elements responsible for PARN-dependent regulation lie within the 3′ UTR of the mRNA. Surprisingly, changes in mRNA stability showed an inverse correlation with mRNA abundance; stabilized transcripts showed either no change or a decrease in mRNA abundance. Moreover, we found that stabilized mRNAs had reduced accumulation of pre–mRNA, consistent with lower transcription rates. This presents compelling evidence for the coupling of mRNA decay and transcription to buffer mRNA abundances. Although PARN knockdown altered decay of relatively few mRNAs, there was a much larger effect on global gene expression. Many of the mRNAs whose abundance was reduced by PARN knockdown encode factors required for cell migration and adhesion. The biological relevance of this observation was demonstrated by the fact that PARN KD cells migrate faster in wound-healing assays. Collectively, these data indicate that PARN modulates decay of a defined set of mRNAs in mammalian cells and implicate this deadenylase in coordinating control of genes required for cell movement. Output:
Almost all cellular mRNAs terminate in a 3′ poly(A) tail, the removal of which can induce both translational silencing and mRNA decay. Mammalian cells encode many poly(A)-specific exoribonucleases, but their individual roles are poorly understood. Here, we undertook an analysis of the role of PARN deadenylase in mouse myoblasts using global measurements of mRNA decay rates. Our results reveal that a discrete set of mRNAs exhibit altered mRNA decay as a result of PARN depletion and that stabilization is associated with increased poly(A) tail length and translation efficiency. We determined that stabilization of mRNAs does not generally result in their increased abundance, supporting the idea that mRNA decay is coupled to transcription. Importantly, knockdown of PARN has wide ranging effects on gene expression that specifically impact the extracellular matrix and cell migration.
PLOS402
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: HIV-1 assembly and release are believed to occur at the plasma membrane in most host cells with the exception of primary macrophages, for which exclusive budding at late endosomes has been reported. Here, we applied a novel ultrastructural approach to assess HIV-1 budding in primary macrophages in an immunomarker-independent manner. Infected macrophages were fed with BSA-gold and stained with the membrane-impermeant dye ruthenium red to identify endosomes and the plasma membrane, respectively. Virus-filled vacuolar structures with a seemingly intracellular localization displayed intense staining with ruthenium red, but lacked endocytosed BSA-gold, defining them as plasma membrane. Moreover, HIV budding profiles were virtually excluded from gold-filled endosomes while frequently being detected on ruthenium red–positive membranes. The composition of cellular marker proteins incorporated into HIV-1 supported a plasma membrane–derived origin of the viral envelope. Thus, contrary to current opinion, the plasma membrane is the primary site of HIV-1 budding also in infected macrophages. Output:
Macrophages are one of the major target cells for HIV-1 infection and play an important role in viral pathogenesis. Previous studies indicated that the pathway of HIV-1 particle morphogenesis is distinct in primary human macrophages, and this has been suggested to play a role in viral persistence. Early reports indicated that HIV-1 accumulates within apparently intracellular vacuolar structures, which were later identified as being of late endosomal origin. Endosomes were therefore suggested to comprise the budding and storage compartment for HIV-1 in primary human macrophages, from which infectious virus can be released in a regulated manner. In the present study, we show that HIV-1 budding occurs predominantly at the plasma membrane also in primary human macrophages. Using electron microscopy, we observed that the cell surface of macrophages displays an unexpectedly complex morphology with many protrusions and deep invaginations. HIV-1 budding occurs primarily at these invaginations that are clearly connected to the cell surface and do not belong to the endocytic compartment. Mature virus particles can remain trapped within such invaginations giving the appearance of an intracellular budding compartment. These results suggest a general pathway of HIV-1 morphogenesis with the plasma membrane as viral budding site.
PLOS403
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Development and function of tissues and organs are powered by the activity of mitochondria. In humans, inherited genetic mutations that lead to progressive mitochondrial pathology often manifest during infancy and can lead to death, reflecting the indispensable nature of mitochondrial biogenesis and function. Here, we describe a zebrafish mutant for the gene mia40a (chchd4a), the life-essential homologue of the evolutionarily conserved Mia40 oxidoreductase which drives the biogenesis of cysteine-rich mitochondrial proteins. We report that mia40a mutant animals undergo progressive cellular respiration defects and develop enlarged mitochondria in skeletal muscles before their ultimate death at the larval stage. We generated a deep transcriptomic and proteomic resource that allowed us to identify abnormalities in the development and physiology of endodermal organs, in particular the liver and pancreas. We identify the acinar cells of the exocrine pancreas to be severely affected by mutations in the MIA pathway. Our data contribute to a better understanding of the molecular, cellular and organismal effects of mitochondrial deficiency, important for the accurate diagnosis and future treatment strategies of mitochondrial diseases. Output:
Mitochondrial pathologies which result from mutations in the nuclear DNA remain incurable and often lead to death. As mitochondria play various roles in cellular and tissue-specific contexts, the symptoms of mitochondrial pathologies can differ between patients. Thus, diagnosis and treatment of mitochondrial disorders remain challenging. To enhance this, the generation of new models that explore and define the consequences of mitochondria insufficiencies is of central importance. Here, we present a mia40a zebrafish mutant as a model for mitochondrial dysfunction, caused by an imbalance in mitochondrial protein biogenesis. This mutant shares characteristics with existing reports on mitochondria dysfunction, and has led us to identify novel phenotypes such as enlarged mitochondrial clusters in skeletal muscles. In addition, our transcriptomics and proteomics data contribute important findings to the existing knowledge on how faulty mitochondria impinge on vertebrate development in molecular, tissue and organ specific contexts.
PLOS404
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Routine entomological monitoring data are used to quantify the abundance of Ae. aegypti. The public health utility of these indicators is based on the assumption that greater mosquito abundance increases the risk of human DENV transmission, and therefore reducing exposure to the vector decreases incidence of infection. Entomological survey data from two longitudinal cohort studies in Iquitos, Peru, linked with 8,153 paired serological samples taken approximately six months apart were analyzed. Indicators of Ae. aegypti density were calculated from cross-sectional and longitudinal entomological data collected over a 12-month period for larval, pupal and adult Ae. aegypti. Log binomial models were used to estimate risk ratios (RR) to measure the association between Ae. aegypti abundance and the six-month risk of DENV seroconversion. RRs estimated using cross-sectional entomological data were compared to RRs estimated using longitudinal data. Higher cross-sectional Ae. aegypti densities were not associated with an increased risk of DENV seroconversion. Use of longitudinal entomological data resulted in RRs ranging from 1.01 (95% CI: 1.01, 1.02) to 1.30 (95% CI: 1.17, 1.46) for adult stage density estimates and RRs ranging from 1.21 (95% CI: 1.07, 1.37) to 1.75 (95% CI: 1.23, 2.5) for categorical immature indices. Ae. aegypti densities calculated from longitudinal entomological data were associated with DENV seroconversion, whereas those measured cross-sectionally were not. Ae. aegypti indicators calculated from cross-sectional surveillance, as is common practice, have limited public health utility in detecting areas or populations at high risk of DENV infection. Output:
In this study, we compared measures of entomological risk collected through routine household entomological monitoring by estimating an association with human DENV infection. Longitudinal entomological and human serology data from Iquitos, Peru, were used to test associations between Ae. aegypti indices and the 6-month risk of DENV seroconversion. Our analysis found no association between cross-sectional measures of Ae. aegypti abundance and the risk of DENV seroconversion. Longitudinal measures of Ae. aegypti were better proxies for DENV risk, primarily among adult stage mosquito indicators. DENV transmission is complex and time-varying; the relationship between vector density and risk is not static nor adequately characterized through periodic entomological surveillance. While entomological monitoring will continue to serve a role in the evaluation of vector control interventions (e.g., comparing pre- and post-intervention abundance), our analysis challenges the validity of most Ae. aegypti indicators as adequate proxies for true DENV exposure risk.
PLOS405
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Infectious diseases are one of the primary healthcare problems worldwide, leading to millions of deaths annually. To develop effective control and prevention strategies, we need reliable computational tools to understand disease dynamics and to predict future cases. These computational tools can be used by policy makers to make more informed decisions. In this study, we developed a computational framework based on Gaussian processes to perform spatiotemporal prediction of infectious diseases and exploited the special structure of similarity matrices in our formulation to obtain a very efficient implementation. We then tested our framework on the problem of modeling Crimean–Congo hemorrhagic fever cases between years 2004 and 2015 in Turkey. We showed that our Gaussian process formulation obtained better results than two frequently used standard machine learning algorithms (i.e., random forests and boosted regression trees) under temporal, spatial, and spatiotemporal prediction scenarios. These results showed that our framework has the potential to make an important contribution to public health policy makers. Output:
Infectious diseases cause important health problems worldwide and create difficult challenges for public health policy makers. That is why they need reliable computational tools to better understand disease and to predict case counts. They will benefit from such computational tools to make more informed decisions in developing control and prevention strategies. We formulated a computational framework that can be used to model spatial, temporal, or spatiotemporal dynamics of infectious diseases. We showed the utility of our framework on the problem of modeling Crimean–Congo hemorrhagic fever in Turkey.
PLOS406
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Alphaviruses, such as chikungunya virus, and flaviviruses, such as dengue virus, are (re)-emerging arboviruses that are endemic in tropical environments. In Africa, arbovirus infections are often undiagnosed and unreported, with febrile illnesses often assumed to be malaria. This cross-sectional study aimed to characterize the seroprevalence of alphaviruses and flaviviruses among children (ages 5–14, n = 250) and adults (ages 15 ≥ 75, n = 250) in western Kenya. Risk factors for seropositivity were explored using Lasso regression. Overall, 67% of participants showed alphavirus seropositivity (CI95 63%–70%), and 1.6% of participants showed flavivirus seropositivity (CI95 0.7%–3%). Children aged 10–14 were more likely to be seropositive to an alphavirus than adults (p < 0.001), suggesting a recent transmission period. Alphavirus and flavivirus seropositivity was detected in the youngest participants (age 5–9), providing evidence of inter-epidemic transmission. Demographic variables that were significantly different amongst those with previous infection versus those without infection included age, education level, and occupation. Behavioral and environmental variables significantly different amongst those in with previous infection to those without infection included taking animals for grazing, fishing, and recent village flooding. Experience of recent fever was also found to be a significant indicator of infection (p = 0.027). These results confirm alphavirus and flavivirus exposure in western Kenya, while illustrating significantly higher alphavirus transmission compared to previous studies. Output:
There are many examples of recent emergence of mosquito-borne viruses, such as chikungunya virus outbreaks throughout the Caribbean in 2013, Zika virus outbreaks throughout Southern and Central America in 2015, and yellow fever virus in Brazil in 2017. Each outbreak draws attention to the limits associated with predicting future outbreaks. This study expands our understanding of risk factors for exposure to two common genera of mosquito-borne viruses, alphaviruses and flaviviruses. Risk factors identified include simple demographic factors, such as age or sex, and behaviors associated with occupation or livelihood around the home. Behaviors enhancing or limiting contact with mosquitoes are also significant predictors, as mosquitoes drive transmission. More clearly defining the epidemiology of these infections within a population can elevate the accuracy and efficacy of public health initiatives that fuel community education and awareness, and outbreak prediction and monitoring can be elevated to a new level of accuracy and efficacy.
PLOS407
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Tumor microenvironmental stresses, such as hypoxia and lactic acidosis, play important roles in tumor progression. Although gene signatures reflecting the influence of these stresses are powerful approaches to link expression with phenotypes, they do not fully reflect the complexity of human cancers. Here, we describe the use of latent factor models to further dissect the stress gene signatures in a breast cancer expression dataset. The genes in these latent factors are coordinately expressed in tumors and depict distinct, interacting components of the biological processes. The genes in several latent factors are highly enriched in chromosomal locations. When these factors are analyzed in independent datasets with gene expression and array CGH data, the expression values of these factors are highly correlated with copy number alterations (CNAs) of the corresponding BAC clones in both the cell lines and tumors. Therefore, variation in the expression of these pathway-associated factors is at least partially caused by variation in gene dosage and CNAs among breast cancers. We have also found the expression of two latent factors without any chromosomal enrichment is highly associated with 12q CNA, likely an instance of “trans”-variations in which CNA leads to the variations in gene expression outside of the CNA region. In addition, we have found that factor 26 (1q CNA) is negatively correlated with HIF-1α protein and hypoxia pathways in breast tumors and cell lines. This agrees with, and for the first time links, known good prognosis associated with both a low hypoxia signature and the presence of CNA in this region. Taken together, these results suggest the possibility that tumor segmental aneuploidy makes significant contributions to variation in the lactic acidosis/hypoxia gene signatures in human cancers and demonstrate that latent factor analysis is a powerful means to uncover such a linkage. Output:
Gene signatures are a powerful tool to investigate biological processes in human cancer. However, it is clear that these gene signatures do not fully reflect the complexity of human cancer. Here we demonstrate how a latent factor model can improve the in vivo relevance of these pathway-associated gene signatures by dissecting them into co-regulated transcriptional components which better represent the structure in human cancer. We use this approach to analyze hypoxia and lactic acidosis gene signatures to identify latent factors that represent distinct, interacting components of the various biological processes which are in the initial gene signatures but poorly dissected. Some factors are clustered in small chromosomal regions and their expression values are highly correlated with their DNA copy number in both cancer cell lines and human tumors. Therefore, the gene dosage at the DNA levels may explain the differences in gene expression. Several factors contain genes which are known to directly modulate the hypoxia response and allow us to generate testable hypotheses regarding particular copy number changes and hypoxia signatures. Therefore, the use of latent factor analysis is a powerful means to identify pathway-associated changes in the DNA copy number and gene dosage.
PLOS408
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Molecular recognition by intrinsically disordered proteins (IDPs) commonly involves specific localized contacts and target-induced disorder to order transitions. However, some IDPs remain disordered in the bound state, a phenomenon coined “fuzziness”, often characterized by IDP polyvalency, sequence-insensitivity and a dynamic ensemble of disordered bound-state conformations. Besides the above general features, specific biophysical models for fuzzy interactions are mostly lacking. The transcriptional activation domain of the Ewing's Sarcoma oncoprotein family (EAD) is an IDP that exhibits many features of fuzziness, with multiple EAD aromatic side chains driving molecular recognition. Considering the prevalent role of cation-π interactions at various protein-protein interfaces, we hypothesized that EAD-target binding involves polycation- π contacts between a disordered EAD and basic residues on the target. Herein we evaluated the polycation-π hypothesis via functional and theoretical interrogation of EAD variants. The experimental effects of a range of EAD sequence variations, including aromatic number, aromatic density and charge perturbations, all support the cation-π model. Moreover, the activity trends observed are well captured by a coarse-grained EAD chain model and a corresponding analytical model based on interaction between EAD aromatics and surface cations of a generic globular target. EAD-target binding, in the context of pathological Ewing's Sarcoma oncoproteins, is thus seen to be driven by a balance between EAD conformational entropy and favorable EAD-target cation-π contacts. Such a highly versatile mode of molecular recognition offers a general conceptual framework for promiscuous target recognition by polyvalent IDPs. Output:
Understanding how proteins recognize each other is central to deciphering the inner workings of living things and for biomedical research. It has long been known that the sequence of a protein, which is a string of different amino acids, can dictate how a protein molecule folds into a well-defined shape required for biological tasks. Many folded proteins recognize and bind with each other by a tight geometric fit similar to that between a lock and its key. Recently, however, it has become clear that some proteins function as a flexible string, in constant motion, without forming a stable shape. Understanding how such “disordered” proteins work is challenging. To gain insight, we studied a disordered protein region that causes a large family of human cancers. Employing an innovative combination of experimental and theoretical techniques, we describe a new mode of protein interaction based on multiple simple contacts between one type of amino acid (aromatic) in the disordered protein and another type (positively charged) on the partner protein. Because this mechanism also underlies the ability of the disordered protein to cause cancer, further investigation of this unprecedented mode of protein-protein interaction may open up new avenues for cancer therapy.
PLOS409
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Many choice situations require imagining potential outcomes, a capacity that was shown to involve memory brain regions such as the hippocampus. We reasoned that the quality of hippocampus-mediated simulation might therefore condition the subjective value assigned to imagined outcomes. We developed a novel paradigm to assess the impact of hippocampus structure and function on the propensity to favor imagined outcomes in the context of intertemporal choices. The ecological condition opposed immediate options presented as pictures (hence directly observable) to delayed options presented as texts (hence requiring mental stimulation). To avoid confounding simulation process with delay discounting, we compared this ecological condition to control conditions using the same temporal labels while keeping constant the presentation mode. Behavioral data showed that participants who imagined future options with greater details rated them as more likeable. Functional MRI data confirmed that hippocampus activity could account for subjects assigning higher values to simulated options. Structural MRI data suggested that grey matter density was a significant predictor of hippocampus activation, and therefore of the propensity to favor simulated options. Conversely, patients with hippocampus atrophy due to Alzheimer's disease, but not patients with Fronto-Temporal Dementia, were less inclined to favor options that required mental simulation. We conclude that hippocampus-mediated simulation plays a critical role in providing the motivation to pursue goals that are not present to our senses. Output:
Economic theory assumes that we assign some sort of value to options that are presented to us in order to choose between them. In neuroscience, evidence suggests that memory brain regions, such as the hippocampus, are involved in imagining novel situations. We therefore hypothesized that the hippocampus might be critical for evaluating outcomes that we need to imagine. This is typically the case in intertemporal choices, where immediate rewards are considered against future gratifications (e.g., a beer now or a bottle of champagne a week from now). Previous investigations have implicated the dorsal prefrontal cortex brain region in resisting immediate rewards. Here we manipulated the mode of presentation (text or picture), such that options were represented either in simulation or in perception systems. Functional neuroimaging data confirmed that hippocampal activity lends a preference to choosing simulated options (irrespective of time), whereas dorsal prefrontal cortex brain activity supports the preference for delayed options (irrespective of presentation mode). Structural neuroimaging in healthy subjects and in patients with brain atrophy, due to Alzheimer's disease (with hippocampal damage) or Fronto-Temporal Dementia (with damage to the prefrontal cortex), further demonstrated the critical implication of the hippocampus. Individuals with higher neuronal density in the hippocampus, but not in the dorsal prefrontal cortex, were more likely to choose future rewards that have to be mentally simulated.
PLOS410
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Genetic defects in the dystrophin-associated protein complex (DAPC) are responsible for a variety of pathological conditions including muscular dystrophy, cardiomyopathy, and vasospasm. Conserved DAPC components from humans to Caenorhabditis elegans suggest a similar molecular function. C. elegans DAPC mutants exhibit a unique locomotory deficit resulting from prolonged muscle excitation and contraction. Here we show that the C. elegans DAPC is essential for proper localization of SLO-1, the large conductance, voltage-, and calcium-dependent potassium (BK) channel, which conducts a major outward rectifying current in muscle under the normal physiological condition. Through analysis of mutants with the same phenotype as the DAPC mutants, we identified the novel islo-1 gene that encodes a protein with two predicted transmembrane domains. We demonstrate that ISLO-1 acts as a novel adapter molecule that links the DAPC to SLO-1 in muscle. We show that a defect in either the DAPC or ISLO-1 disrupts normal SLO-1 localization in muscle. Consistent with observations that SLO-1 requires a high calcium concentration for full activation, we find that SLO-1 is localized near L-type calcium channels in muscle, thereby providing a mechanism coupling calcium influx with the outward rectifying current. Our results indicate that the DAPC modulates muscle excitability by localizing the SLO-1 channel to calcium-rich regions of C. elegans muscle. Output:
Dystrophin is a long rod-shaped protein that forms a complex with several membrane and cytoplasmic proteins in muscle. Genetic defects in components of this dystrophin complex are responsible for many forms of muscular dystrophy, including Duchenne muscular dystrophy. C. elegans possesses the dystrophin complex and mutations in its components cause muscular defects, indicating that the dystrophin complex has an evolutionary conserved role in muscle. Accumulating evidence in mammals indicates that dystrophic muscle exhibits an abnormal calcium homeostasis. It is not clear how defects in the dystrophin complex are linked to calcium homeostasis, however. In a C. elegans genetic study we found that a novel adaptor protein links the dystrophin complex to a calcium-sensitive potassium channel that mediates muscle inactivation. We further demonstrated that both the dystrophin complex and the adaptor protein localize the potassium channel in a close proximity to a muscle-activating calcium channel. This arrangement ensures that calcium increases accompanied by muscle activation are coupled to muscle inactivation. Defects in the dystrophin complex or the adaptor disrupt the localization of the potassium channel, thereby resulting in prolonged muscle activation and calcium ion increases. Our study provides a mechanism by which the dystrophin complex regulates cellular signaling and muscle excitability.
PLOS411
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Ethylene is one of the most important hormones for plant developmental processes and stress responses. However, the phosphorylation regulation in the ethylene signaling pathway is largely unknown. Here we report the phosphorylation of cap binding protein 20 (CBP20) at Ser245 is regulated by ethylene, and the phosphorylation is involved in root growth. The constitutive phosphorylation mimic form of CBP20 (CBP20S245E or CBP20S245D), while not the constitutive de-phosphorylation form of CBP20 (CBP20S245A) is able to rescue the root ethylene responsive phenotype of cbp20. By genome wide study with ethylene regulated gene expression and microRNA (miRNA) expression in the roots and shoots of both Col-0 and cbp20, we found miR319b is up regulated in roots while not in shoots, and its target MYB33 is specifically down regulated in roots with ethylene treatment. We described both the phenotypic and molecular consequences of transgenic over-expression of miR319b. Increased levels of miR319b (miR319bOE) leads to enhanced ethylene responsive root phenotype and reduction of MYB33 transcription level in roots; over expression of MYB33, which carrying mutated miR319b target site (mMYB33) in miR319bOE is able to recover both the root phenotype and the expression level of MYB33. Taken together, we proposed that ethylene regulated phosphorylation of CBP20 is involved in the root growth and one pathway is through the regulation of miR319b and its target MYB33 in roots. Output:
Ethylene is one of the most essential hormones for plant developmental processes and stress responses. However, the phosphorylation regulation in the ethylene signaling pathway is largely unknown. Here we found that ethylene induces the phosphorylation of CBP20 at S245, and the phosphorylation is involved in root growth. Genome wide study on ethylene regulated gene expression and microRNA expression together with genetic validation suggest that ethylene- induced phosphorylation of CBP20 is involved in root growth and one pathway is through the regulation of miR319b and its target gene MYB33. This study provides evidence showing a new link of cap binding protein phosphorylation associated microRNA to root growth in the ethylene response.
PLOS412
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Genome-scale metabolic networks provide a comprehensive structural framework for modeling genotype-phenotype relationships through flux simulations. The solution space for the metabolic flux state of the cell is typically very large and optimization-based approaches are often necessary for predicting the active metabolic state under specific environmental conditions. The objective function to be used in such optimization algorithms is directly linked with the biological hypothesis underlying the model and therefore it is one of the most relevant parameters for successful modeling. Although linear combination of selected fluxes is widely used for formulating metabolic objective functions, we show that the resulting optimization problem is sensitive towards stoichiometry representation of the metabolic network. This undesirable sensitivity leads to different simulation results when using numerically different but biochemically equivalent stoichiometry representations and thereby makes biological interpretation intrinsically subjective and ambiguous. We hereby propose a new method, Minimization of Metabolites Balance (MiMBl), which decouples the artifacts of stoichiometry representation from the formulation of the desired objective functions, by casting objective functions using metabolite turnovers rather than fluxes. By simulating perturbed metabolic networks, we demonstrate that the use of stoichiometry representation independent algorithms is fundamental for unambiguously linking modeling results with biological interpretation. For example, MiMBl allowed us to expand the scope of metabolic modeling in elucidating the mechanistic basis of several genetic interactions in Saccharomyces cerevisiae. Output:
One of the challenging tasks in systems biology is to quantitatively predict the metabolic behavior of the cell under given genetic and environmental constraints. To this end, genome-scale metabolic reconstructions and simulation tools are indispensable. The choice of the objective function to be used for simulating genome-scale metabolic models is dependent on the biological context and one of the most relevant parameters for successful modeling. Formulation of the intended objective function often requires the use of multiple fluxes, e.g. the sum of fluxes through ATP-producing reactions. We demonstrate that the existing tools confound biological interpretation of the simulations due to undesired dependence on the representation of stoichiometry and propose a new tool – Minimization of Metabolites Balance (MiMBl). MiMBl allows casting of the desired biological objective functions into linear optimization models and gives consistent simulation results when using numerically different but biochemically equivalent stoichiometry representations. We demonstrate relevance of MiMBl for addressing biological questions through improved predictions of genetic interactions within the yeast metabolic network. Genetic interactions imply functional relationship between the genes and therefore allow assessing different hypotheses for the underlying biological principles. MiMBl explains several of the genetic interactions as outcome of flux re-routing for minimal metabolite turnover adjustments.
PLOS413
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Saccharomyces cerevisiae Rad9 is required for an effective DNA damage response throughout the cell cycle. Assembly of Rad9 on chromatin after DNA damage is promoted by histone modifications that create docking sites for Rad9 recruitment, allowing checkpoint activation. Rad53 phosphorylation is also dependent upon BRCT-directed Rad9 oligomerization; however, the crosstalk between these molecular determinants and their functional significance are poorly understood. Here we report that, in the G1 and M phases of the cell cycle, both constitutive and DNA damage-dependent Rad9 chromatin association require its BRCT domains. In G1 cells, GST or FKBP dimerization motifs can substitute to the BRCT domains for Rad9 chromatin binding and checkpoint function. Conversely, forced Rad9 dimerization in M phase fails to promote its recruitment onto DNA, although it supports Rad9 checkpoint function. In fact, a parallel pathway, independent on histone modifications and governed by CDK1 activity, allows checkpoint activation in the absence of Rad9 chromatin binding. CDK1-dependent phosphorylation of Rad9 on Ser11 leads to specific interaction with Dpb11, allowing Rad53 activation and bypassing the requirement for the histone branch. Output:
In response to DNA damage all eukaryotic cells activate a surveillance mechanism, known as the DNA damage checkpoint, which delays cell cycle progression and modulates DNA repair. Yeast RAD9 was the first DNA damage checkpoint gene identified. The genetic tools available in this model system allow to address relevant questions to understand the molecular mechanisms underlying the Rad9 biological function. By chromatin-binding and domain-swapping experiments, we found that Rad9 is recruited into DNA both in unperturbed and in DNA–damaging conditions, and we identified the molecular determinants required for such interaction. Moreover, the extent of chromatin-bound Rad9 is regulated during the cell cycle and influences its role in checkpoint activation. In fact, the checkpoint function of Rad9 in G1 cells is solely mediated by its interaction with modified histones, while in M phase it occurs through an additional scaffold protein, named Dpb11. Productive Rad9-Dpb11 interaction in M phase requires Rad9 phosphorylation by CDK1, and we identified the Ser11 residue as the major CDK1 target. The model of Rad9 action that we are presenting can be extended to other eukaryotic organisms, since Rad9 and Dpb11 have been conserved through evolution from yeast to mammalian cells.
PLOS414
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Whole genome tiling arrays provide a high resolution platform for profiling of genetic, epigenetic, and gene expression polymorphisms. In this study we surveyed natural genomic variation in cytosine methylation among Arabidopsis thaliana wild accessions Columbia (Col) and Vancouver (Van) by comparing hybridization intensity difference between genomic DNA digested with either methylation-sensitive (HpaII) or -insensitive (MspI) restriction enzyme. Single Feature Polymorphisms (SFPs) were assayed on a full set of 1,683,620 unique features of Arabidopsis Tiling Array 1.0F (Affymetrix), while constitutive and polymorphic CG methylation were assayed on a subset of 54,519 features, which contain a 5′CCGG3′ restriction site. 138,552 SFPs (1% FDR) were identified across enzyme treatments, which preferentially accumulated in pericentromeric regions. Our study also demonstrates that at least 8% of all analyzed CCGG sites were constitutively methylated across the two strains, while about 10% of all analyzed CCGG sites were differentially methylated between the two strains. Within euchromatin arms, both constitutive and polymorphic CG methylation accumulated in central regions of genes but under-represented toward the 5′ and 3′ ends of the coding sequences. Nevertheless, polymorphic methylation occurred much more frequently in gene ends than constitutive methylation. Inheritance of methylation polymorphisms in reciprocal F1 hybrids was predominantly additive, with F1 plants generally showing levels of methylation intermediate between the parents. By comparing gene expression profiles, using matched tissue samples, we found that magnitude of methylation polymorphism immediately upstream or downstream of the gene was inversely correlated with the degree of expression variation for that gene. In contrast, methylation polymorphism within genic region showed weak positive correlation with expression variation. Our results demonstrated extensive genetic and epigenetic polymorphisms between Arabidopsis accessions and suggested a possible relationship between natural CG methylation variation and gene expression variation. Output:
The functional expression of DNA sequence depends on the chromatin status. Epigenetic marks at specific loci could affect local chromatin accessibility, thus affect the gene activity of that loci. We applied an enzyme methylome approach to globally detect one type of epigenetic mark, cytosine methylation at CCGG restriction sites. Simultaneous transcriptional profiling allowed gene expression differences to be compared with DNA methylation differences, suggesting functional regulatory regions. Our method reveals natural variation in chromatin patterns which may underlie phenotypic variation.
PLOS415
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Chagas disease, caused by the protozoan Trypanosoma cruzi (T.cruzi), is a complex disease endemic in Central and South America. It has been gathering interest due to increases in non-vectorial forms of transmission, especially in developed countries. The objective of this work was to investigate if adipose tissue-derived mesenchymal stromal cells (ASC) can alter the course of the disease and attenuate pathology in a mouse model of chagasic cardiomyopathy. ASC were injected intraperitoneally at 3 days post-infection (dpi). Tracking by bioluminescence showed that cells remained in the abdominal cavity for up to 9 days after injection and most of them migrated to the abdominal or subcutaneous fat, an early parasite reservoir. ASC injection resulted in a significant reduction in blood parasitemia, which was followed by a decrease in cardiac tissue inflammation, parasitism and fibrosis at 30 dpi. At the same time point, analyses of cytokine release in cells isolated from the heart and exposed to T. cruzi antigens indicated an anti-inflammatory response in ASC-treated animals. In parallel, splenocytes exposed to the same antigens produced a pro-inflammatory response, which is important for the control of parasite replication, in placebo and ASC-treated groups. However, splenocytes from the ASC group released higher levels of IL-10. At 60 dpi, magnetic resonance imaging revealed that right ventricular (RV) dilation was prevented in ASC-treated mice. In conclusion, the injection of ASC early after T. cruzi infection prevents RV remodeling through the modulation of immune responses. Lymphoid organ response to the parasite promoted the control of parasite burden, while the heart, a target organ of Chagas disease, was protected from damage due to an improved control of inflammation in ASC-treated mice. Output:
Chagas disease is caused by the parasite Trypanosoma cruzi, which is transmitted by kissing bugs in endemic areas located in Central and South America. In its acute phase, the disease has unspecific and mild symptoms, whereas in the chronic phase infected individuals might develop severe cardiomyopathy. For many years, different cell types have been under investigation as alternatives for the treatment of several diseases. Mesenchymal stromal cells (MSC) are one of these cell types. As our understanding of MSC biology increases, their properties might be explored in different disease contexts. Since Chagas disease is characterized by intense inflammation and one of the key properties of MSC is the modulation of the immune system, our work investigated the effect of injecting MSC in a mouse model of Chagas disease. Our results show that MSC improved the control of parasite burden and cardiac inflammation, leading to the prevention of cardiac dilation.
PLOS416
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: While in Northern hemisphere countries, the pandemic H1N1 virus (H1N1pdm) was introduced outside of the typical influenza season, Southern hemisphere countries experienced a single wave of transmission during their 2009 winter season. This provides a unique opportunity to compare the spread of a single virus in different countries and study the factors influencing its transmission. Here, we estimate and compare transmission characteristics of H1N1pdm for eight Southern hemisphere countries/states: Argentina, Australia, Bolivia, Brazil, Chile, New Zealand, South Africa and Victoria (Australia). Weekly incidence of cases and age-distribution of cumulative cases were extracted from public reports of countries' surveillance systems. Estimates of the reproduction numbers, R0, empirically derived from the country-epidemics' early exponential phase, were positively associated with the proportion of children in the populations (p = 0.004). To explore the role of demography in explaining differences in transmission intensity, we then fitted a dynamic age-structured model of influenza transmission to available incidence data for each country independently, and for all the countries simultaneously. Posterior median estimates of R0 ranged 1.2–1.8 for the country-specific fits, and 1.29–1.47 for the global fits. Corresponding estimates for overall attack-rate were in the range 20–50%. All model fits indicated a significant decrease in susceptibility to infection with age. These results confirm the transmissibility of the 2009 H1N1 pandemic virus was relatively low compared with past pandemics. The pattern of age-dependent susceptibility found confirms that older populations had substantial – though partial - pre-existing immunity, presumably due to exposure to heterologous influenza strains. Our analysis indicates that between-country-differences in transmission were at least partly due to differences in population demography. Output:
Although relatively mild, the 2009 H1N1 pandemic reminded us once again of the on-going threat posed by novel respiratory viruses and the need for understanding better how such pathogens emerge and spread. From April to September 2009, countries in temperate regions of the Southern hemisphere experienced large epidemics of H1N1pdm during their winter season, with the new virus quickly becoming the predominant circulating influenza strain. We use mathematical modelling to analyse H1N1pdm epidemiological data from 8 southern hemisphere countries. We aim at understanding better the factors which may have influenced virus transmission in these countries. We find that transmissibility of the virus was relatively low compared with previous influenza pandemics, largely because of strong pre-existing age-dependent susceptibility to the virus (older people being less susceptible to infection, perhaps due to pre-existing immunity). We suggest that population demography had a strong impact on the virus spread and that higher transmission rates occurred in countries having a younger population. Our results highlight the requirement to use age-structured models for the analysis of influenza epidemics and support the need for country-specific analyses to inform the design of control policies for pandemic mitigation.
PLOS417
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies. In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs) in state-of-the-art model systems for cell-cell transmission and spread. Using HCV genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host-targeting entry inhibitors (HTEIs) was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission plays an important role in dissemination and maintenance of resistant variants in cell culture models. Blocking virus cell-cell transmission prevents emergence of drug resistance in persistent viral infection including resistance to HCV DAAs. Output:
In spite of the rapid development of antiviral agents, antiviral resistance remains a challenge for the treatment of viral infections including hepatitis B and C virus (HBV, HCV), human immunodeficiency virus (HIV) and influenza. Virus spreads from infected cells to surrounding uninfected host cells to develop infection through cell-free and cell-cell transmission routes. Understanding the spread of resistant virus is important for the development of novel antiviral strategies to prevent and treat antiviral resistance. Here, we characterize the spread of resistant viruses and its impact for emergence and prevention of resistance using HCV as a model system. Our results show that cell-cell transmission is the main transmission route for antiviral resistant HCV strains and is crucial for the maintenance of infection. Monoclonal antibodies or small molecules targeting HCV entry factors are effective in inhibiting the spread of resistant HCV in cell culture models and thus should be evaluated clinically for prevention and treatment of HCV resistance. Combination of inhibitors targeting viral entry and clinically used direct-acting antivirals (DAAs) prevents antiviral resistance and leads to viral eradication in cell culture models. Collectively, the investigation provides a new strategy for prevention of viral resistance to antiviral agents.
PLOS418
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Major histocompatibility complex class I (MHC-I) molecules present antigenic peptides to CD8+ T cells, and are also important for natural killer (NK) cell immune surveillance against infections and cancers. MHC-I molecules are assembled via a complex assembly pathway in the endoplasmic reticulum (ER) of cells. Peptides present in the cytosol of cells are transported into the ER via the transporter associated with antigen processing (TAP). In the ER, peptides are assembled with MHC-I molecules via the peptide-loading complex (PLC). Components of the MHC-I assembly pathway are frequently targeted by viruses, in order to evade host immunity. Many viruses encode inhibitors of TAP, which is thought to be a central source of peptides for the assembly of MHC-I molecules. However, human MHC-I (HLA-I) genes are highly polymorphic, and it is conceivable that several variants can acquire peptides via TAP-independent pathways, thereby conferring resistance to pathogen-derived inhibitors of TAP. To broadly assess TAP-independent expression within the HLA-B locus, expression levels of 27 frequent HLA-B alleles were tested in cells with deficiencies in TAP. Approximately 15% of tested HLA-B allotypes are expressed at relatively high levels on the surface of TAP1 or TAP2-deficient cells and occur in partially peptide-receptive forms and Endoglycosidase H sensitive forms on the cell surface. Synergy between high peptide loading efficiency, broad specificity for peptides prevalent within unconventional sources and high intrinsic stability of the empty form allows for deviations from the conventional HLA-I assembly pathway for some HLA-B*35, HLA-B*57 and HLA-B*15 alleles. Allotypes that display higher expression in TAP-deficient cells are more resistant to viral TAP inhibitor-induced HLA-I down-modulation, and HLA-I down-modulation-induced NK cell activation. Conversely, the same allotypes are expected to mediate stronger CD8+ T cell responses under TAP-inhibited conditions. Thus, the degree of resistance to TAP inhibition functionally separates specific HLA-B allotypes. Output:
Human leukocyte antigen (HLA) class I molecules present pathogen-derived components (peptides) to cytotoxic T cells, thereby inducing the T cells to kill virus-infected cells. A complex cellular pathway involving the transporter associated with antigen processing (TAP) is typically required for the loading of peptides onto HLA class I molecules, and for effective anti-viral immunity mediated by cytotoxic T cells. Many viruses encode inhibitors of TAP as a means to evade anti-viral immunity by cytotoxic T cells. In humans, there are three sets of genes encoding HLA class I molecules, which are the HLA-A, HLA-B and HLA-C genes. These genes are highly variable, with thousands of allelic variants in human populations. Most individuals typically express two variants of each gene, one inherited from each parent. We demonstrate that about 15% of tested HLA-B allotypes have higher resistance to viral inhibitors of TAP or deficiency of TAP, compared to other HLA-B variants. HLA-B allotypes that are more resistant to TAP inhibition are expected to induce stronger CD8+ T cell responses against pathogens that inhibit TAP. Thus, unconventional TAP-independent assembly pathways are broadly prevalent among HLA-B variants. Such pathways provide mechanisms to effectively combat viruses that evade the conventional TAP-dependent HLA-B assembly pathway.
PLOS419
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: AID (Activation Induced Deaminase) deaminates cytosines in DNA to initiate immunoglobulin gene diversification and to reprogram CpG methylation in early development. AID is potentially highly mutagenic, and it causes genomic instability evident as translocations in B cell malignancies. Here we show that AID is cell cycle regulated. By high content screening microscopy, we demonstrate that AID undergoes nuclear degradation more slowly in G1 phase than in S or G2-M phase, and that mutations that affect regulatory phosphorylation or catalytic activity can alter AID stability and abundance. We directly test the role of cell cycle regulation by fusing AID to tags that destabilize nuclear protein outside of G1 or S-G2/M phases. We show that enforced nuclear localization of AID in G1 phase accelerates somatic hypermutation and class switch recombination, and is well-tolerated; while nuclear AID compromises viability in S-G2/M phase cells. We identify AID derivatives that accelerate somatic hypermutation with minimal impact on viability, which will be useful tools for engineering genes and proteins by iterative mutagenesis and selection. Our results further suggest that use of cell cycle tags to regulate nuclear stability may be generally applicable to studying DNA repair and to engineering the genome. Output:
AID (Activation Induced Deaminase) deaminates cytosines in DNA to initiate immunoglobulin gene diversification and to reprogram the genome in early development. AID is potentially highly mutagenic, as it deaminates C to U within single-stranded regions. Here we show that AID abundance is regulated by cell cycle, and that high levels of nuclear AID are tolerated only in G1 phase. These results identify an unanticipated role for spatiotemporal regulation in balancing demands of AID-initiated mutagenesis and its potentially pathological outcomes.
PLOS420
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Position-dependent cell fate determination and pattern formation are unique aspects of the development of plant structures. The establishment of single-celled leaf hairs (trichomes) from pluripotent epidermal (protodermal) cells in Arabidopsis provides a powerful system to determine the gene regulatory networks involved in cell fate determination. To obtain a holistic view of the regulatory events associated with the differentiation of Arabidopsis epidermal cells into trichomes, we combined expression and genome-wide location analyses (ChIP-chip) on the trichome developmental selectors GLABRA3 (GL3) and GLABRA1 (GL1), encoding basic helix-loop-helix (bHLH) and MYB transcription factors, respectively. Meta-analysis was used to integrate genome-wide expression results contrasting wild type and gl3 or gl1 mutants with changes in gene expression over time using inducible versions of GL3 and GL1. This resulted in the identification of a minimal set of genes associated with the differentiation of epidermal cells into trichomes. ChIP-chip experiments, complemented by the targeted examination of factors known to participate in trichome initiation or patterning, identified about 20 novel GL3/GL1 direct targets. In addition to genes involved in the control of gene expression, such as the transcription factors SCL8 and MYC1, we identified SIM (SIAMESE), encoding a cyclin-dependent kinase inhibitor, and RBR1 (RETINOBLASTOMA RELATED1), corresponding to a negative regulator of the cell cycle transcription factor E2F, as GL3/GL1 immediate targets, directly implicating these trichome regulators in the control of the endocycle. The expression of many of the identified GL3/GL1 direct targets was specific to very early stages of trichome initiation, suggesting that they participate in some of the earliest known processes associated with protodermal cell differentiation. By combining this knowledge with the analysis of genes associated with trichome formation, our results reveal the architecture of the top tiers of the hierarchical structure of the regulatory network involved in epidermal cell differentiation and trichome formation. Output:
The establishment of single-celled leaf hairs (trichomes) from pluripotent epidermal (protodermal) cells provides a powerful system to determine the gene regulatory networks involved in plant cell fate determination. Two transcription factors—GL1 and GL3—have been associated with the initiation of trichome formation; yet only a handful of GL1-GL3–regulated genes have previously been characterized. In this study, we combined expression analyses performed in a number of different genotypes to identify a minimal set of about 500 genes associated with trichome formation. We also used ChIP-chip to identify a set of about 20 genes that are immediate targets of GL3 and GL1. Many more genes are targeted by GL1 or by GL3, likely in cooperation with other bHLH of MYB partners, but not by both GL1 and GL3. As predicted for genes involved in the initiation of epidermal cell fate determination, several of the GL3/GL1 direct targets are expressed early during trichome formation, including the transcription factors MYC1 (bHLH), SCL8 (GRAS), and genes involved in the regulation of the endocycle (SIM and RBR1). Co-expression analyses permitted us to identify sets of target genes likely downstream of the GL3/GL1 regulated transcription factors, providing the first steps towards building the regulatory network associated with the differentiation of protodermal cells into trichomes.
PLOS421
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Scrub typhus is a common and underdiagnosed cause of febrile illness in Southeast Asia, caused by infection with Orientia tsutsugamushi. Inoculation of the organism at a cutaneous mite bite site commonly results in formation of a localized pathological skin reaction termed an eschar. The site of development of the obligate intracellular bacteria within the eschar and the mechanisms of dissemination to cause systemic infection are unclear. Previous postmortem and in vitro reports demonstrated infection of endothelial cells, but recent pathophysiological investigations of typhus patients using surrogate markers of endothelial cell and leucocyte activation indicated a more prevalent host leucocyte than endothelial cell response in vivo. We therefore examined eschar skin biopsies from patients with scrub typhus to determine and characterize the phenotypes of host cells in vivo with intracellular infection by O. tsutsugamushi, using histology, immunohistochemistry, double immunofluorescence confocal laser scanning microscopy and electron microscopy. Immunophenotyping of host leucocytes infected with O. tsutsugamushi showed a tropism for host monocytes and dendritic cells, which were spatially related to different histological zones of the eschar. Infected leucocyte subsets were characterized by expression of HLADR+, with an “inflammatory” monocyte phenotype of CD14/LSP-1/CD68 positive or dendritic cell phenotype of CD1a/DCSIGN/S100/FXIIIa and CD163 positive staining, or occasional CD3 positive T-cells. Endothelial cell infection was rare, and histology did not indicate a widespread inflammatory vasculitis as the cause of the eschar. Infection of dendritic cells and activated inflammatory monocytes offers a potential route for dissemination of O. tsutsugamushi from the initial eschar site. This newly described cellular tropism for O. tsutsugamushi may influence its interaction with local host immune responses. Output:
Scrub typhus is an infectious disease common in Southeast Asia, caused by the intracellular bacteria Orientia tsutsugamushi. These microorgansims infect humans through chigger mite bites, after which O. tsutsugamushi invades cells in the dermis, causing an inflammatory lesion called an eschar. Other rickettsia causing different forms of typhus preferentially invade and grow within endothelial cells lining blood vessels, before spreading systemically. In scrub typhus, unambigous endothelial infection with the bacterium O. tsutsugamushi has been described in autopsy samples. In this study, we examined ex vivo skin biopsies from eschars of scrub typhus patients admitting to hospital and defined the phenotypes of host cells that O. tsutsugamushi invades using specialized immunofluorescence microscopy. In this early phase of disease, we found that endothelial cell infection was rare, but infection of host monocytes and specialist antigen presenting cells, such as dendritic cells, was common. This represents a novel cellular tropism for O. tsutsugamushi, which provides a potential route for bacterial spread to the rest of the body and may affect its interaction with the host immune response.
PLOS422
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The mitochondrial protein SLC25A46 has been recently identified as a novel pathogenic cause in a wide spectrum of neurological diseases, including inherited optic atrophy, Charcot-Marie-Tooth type 2, Leigh syndrome, progressive myoclonic ataxia and lethal congenital pontocerebellar hypoplasia. SLC25A46 is an outer membrane protein, member of the Solute Carrier 25 (SLC25) family of nuclear genes encoding mitochondrial carriers, with a role in mitochondrial dynamics and cristae maintenance. Here we identified a loss-of-function mutation in the Slc25a46 gene that causes lethal neuropathology in mice. Mutant mice manifest the main clinical features identified in patients, including ataxia, optic atrophy and cerebellar hypoplasia, which were completely rescued by expression of the human ortholog. Histopathological analysis revealed previously unseen lesions, most notably disrupted cytoarchitecture in the cerebellum and retina and prominent abnormalities in the neuromuscular junction. A distinct lymphoid phenotype was also evident. Our mutant mice provide a valid model for understanding the mechanistic basis of the complex SLC25A46-mediated pathologies, as well as for screening potential therapeutic interventions. Output:
Neurodegenerative diseases encompass a wide range of clinical conditions remaining incurable while the genetic and molecular basis of most of these conditions remains unknown due to their heterogeneity and the lack of animal models. Mutations in nuclear genes encoding mitochondrial proteins have recently emerged as novel causalities in diseases affecting the nervous system. SLC25A46, a novel mitochondrial protein, has recently been identified as a pathogenic target in a wide spectrum of rare genetic neurological diseases, including optic atrophy, Charcot-Marie-Tooth type 2, Leigh syndrome, progressive myoclonic ataxia and lethal congenital pontocerebellar hypoplasia. Following a genetic approach, we identified a novel neurological mouse model caused by a functional mutation in the Slc25a46 gene. Our SLC25A46 mutant mice constitute the first genetic animal model for this disease and represent an ideal tool for elucidating the underlying molecular mechanisms. The aim of this study was to characterize the complex phenotype displayed by the mutant mice in order to understand the mechanistic basis of the SLC25A46-mediated pathologies.
PLOS423
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: In contrast to many countries where rabies has been well controlled in humans and livestock, even in wildlife, rabies is still endemic in almost regions of China. In Northwest China, rabies transmitted by stray dogs and wild foxes has caused heavy economic losses to local herdsmen, as well as causing numbers of human cases. In this study, as part of an investigation of ways to prevent rabies epidemics in livestock, we report an analysis of domestic cattle and camel rabies cases in Ningxia Hui (NHAR) and Inner Mongolia Autonomous Region (IMAR) and the immune efficacy of canine inactivated rabies vaccines in these animals. We found that rabies viruses from these animals are closely related to dog-hosted China I and fox-associated China III lineages, respectively, indicating that the infections originated from two different sources (dogs and wild foxes). As well as the previously reported Arctic and Arctic-related China IV lineage in IMAR, at least three separate phylogenetic groups of rabies virus consistently exist and spread throughout Northwest China. Since there is no licensed oral vaccine for wild foxes and no inactivated vaccine for large livestock, local canine inactivated vaccine products were used for emergency immunization of beef and milk cattle and bactrian (two-humped) camels in local farms. Compared with a single injection with one (low-efficacy) or three doses (high-cost), a single injection of a double dose of canine vaccine provided low-price and convenience for local veterinarians while inducing levels of virus neutralizing antibodies indicative of protection against rabies for at least 1 year in the cattle and camels. However, licensed vaccines for wildlife and large domestic animals are still needed in China. Output:
Rabies virus continues to cross carnivorous species and to infect humans and livestock in China. Rabies vaccination of the principal reservoir animals is even now being neglected in most regions of China, resulting in continuous expansion of rabies epidemics. Since there is no oral vaccine for stray dogs and wild animals and no inactivated vaccine for large domestic animals, rabies is not currently controlled in this country. We report rabies outbreaks caused by bites of dogs and wild foxes and the long-term effects on protection against rabies using canine inactivated vaccines in domestic camels and cattle. Our results indicate that at least three separate phylogenetic groups of rabies virus consistently exist and spread throughout Northwest China. Local canine vaccine products can be used to induce levels of virus neutralizing antibodies indicative of protection against rabies in cattle and camels; however, licensed oral and inactivated vaccines for reservoir carnivores and large domestic animals are urgently needed for elimination of rabies in China.
PLOS424
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The genomic information of microbes is a major determinant of their phenotypic properties, yet it is largely unknown to what extent ecological associations between different species can be explained by their genome composition. To bridge this gap, this study introduces two new genome-wide pairwise measures of microbe-microbe interaction. The first (genome content similarity index) quantifies similarity in genome composition between two microbes, while the second (microbe-microbe functional association index) summarizes the topology of a protein functional association network built for a given pair of microbes and quantifies the fraction of network edges crossing organismal boundaries. These new indices are then used to predict co-occurrence between reference genomes from two 16S-based ecological datasets, accounting for phylogenetic relatedness of the taxa. Phylogenetic relatedness was found to be a strong predictor of ecological associations between microbes which explains about 10% of variance in co-occurrence data, but genome composition was found to be a strong predictor as well, it explains up to 4% the variance in co-occurrence when all genomic-based indices are used in combination, even after accounting for evolutionary relationships between the species. On their own, the metrics proposed here explain a larger proportion of variance than previously reported more complex methods that rely on metabolic network comparisons. In summary, results of this study indicate that microbial genomes do indeed contain detectable signal of organismal ecology, and the methods described in the paper can be used to improve mechanistic understanding of microbe-microbe interactions. Output:
It is still unknown to what extent ecological associations between microbes, as measured by co-occurrence of different taxa in 16S rRNA surveys, can be explained, or predicted, using composition and structure of microbial genomes alone. Here I introduce two new genome-wide, pairwise indices for quantifying the propensity of microbial species to interact with each other. The first measure quantifies similarity in genome composition between two microbes. The second measure summarizes the topology of a protein functional association network built for a given pair of microbes and quantifies the fraction of network edges crossing organismal boundaries. I then study the ability of two newly proposed and two previously reported indices to explain variation in microbial co-occurrence. All four measures are significantly correlated with co-occurrence of microbes even when accounting for evolutionary relationships between the species. One of the newly developed indices outperforms previously proposed ones and explains up to 3.5% of the variance in co-occurrence. In summary, the indices described here are able to detect ecological associations between species using only their genomic information; however, additional methods are needed to provide more reliable genomic tools for microbial ecology.
PLOS425
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Cytokinesis terminates mitosis, resulting in separation of the two sister cells. Septins, a conserved family of GTP-binding cytoskeletal proteins, are an absolute requirement for cytokinesis in budding yeast. We demonstrate that septin-dependence of mammalian cytokinesis differs greatly between cell types: genetic loss of the pivotal septin subunit SEPT7 in vivo reveals that septins are indispensable for cytokinesis in fibroblasts, but expendable in cells of the hematopoietic system. SEPT7-deficient mouse embryos fail to gastrulate, and septin-deficient fibroblasts exhibit pleiotropic defects in the major cytokinetic machinery, including hyperacetylation/stabilization of microtubules and stalled midbody abscission, leading to constitutive multinucleation. We identified the microtubule depolymerizing protein stathmin as a key molecule aiding in septin-independent cytokinesis, demonstrated that stathmin supplementation is sufficient to override cytokinesis failure in SEPT7-null fibroblasts, and that knockdown of stathmin makes proliferation of a hematopoietic cell line sensitive to the septin inhibitor forchlorfenuron. Identification of septin-independent cytokinesis in the hematopoietic system could serve as a key to identify solid tumor-specific molecular targets for inhibition of cell proliferation. Output:
Cytokinesis is the finalizing step of the complex scenario of mitosis, leading to separation of two sister cells. The cellular mechanism of cytokinesis in eukaryotes differs at least between yeasts, plants and animals. So far, it is also not clear whether all mammalian cells follow the same mechanistic rules of cytokinesis. Here, we demonstrate that, depending on the mammalian cell type, two different pathways could result in completion of cytokinesis, a septin-dependent pathway and a distinct mechanism, which does not require septins prevalent in the hematopoietic system. Using multiple conditional knockouts, we demonstrate this cell type specificity in vitro and in vivo, and present evidence for the involvement of cell-type specific alteration of the microtubule cytoskeleton. Our data, together with the previously available septin knockdown data in cancer cell lines, suggest septins as plausible antitumor targets with high therapeutic index due to lack of off-target effects on hematopoiesis.
PLOS426
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The immunodominant lipopolysaccharide is a key antigenic factor for Gram-negative pathogens such as salmonellae where it plays key roles in host adaptation, virulence, immune evasion, and persistence. Variation in the lipopolysaccharide is also the major differentiating factor that is used to classify Salmonella into over 2600 serovars as part of the Kaufmann-White scheme. While lipopolysaccharide diversity is generally associated with sequence variation in the lipopolysaccharide biosynthesis operon, extraneous genetic factors such as those encoded by the glucosyltransferase (gtr) operons provide further structural heterogeneity by adding additional sugars onto the O-antigen component of the lipopolysaccharide. Here we identify and examine the O-antigen modifying glucosyltransferase genes from the genomes of Salmonella enterica and Salmonella bongori serovars. We show that Salmonella generally carries between 1 and 4 gtr operons that we have classified into 10 families on the basis of gtrC sequence with apparent O-antigen modification detected for five of these families. The gtr operons localize to bacteriophage-associated genomic regions and exhibit a dynamic evolutionary history driven by recombination and gene shuffling events leading to new gene combinations. Furthermore, evidence of Dam- and OxyR-dependent phase variation of gtr gene expression was identified within eight gtr families. Thus, as O-antigen modification generates significant intra- and inter-strain phenotypic diversity, gtr-mediated modification is fundamental in assessing Salmonella strain variability. This will inform appropriate vaccine and diagnostic approaches, in addition to contributing to our understanding of host-pathogen interactions. Output:
Bacterial pathogens frequently evolve mechanisms to vary the composition of their surface structures. The consequence is enhanced long-term survival by facilitating persistence and evasion of the host immune system. Salmonella sp., cause severe infections in a range of mammalian hosts and guard themselves with a protective coat, termed the O-antigen. Through genome sequence analyses we found that Salmonella have acquired an unprecedented repertoire of genetic sequences for modifying their O-antigen coat. There is strong evidence that these genetic factors have a dynamic evolutionary history and are spread through the bacterial population by bacteriophage. In addition to this genetic repertoire, we determined that Salmonella can and often do employ stochastic mechanisms for expression of these genetic factors. This means that O-antigen coat diversity can be generated within a Salmonella population that otherwise has a common genome. Our data significantly enhance our appreciation of the genetic and regulatory characteristics underpinning Salmonella O-antigen diversity. The role attributed to bacteriophage in generating this diversity highlights that Salmonella are acquiring an extensive repertoire of O-antigen modifying traits that may enhance the pathogen's ability to persist and cause disease in mammalian hosts. Such genetic traits may make useful markers for defining new epidemiological and diagnostic tools.
PLOS427
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Schistosomiasis is a serious disease currently estimated to affect more that 207 million people worldwide. Due to the intensive use of praziquantel, there is increasing concern about the development of drug-resistant strains. Therefore, it is necessary to search for and investigate new potential schistosomicidal compounds. This work reports the in vivo effect of the alkaloid epiisopiloturine (EPI) against adults and juvenile worms of Schistosoma mansoni. EPI was first purified its thermal behavior and theoretical solubility parameters charaterised. In the experiment, mice were treated with EPI over the 21 days post-infection with the doses of 40 and 200 mg/kg, and 45 days post-infection with single doses of 40, 100 and 300 mg/kg. The treatment with EPI at 40 mg/kg was more effective in adult worms when compared with doses of 100 and 300 mg/kg. The treatment with 40 mg/kg in adult worms reduced parasite burden significantly, lead to reduction in hepatosplenomegaly, reduced the egg burden in faeces, and decreased granuloma diameter. Scanning electron microscopy revealed morphological changes to the parasite tegument after treatment, including the loss of important features. Additionally, the in vivo treatment against juvenile with 40 mg/kg showed a reduction of the total worm burden of 50.2%. Histopathological studies were performed on liver, spleen, lung, kidney and brain and EPI was shown to have a DL50 of 8000 mg/kg. Therefore EPI shows potential to be used in schistosomiasis treatment. This is the first time that schistosomicidal in vivo activity of EPI has been reported. Output:
Schistosomiasis, a disease caused by worms from the genus Schistosoma, is one of the most widespread neglected tropical diseases in the world. Due to the intensive use of praziquantel, some reports of drug resistance have emerged. Thus it is important to search for new chemotherapeutic agents for the treatment disease. This research showed that epiisopiloturine, an imidazole alkaloid extracted from the leaves of Pilocarpus microphylus, has activity against S. mansoni in vivo. This material is produced as a by-product of an existing commercial process, and thus can be produced in large quantities at relatively low cost. The low toxicity and high drug tolerance in mammals shows the potential of epiisopiloturine as a new candidate schistosomicidal compound.
PLOS428
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: RNA helicases and chaperones are the two major classes of RNA remodeling proteins, which function to remodel RNA structures and/or RNA-protein interactions, and are required for all aspects of RNA metabolism. Although some virus-encoded RNA helicases/chaperones have been predicted or identified, their RNA remodeling activities in vitro and functions in the viral life cycle remain largely elusive. Enteroviruses are a large group of positive-stranded RNA viruses in the Picornaviridae family, which includes numerous important human pathogens. Herein, we report that the nonstructural protein 2CATPase of enterovirus 71 (EV71), which is the major causative pathogen of hand-foot-and-mouth disease and has been regarded as the most important neurotropic enterovirus after poliovirus eradication, functions not only as an RNA helicase that 3′-to-5′ unwinds RNA helices in an adenosine triphosphate (ATP)-dependent manner, but also as an RNA chaperone that destabilizes helices bidirectionally and facilitates strand annealing and complex RNA structure formation independently of ATP. We also determined that the helicase activity is based on the EV71 2CATPase middle domain, whereas the C-terminus is indispensable for its RNA chaperoning activity. By promoting RNA template recycling, 2CATPase facilitated EV71 RNA synthesis in vitro; when 2CATPase helicase activity was impaired, EV71 RNA replication and virion production were mostly abolished in cells, indicating that 2CATPase-mediated RNA remodeling plays a critical role in the enteroviral life cycle. Furthermore, the RNA helicase and chaperoning activities of 2CATPase are also conserved in coxsackie A virus 16 (CAV16), another important enterovirus. Altogether, our findings are the first to demonstrate the RNA helicase and chaperoning activities associated with enterovirus 2CATPase, and our study provides both in vitro and cellular evidence for their potential roles during viral RNA replication. These findings increase our understanding of enteroviruses and the two types of RNA remodeling activities. Output:
Enteroviruses contain a large number of closely related human pathogens, including poliovirus, EV71, and coxsackie viruses, and cause ~3 billion infections annually. Among the nonstructural proteins of enteroviruses or picornaviruses, protein 2CATPase is the most conserved and complex but the least understood. On the basis of sequence analyses, this protein has been predicted as a putative superfamily 3 (SF3) helicase that supposedly plays a pivotal role in enteroviral RNA replication. However, attempts to determine the helicase activity associated with 2CATPase have been unsuccessful. We found that eukaryotically expressed EV71 or CAV16 2CATPase does possess an ATP-dependent RNA helicase activity that 3′→5′ unwinds RNA helices like other SF3 helicases; surprisingly, it also functions as an RNA chaperone that remodels RNA structures in an ATP-independent manner. Moreover, we determined the domain requirements for these two RNA remodeling activities associated with 2CATPase and provide both in vitro and cellular evidence of their potential roles during viral RNA replication. Additionally, our study provides the first evidence that RNA helicase and chaperoning activities can be integrated within one protein, thereby introducing an extended view of RNA remodeling proteins.
PLOS429
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The plant hormone auxin regulates many aspects of plant growth and development. Recent progress in Arabidopsis provided a scheme that auxin receptors, TIR1/AFBs, target transcriptional co-repressors, AUX/IAAs, for degradation, allowing ARFs to regulate transcription of auxin responsive genes. The mechanism of auxin-mediated transcriptional regulation is considered to have evolved around the time plants adapted to land. However, little is known about the role of auxin-mediated transcription in basal land plant lineages. We focused on the liverwort Marchantia polymorpha, which belongs to the earliest diverging lineage of land plants. M. polymorpha has only a single TIR1/AFB (MpTIR1), a single AUX/IAA (MpIAA), and three ARFs (MpARF1, MpARF2, and MpARF3) in the genome. Expression of a dominant allele of MpIAA with mutations in its putative degron sequence conferred an auxin resistant phenotype and repressed auxin-dependent expression of the auxin response reporter proGH3:GUS. We next established a system for DEX-inducible auxin-response repression by expressing the putatively stabilized MpIAA protein fused with the glucocorticoid receptor domain (MpIAAmDII-GR). Repression of auxin responses in proMpIAA:MpIAAmDII-GR plants caused severe defects in various developmental processes, including gemmaling development, dorsiventrality, organogenesis, and tropic responses. Transient transactivation assays showed that the three MpARFs had different transcriptional activities, each corresponding to their phylogenetic classifications. Moreover, MpIAA and MpARF proteins interacted with each other with different affinities. This study provides evidence that pleiotropic auxin responses can be achieved by a minimal set of auxin signaling factors and suggests that the transcriptional regulation mediated by TIR1/AFB, AUX/IAA, and three types of ARFs might have been a key invention to establish body plans of land plants. We propose that M. polymorpha is a good model to investigate the principles and the evolution of auxin-mediated transcriptional regulation and its roles in land plant morphogenesis. Output:
Auxin is an important plant hormone which regulates many aspects of plant growth and development, such as embryogenesis and directional growth in response to light or gravity. Recent molecular genetics advances in angiosperms revealed that transcriptional regulation is critical for auxin response. Although auxin response was also observed in charophytes, a class of green algae related to land plants, and bryophytes, little is known how plants acquired auxin signaling components during evolution. Recently, it was reported that a filamentous charophycean alga, Klebsormidium flaccidum, does not have auxin-mediated transcriptional regulation, suggesting its evolution around land adaptation of plants. Here, we revealed that a liverwort species, Marchantia polymorpha, has a simplified but complete auxin-mediated transcription mechanism compared with other land plant species. Despite the minimal auxin system, M. polymorpha exhibited pleiotropic auxin responses in morphogenesis including roles in organ differentiation and cell elongation. Phylogenetic and experimental analyses revealed that the three ARF transcription factors in M. polymorpha had different transcriptional activities and interacted in various combinations with different affinities. This suggests that the auxin-mediated transcriptional regulation was established in the common ancestor of land plants, and might be correlated with the change in body plans at this time in the evolution of land plants.
PLOS430
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Ca2+ contributes to a myriad of important cellular processes in all organisms, including the apicomplexans, Plasmodium and Toxoplasma. Due to its varied and essential roles, free Ca2+ is tightly regulated by complex mechanisms. These mechanisms are therefore of interest as putative drug targets. One pathway in Ca2+ homeostatic control in apicomplexans uses a Ca2+/H+ exchanger (a member of the cation exchanger family, CAX). The P. falciparum CAX (PfCAX) has recently been characterised in asexual blood stage parasites. To determine the physiological importance of apicomplexan CAXs, tagging and knock-out strategies were undertaken in the genetically tractable T. gondii and P. berghei parasites. In addition, a yeast heterologous expression system was used to study the function of apicomplexan CAXs. Tagging of T. gondii and P. berghei CAXs (TgCAX and PbCAX) under control of their endogenous promoters could not demonstrate measureable expression of either CAX in tachyzoites and asexual blood stages, respectively. These results were consistent with the ability of parasites to tolerate knock-outs of the genes for TgCAX and PbCAX at these developmental stages. In contrast, PbCAX expression was detectable during sexual stages of development in female gametocytes/gametes, zygotes and ookinetes, where it was dispersed in membranous networks within the cytosol (with minimal mitochondrial localisation). Furthermore, genetically disrupted parasites failed to develop further from “round” form zygotes, suggesting that PbCAX is essential for ookinete development and differentiation. This impeded phenotype could be rescued by removal of extracellular Ca2+. Therefore, PbCAX provides a mechanism for free living parasites to multiply within the ionic microenvironment of the mosquito midgut. Ca2+ homeostasis mediated by PbCAX is critical and suggests plasmodial CAXs may be targeted in approaches designed to block parasite transmission. Output:
Calcium is vital to all living organisms. It is used within cells to regulate many essential processes and, because of this, its cellular concentration is tightly controlled. To change cellular calcium levels, cells use calcium transport proteins. These proteins can alter calcium concentration by moving calcium into or out of the cell or specialised calcium storage compartments within the cell. We know little about how single-celled apicomplexan parasites, including Plasmodium (the causal agent of malaria) and Toxoplasma (the causal agent of toxoplasmosis), regulate their calcium levels. Here, we have demonstrated that removing apicomplexan genes for a protein that exchanges calcium for protons across membranes (a Ca2+/H+ exchanger) and a member of the cation exchanger (CAX) family, does not affect the survival of parasites during those stages when they live within host cells. It is, however, lethal for the mouse malaria P. berghei when the parasite is free living within its mosquito vector. When we removed calcium from around the parasites at this stage they were able to develop normally, suggesting that the protein provides a mechanism for the parasite to tolerate environmental calcium. Learning how this calcium transport protein impacts on the development of apicomplexan parasites may lead to the development of novel anti-parasitic interventions.
PLOS431
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: A study of the helminth infection status of primary-school children and the hygiene condition of schools in Ikenne Local Government Area of Ogun State, Nigeria was undertaken between November 2004 and February 2005 to help guide the development of a school-based health programme. Three primary schools were randomly selected: two government-owned schools (one urban and the other rural) and one urban private school. No rural private schools existed to survey. A total of 257 schoolchildren aged 4–15 y, of whom 146 (56.8%) were boys and 111 (43.2%) were girls, took part in the survey. A child survey form, which included columns for name, age, sex, and class level, was used in concert with examination of stool samples for eggs of intestinal helminths. A school survey form was used to assess the conditions of water supply, condition of latrines, presence of soap for handwashing, and presence of garbage around the school compound. The demographic data showed that the number of schoolchildren gradually decreased as their ages increased in all three schools. The sex ratio was proportional in the urban school until primary level 3, after which the number of female pupils gradually decreased, whereas in the private school, sexes were proportionally distributed even in higher classes. The prevalence of helminth infection was 54.9% of schoolchildren in the urban government school, 63.5% in the rural government school, and 28.4% in the urban private school. Ascaris lumbricoides was the most prevalent species, followed by Trichuris trichiura, Taenia species, and hookworm in the three schools. Prevalence of infection in the government-owned schools was significantly higher than in the private school (χ2 = 18.85, df = 2, p<0.0005). A survey of hygiene conditions in the three schools indicated that in the two government schools tapwater was unavailable, sanitation of latrines was poor, handwashing soap was unavailable, and garbage was present around school compounds. In the private school, in contrast, all hygiene indices were satisfactory. These results indicate that burden of parasite infections and poor sanitary conditions are of greater public health importance in government-owned schools than in privately owned schools. School health programmes in government-owned schools, including deworming, health education, and improvement of hygiene conditions are recommended. Output:
We studied intestinal helminth infection status in primary-school children and the hygiene conditions of primary schools in Ikenne Local Government Area of Ogun State, Nigeria in order to help guide the development of school-based health programmes. Two government-owned schools (one urban and the other rural) plus one privately owned school participated in the study. Demographic data from 257 children showed that the number of schoolchildren gradually decreased as their ages increased in all the three schools. The sex ratio was proportional in the urban school until primary level three, after which the number of female pupils gradually decreased, whereas in the private school, sexes were proportionally distributed even in higher classes. The prevalence of helminth infection in 232 of the children, however, was 54.9%, 63.5%, and 28.4% in the urban government, rural government, and private school, respectively. Ascaris lumbricoides was the most common parasite, followed by Trichuris trichiura, Taenia species, and hookworm in the three schools. Infection in the government-owned schools was significantly higher than in the private school (p<0.0005). The hygiene condition in the three schools indicated that water supply and sanitation were poorer in government schools than in the private school. We therefore propose that school health programmes such as deworming, health education, and improvement of hygiene conditions, be undertaken in government-owned schools.
PLOS432
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Humans and animals are able to learn complex behaviors based on a massive stream of sensory information from different modalities. Early animal studies have identified learning mechanisms that are based on reward and punishment such that animals tend to avoid actions that lead to punishment whereas rewarded actions are reinforced. However, most algorithms for reward-based learning are only applicable if the dimensionality of the state-space is sufficiently small or its structure is sufficiently simple. Therefore, the question arises how the problem of learning on high-dimensional data is solved in the brain. In this article, we propose a biologically plausible generic two-stage learning system that can directly be applied to raw high-dimensional input streams. The system is composed of a hierarchical slow feature analysis (SFA) network for preprocessing and a simple neural network on top that is trained based on rewards. We demonstrate by computer simulations that this generic architecture is able to learn quite demanding reinforcement learning tasks on high-dimensional visual input streams in a time that is comparable to the time needed when an explicit highly informative low-dimensional state-space representation is given instead of the high-dimensional visual input. The learning speed of the proposed architecture in a task similar to the Morris water maze task is comparable to that found in experimental studies with rats. This study thus supports the hypothesis that slowness learning is one important unsupervised learning principle utilized in the brain to form efficient state representations for behavioral learning. Output:
Humans and animals are able to learn complex behaviors based on a massive stream of sensory information from different modalities. Early animal studies have identified learning mechanisms that are based on reward and punishment such that animals tend to avoid actions that lead to punishment whereas rewarded actions are reinforced. It is an open question how sensory information is processed by the brain in order to learn and perform rewarding behaviors. In this article, we propose a learning system that combines the autonomous extraction of important information from the sensory input with reward-based learning. The extraction of salient information is learned by exploiting the temporal continuity of real-world stimuli. A subsequent neural circuit then learns rewarding behaviors based on this representation of the sensory input. We demonstrate in two control tasks that this system is capable of learning complex behaviors on raw visual input.
PLOS433
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: RNA molecules will tend to adopt a folded conformation through the pairing of bases on a single strand; the resulting so-called secondary structure is critical to the function of many types of RNA. The secondary structure of a particular substring of functional RNA may depend on its surrounding sequence. Yet, some RNAs such as microRNAs retain their specific structures during biogenesis, which involves extraction of the substructure from a larger structural context, while other functional RNAs may be composed of a fusion of independent substructures. Such observations raise the question of whether particular functional RNA substructures may be selected for invariance of secondary structure to their surrounding nucleotide context. We define the property of self containment to be the tendency for an RNA sequence to robustly adopt the same optimal secondary structure regardless of whether it exists in isolation or is a substring of a longer sequence of arbitrary nucleotide content. We measured degree of self containment using a scoring method we call the self-containment index and found that miRNA stem loops exhibit high self containment, consistent with the requirement for structural invariance imposed by the miRNA biogenesis pathway, while most other structured RNAs do not. Further analysis revealed a trend toward higher self containment among clustered and conserved miRNAs, suggesting that high self containment may be a characteristic of novel miRNAs acquiring new genomic contexts. We found that miRNAs display significantly enhanced self containment compared to other functional RNAs, but we also found a trend toward natural selection for self containment in most functional RNA classes. We suggest that self containment arises out of selection for robustness against perturbations, invariance during biogenesis, and modular composition of structural function. Analysis of self containment will be important for both annotation and design of functional RNAs. A Python implementation and Web interface to calculate the self-containment index are available at http://kim.bio.upenn.edu/software/. Output:
An RNA molecule is made up of a linear sequence of nucleotides, which form pairwise interactions that define its folded three-dimensional structure; the particular structure largely depends on the specific sequence. These base-pairing interactions are stabilizing, and the RNA will tend to fold in a particular way to maximize stability. Consider some nucleotide sequence that optimally folds into some structure in isolation; if this sequence is now embedded inside a larger sequence, then either the original structure will be a robust subcomponent of the larger folded structure, or it will be disrupted due to new interactions between the original sequence and the surrounding sequence. We explore this property of context robustness of structure and in particular define the property of “self containment” to describe intrinsic context robustness—i.e., the tendency for certain sequences to be structurally robust in many different sequence contexts. Self containment turns out to be a strong characteristic of a class of RNAs called microRNAs, whose biogenesis process depends on the maintenance of structural robustness. This finding will be useful in future efforts to characterize novel miRNAs, as well as in understanding the regulation and evolution of noncoding functional RNAs as modular units.
PLOS434
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Proteins must move between different conformations of their native ensemble to perform their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this heterogeneity as a spatial and temporal conformational average. Although movement between natively populated alternative conformations can be critical for characterizing molecular mechanisms, it is challenging to identify these conformations within electron density maps. Alternative side chain conformations are generally well separated into distinct rotameric conformations, but alternative backbone conformations can overlap at several atomic positions. Our model building program qFit uses mixed integer quadratic programming (MIQP) to evaluate an extremely large number of combinations of sidechain conformers and backbone fragments to locally explain the electron density. Here, we describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations. We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is exemplified by HIV protease, where different inhibitors are associated with peptide flips in the “flap” regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that result in dramatic local rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis to provide new insights into conformational heterogeneity. Overall, improved modeling of backbone heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function relationship and help drive new design strategies for inhibitors of biomedically important systems. Output:
Describing the multiple conformations of proteins is important for understanding the relationship between molecular flexibility and function. However, most methods for interpreting data from X-ray crystallography focus on building a single structure of the protein, which limits the potential for biological insights. Here we introduce an improved algorithm for using crystallographic data to model these multiple conformations that addresses two previously overlooked types of protein backbone flexibility: peptide flips and glycine movements. The method successfully models known examples of these types of multiple conformations, and also identifies new cases that were previously unrecognized but are well supported by the experimental data. For example, we discover glycine-driven peptide flips in the inhibitor-gating “flaps” of the drug target HIV protease that were not modeled in the original structures. Automatically modeling “hidden” multiple conformations of proteins using our algorithm may help drive biomedically relevant insights in structural biology pertaining to, e.g., drug discovery for HIV–1 protease and other therapeutic targets.
PLOS435
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Recent development of benzoxaborole-based chemistry gave rise to a collection of compounds with great potential in targeting diverse infectious diseases, including human African Trypanosomiasis (HAT), a devastating neglected tropical disease. However, further medicinal development is largely restricted by a lack of insight into mechanism of action (MoA) in pathogenic kinetoplastids. We adopted a multidisciplinary approach, combining a high-throughput forward genetic screen with functional group focused chemical biological, structural biology and biochemical analyses, to tackle the complex MoAs of benzoxaboroles in Trypanosoma brucei. We describe an oxidative enzymatic pathway composed of host semicarbazide-sensitive amine oxidase and a trypanosomal aldehyde dehydrogenase TbALDH3. Two sequential reactions through this pathway serve as the key underlying mechanism for activating a series of 4-aminomethylphenoxy-benzoxaboroles as potent trypanocides; the methylamine parental compounds as pro-drugs are transformed first into intermediate aldehyde metabolites, and further into the carboxylate metabolites as effective forms. Moreover, comparative biochemical and crystallographic analyses elucidated the catalytic specificity of TbALDH3 towards the benzaldehyde benzoxaborole metabolites as xenogeneic substrates. Overall, this work proposes a novel drug activation mechanism dependent on both host and parasite metabolism of primary amine containing molecules, which contributes a new perspective to our understanding of the benzoxaborole MoA, and could be further exploited to improve the therapeutic index of antimicrobial compounds. Output:
Human African Trypanomiasis (HAT) is among a list of Neglected Tropical Diseases (NTDs) that impose devastating burdens on both public health and economy of some of the most unprivileged societies across the world. To secure the long-term global control of the disease, it is critical to understand the mechanisms underlying the interactions of drugs and drug candidates with the causative agents as well as resistance potentially arising from use of the compounds. We demonstrated here a metabolic enzymatic cascade dependent on a host-pathogen interaction that determines potency against T. brucei of a series of benzoxaborole compounds. More importantly, this pathway represents a metabolic interaction network between host and pathogen, illuminating an important perspective on understanding mechanism of action.
PLOS436
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The identification of a causal mutation is essential for molecular diagnosis and clinical management of many genetic disorders. However, even if next-generation exome sequencing has greatly improved the detection of nucleotide changes, the biological interpretation of most exonic variants remains challenging. Moreover, particular attention is typically given to protein-coding changes often neglecting the potential impact of exonic variants on RNA splicing. Here, we used the exon 10 of MLH1, a gene implicated in hereditary cancer, as a model system to assess the prevalence of RNA splicing mutations among all single-nucleotide variants identified in a given exon. We performed comprehensive minigene assays and analyzed patient’s RNA when available. Our study revealed a staggering number of splicing mutations in MLH1 exon 10 (77% of the 22 analyzed variants), including mutations directly affecting splice sites and, particularly, mutations altering potential splicing regulatory elements (ESRs). We then used this thoroughly characterized dataset, together with experimental data derived from previous studies on BRCA1, BRCA2, CFTR and NF1, to evaluate the predictive power of 3 in silico approaches recently described as promising tools for pinpointing ESR-mutations. Our results indicate that ΔtESRseq and ΔHZEI-based approaches not only discriminate which variants affect splicing, but also predict the direction and severity of the induced splicing defects. In contrast, the ΔΨ-based approach did not show a compelling predictive power. Our data indicates that exonic splicing mutations are more prevalent than currently appreciated and that they can now be predicted by using bioinformatics methods. These findings have implications for all genetically-caused diseases. Output:
The biological interpretation of most disease-associated variants has become a real challenge, especially with the implementation of next-generation sequencing. Particular attention is typically given to protein-coding changes often neglecting the potential impact of exonic variants on RNA splicing. Here, we used the exon 10 of MLH1, a gene implicated in hereditary cancer, as a model system to assess the prevalence of RNA splicing mutations among all single-nucleotide variants identified in a given exon by using minigene-based assays. Our study revealed an unexpected high proportion of splicing mutations in MLH1 exon 10 mostly affecting potential exonic splicing regulatory elements (ESRs), which are typically difficult to predict by using in silico tools. We then used five experimental datasets (MLH1, BRCA1, BRCA2, CFTR and NF1) to evaluate the predictive power of 3 in silico approaches recently described for pinpointing ESR-mutations. What’s more, besides predicting which exonic variants affect splicing, ΔtESRseq and ΔHZEI values also indicated the direction and severity of the induced splicing defects. In contrast, the ΔΨ-based approach did not show a compelling predictive power. Our data indicates that exonic splicing mutations are more prevalent than currently appreciated and that they can now be predicted by using bioinformatics methods. These findings have implications for all genetically-caused diseases.
PLOS437
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: It is common practice in genome-wide association studies (GWAS) to focus on the relationship between disease risk and genetic variants one marker at a time. When relevant genes are identified it is often possible to implicate biological intermediates and pathways likely to be involved in disease aetiology. However, single genetic variants typically explain small amounts of disease risk. Our idea is to construct allelic scores that explain greater proportions of the variance in biological intermediates, and subsequently use these scores to data mine GWAS. To investigate the approach's properties, we indexed three biological intermediates where the results of large GWAS meta-analyses were available: body mass index, C-reactive protein and low density lipoprotein levels. We generated allelic scores in the Avon Longitudinal Study of Parents and Children, and in publicly available data from the first Wellcome Trust Case Control Consortium. We compared the explanatory ability of allelic scores in terms of their capacity to proxy for the intermediate of interest, and the extent to which they associated with disease. We found that allelic scores derived from known variants and allelic scores derived from hundreds of thousands of genetic markers explained significant portions of the variance in biological intermediates of interest, and many of these scores showed expected correlations with disease. Genome-wide allelic scores however tended to lack specificity suggesting that they should be used with caution and perhaps only to proxy biological intermediates for which there are no known individual variants. Power calculations confirm the feasibility of extending our strategy to the analysis of tens of thousands of molecular phenotypes in large genome-wide meta-analyses. We conclude that our method represents a simple way in which potentially tens of thousands of molecular phenotypes could be screened for causal relationships with disease without having to expensively measure these variables in individual disease collections. Output:
The standard approach in genome-wide association studies is to analyse the relationship between genetic variants and disease one marker at a time. Significant associations between markers and disease are then used as evidence to implicate biological intermediates and pathways likely to be involved in disease aetiology. However, single genetic variants typically only explain small amounts of disease risk. Our idea is to construct allelic scores that explain greater proportions of the variance in biological intermediates than single markers, and then use these scores to data mine genome-wide association studies. We show how allelic scores derived from known variants as well as allelic scores derived from hundreds of thousands of genetic markers across the genome explain significant portions of the variance in body mass index, levels of C-reactive protein, and LDLc cholesterol, and many of these scores show expected correlations with disease. Power calculations confirm the feasibility of scaling our strategy to the analysis of tens of thousands of molecular phenotypes in large genome-wide meta-analyses. Our method represents a simple way in which tens of thousands of molecular phenotypes could be screened for potential causal relationships with disease.
PLOS438
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Host defence peptides (HDPs) are expressed throughout the animal and plant kingdoms. They have multifunctional roles in the defence against infectious agents of mammals, possessing both bactericidal and immune-modulatory activities. We have identified a novel family of molecules secreted by helminth parasites (helminth defence molecules; HDMs) that exhibit similar structural and biochemical characteristics to the HDPs. Here, we have analyzed the functional activities of four HDMs derived from Schistosoma mansoni and Fasciola hepatica and compared them to human, mouse, bovine and sheep HDPs. Unlike the mammalian HDPs the helminth-derived HDMs show no antimicrobial activity and are non-cytotoxic to mammalian cells (macrophages and red blood cells). However, both the mammalian- and helminth-derived peptides suppress the activation of macrophages by microbial stimuli and alter the response of B cells to cytokine stimulation. Therefore, we hypothesise that HDMs represent a novel family of HDPs that evolved to regulate the immune responses of their mammalian hosts by retaining potent immune modulatory properties without causing deleterious cytotoxic effects. Output:
In mammals, secreted host defence peptides (HDPs) protect against a wide range of infectious pathogens. They also perform a range of immune modulatory functions which regulate the immune response to pathogens, ensuring that the protective inflammatory response is not exacerbated and that post-infection repair mechanisms are initiated. We identified a novel family of molecules secreted by medically-important helminth pathogens (termed helminth defence molecules; HDMs) that exhibit striking structural and biochemical similarities to the HDPs. To further investigate the extent of this similarity, we have performed a comparative functional study between several well characterized, anti-microbial, mammalian HDPs and a series of parasite-derived peptides. The parasite HDMs displayed immune modulatory properties that were similar to their HDP homologs in mammals, but possessed no antimicrobial or cytotoxic activity. We propose that HDMs of these helminth pathogens underwent specific adaptation, losing their anti-microbial activity but retaining their ability to regulate the immune responses of their mammalian hosts. This absence of cytotoxicity and retention of immune-modulatory activity offers an opportunity to design novel immunotherapeutics derived from the HDMs which could be used to combat destructive inflammatory responses associated with microbial infection and immune-related disorders.
PLOS439
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Adherence clubs, where groups of 25–30 patients who are virally suppressed on antiretroviral therapy (ART) meet for counseling and medication pickup, represent an innovative model to retain patients in care and facilitate task-shifting. This intervention replaces traditional clinical care encounters with a 1-hour group session every 2–3 months, and can be organized at a clinic or a community venue. We performed a pragmatic randomized controlled trial to compare loss from club-based care between community- and clinic-based adherence clubs. Patients on ART with undetectable viral load at Witkoppen Health and Welfare Centre in Johannesburg, South Africa, were randomized 1:1 to a clinic- or community-based adherence club. Clubs were held every other month. All participants received annual viral load monitoring and medical exam at the clinic. Participants were referred back to clinic-based standard care if they missed a club visit and did not pick up ART medications within 5 days, had 2 consecutive late ART medication pickups, developed a disqualifying (excluding) comorbidity, or had viral rebound. From February 12, 2014, to May 31, 2015, we randomized 775 eligible adults into 12 pairs of clubs—376 (49%) into clinic-based clubs and 399 (51%) into community-based clubs. Characteristics were similar by arm: 65% female, median age 38 years, and median CD4 count 506 cells/mm3. Overall, 47% (95% CI 44%–51%) experienced the primary outcome of loss from club-based care. Among community-based club participants, the cumulative proportion lost from club-based care was 52% (95% CI 47%–57%), compared to 43% (95% CI 38%–48%, p = 0.002) among clinic-based club participants. The risk of loss to club-based care was higher among participants assigned to community-based clubs than among those assigned to clinic-based clubs (adjusted hazard ratio 1.38, 95% CI 1.02–1.87, p = 0.032), after accounting for sex, age, nationality, time on ART, baseline CD4 count, and employment status. Among those who were lost from club-based care (n = 367), the most common reason was missing a club visit and the associated ART medication pickup entirely (54%, 95% CI 49%–59%), and was similar by arm (p = 0.086). Development of an excluding comorbidity occurred in 3% overall of those lost from club-based care, and was not different by arm (p = 0.816); no deaths occurred in either arm during club-based care. Viral rebound occurred in 13% of those lost from community club-based care and 21% of those lost from clinic-based care (p = 0.051). In post hoc secondary analysis, among those referred to standard care, 72% (95% CI 68%–77%) reengaged in clinic-based care within 90 days of their club-based care discontinuation date. The main limitations of the trial are the lack of a comparison group receiving routine clinic-based standard care and the potential limited generalizability due to the single-clinic setting. These findings demonstrate that overall loss from an adherence club intervention was high in this setting and that, importantly, it was worse in community-based adherence clubs compared to those based at the clinic. We urge caution in assuming that the effectiveness of clinic-based interventions will carry over to community settings, without a better understanding of patient-level factors associated with successful retention in care. Pan African Clinical Trials Registry (PACTR201602001460157). Output:
Adherence clubs are an intervention to retain people living with HIV on antiretroviral therapy (ART) and decongest busy clinics in high-burden settings. In adherence clubs, groups of 20–30 patients meet every other month for a 1-hour counseling and medication pickup session in a clinic or community setting. There is currently no evidence base to support whether clinic- or community-based adherence clubs are a preferable implementation strategy—community-based clubs may offer closer proximity to patients’ homes, while clinic-based clubs may offer easy access to additional healthcare services, and either model may impact HIV-related stigma perceived or experienced by patients. We randomized stable ART patients at a clinic in Johannesburg, South Africa, to receive either a clinic- or community-based adherence club intervention, and followed participants for 24 months to determine which type of adherence club led to fewer individuals being lost from care in the intervention. Participants in clinic-based clubs had lower levels of loss from the club intervention than those in community-based clubs. Overall loss from either type of adherence club-based care was high, with approximately half of individuals dropping out. In this study, we found that community-based adherence clubs did not work as well as clinic-based clubs at retaining patients within the club intervention; however, with half of the individuals dropping out of the clubs overall, neither intervention may be a good choice for implementation. It is important to understand the mechanism by which individuals are lost from differentiated care interventions such as adherence clubs so that their implementation can be optimized.
PLOS440
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: In the Brazilian Amazon, clinical and epidemiological frameworks of Chagas disease are very dissimilar in relation to the endemic classical areas of transmission, possibly due to genetic and biological characteristics of the circulating Trypanosoma cruzi stocks. Twenty six T. cruzi stocks from Western Amazon Region attributed to the TcI and TcIV DTUs were comparatively studied in Swiss mice to test the hypothesis that T. cruzi clonal structure has a major impact on its biological and medical properties. Seventeen parameters were assayed in mice infected with 14 T. cruzi strains belonging to DTU TcI and 11 strains typed as TcIV. In comparison with TcI, TcIV stocks promoted a significantly shorter pre-patent period (p<0.001), a longer patent period (p<0.001), higher values of mean daily parasitemia (p = 0.009) and maximum of parasitemia (p = 0.015), earlier days of maximum parasitemia (p<0.001) and mortality (p = 0.018), higher mortality rates in the acute phase (p = 0.047), higher infectivity rates (p = 0.002), higher positivity in the fresh blood examination (p<0.001), higher positivity in the ELISA at the early chronic phase (p = 0.022), and a higher positivity in the ELISA at the late chronic phase (p = 0.003). On the other hand TcI showed higher values of mortality rates in the early chronic phase (p = 0.014), higher frequency of mice with inflammatory process in any organ (p = 0.005), higher frequency of mice with tissue parasitism in any organ (p = 0.027) and a higher susceptibility to benznidazole (p = 0.002) than TcIV. Survival analysis showing the time elapsed from the day of inoculation to the beginning of the patent period was significantly shorter for TcIV strains and the death episodes triggered following the infection with TcI occurred significantly later in relation to TcIV. The notable exceptions come from positivity in the hemocultures and PCR, for which the results were similar. T. cruzi stocks belonging to TcI and TcIV DTUs from Brazilian Amazon are divergent in terms of biological and medical properties in mice. Output:
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi, constituting an important health problem in the American Continent. In the Brazilian Amazon, Chagas disease has been recognized as an emerging problem. There are few studies exploring the genetic and biological framework of stocks of T. cruzi from the Western Brazilian Amazon, where Chagas disease has a profile of lower morbidity and mortality, appearing mainly in the chronic latent form. Here, we carried out the biological characterization in mice of T. cruzi isolates belonging to TcI and TcIV DTUs from the State of Amazonas, Western Brazilian Amazon. T. cruzi stocks belonging to TcI and TcIV DTUs from Brazilian Amazon are divergent in terms of biological and medical properties in mice, with a higher virulence for the latter DTU as revealed by several biological parameters. Results strongly support the working hypothesis that biological differences are proportional to the evolutionary divergence among the DTUs, and highlight the need to take into account the phylogenetic diversity of T. cruzi natural stocks circulating in the emergent areas for Chagas disease in all applied studies dealing with clinical diversity of Chagas disease, immunology, diagnosis, prognosis, and drug and vaccine trials.
PLOS441
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Mitochondrial DNA (mtDNA) is highly polymorphic at the population level, and specific mtDNA variants affect mitochondrial function. With emerging evidence that mitochondrial mechanisms are central to common human diseases, it is plausible that mtDNA variants contribute to the “missing heritability” of several complex traits. Given the central role of mtDNA genes in oxidative phosphorylation, the same genetic variants would be expected to alter the risk of developing several different disorders, but this has not been shown to date. Here we studied 38,638 individuals with 11 major diseases, and 17,483 healthy controls. Imputing missing variants from 7,729 complete mitochondrial genomes, we captured 40.41% of European mtDNA variation. We show that mtDNA variants modifying the risk of developing one disease also modify the risk of developing other diseases, thus providing independent replication of a disease association in different case and control cohorts. High-risk alleles were more common than protective alleles, indicating that mtDNA is not at equilibrium in the human population, and that recent mutations interact with nuclear loci to modify the risk of developing multiple common diseases. Output:
There is a growing body of evidence indicating that mitochondrial dysfunction, a result of genetic variation in the mitochondrial genome, is a critical component in the aetiology of a number of complex traits. Here, we take advantage of recent technical and methodological advances to examine the role of common mitochondrial DNA variants in several complex diseases. By examining over 50,000 individuals, from 11 different diseases we show that mitochondrial DNA variants can both increase or decrease an individual's risk of disease, replicating and expanding upon several previously reported studies. Moreover, by analysing several large disease groups in tandem, we are able to show a commonality of association, with the same mitochondrial DNA variants associated with several distinct disease phenotypes. These shared genetic associations implicate a shared underlying functional effect, likely changing cellular energy, which manifests as distinct phenotypes. Our study confirms the important role that mitochondrial DNA variation plays on complex traits and additionally supports the utility of a GWAS-based approach for analysing mitochondrial genetics.
PLOS442
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: As the most widespread tick-borne arbovirus causing infections in numerous countries in Asia, Africa and Europe, Crimean-Congo Hemorrhagic Fever Virus (CCHFV, family Nairoviridae) was included in the WHO priority list of emerging pathogens needing urgent Research & Development attention. To ensure preparedness for potential future outbreak scenarios, reliable diagnostic tools for identification of acute cases as well as for performance of seroprevalence studies are necessary. Here, the CCHFV ortholog of the major bunyavirus antigen, the nucleoprotein (NP), was recombinantly expressed in E.coli, purified and directly labeled with horseradish peroxidase (HRP). Employing this antigen, two serological tests, a μ-capture ELISA for the detection of CCHFV-specific IgM antibodies (BLACKBOX CCHFV IgM) and an IgG immune complex (IC) ELISA for the detection of CCHFV-specific IgG antibodies (BLACKBOX CCHFV IgG), were developed. Test performance was evaluated and compared with both in-house gold standard testing by IgM/IgG indirect immunofluorescence (IIF) and commercially available ELISA tests (VectoCrimean-CHF-IgM/IgG, Vector-Best, Russia) using a serum panel comprising paired samples collected in Kosovo during the years 2013–2016 from 15 patients with an acute, RT-PCR-confirmed CCHFV infection, and 12 follow-up sera of the same patients collected approximately one year after having overcome the infection. Reliably detecting IgM antibodies in all acute phase sera collected later than day 4 after onset of symptoms, both IgM ELISAs displayed excellent diagnostic and analytical sensitivity (100%, 95% confidence interval (CI): 85.2%–100.0%). While both IgG ELISAs readily detected the high IgG titers present in convalescent patients approximately one year after having overcome the infection (sensitivity 100%, 95% CI: 73.5%–100.0%), the newly developed BLACKBOX CCHFV IgG ELISA was superior to the commercial IgG ELISA in detecting the rising IgG titers during the acute phase of the disease. While all samples collected between day 11 and 19 after onset of symptoms tested positive in both the in-house gold standard IIFT and the BLACKBOX CCHFV IgG ELISA (sensitivity 100%, 95% CI: 71.5%–100.0%), only 27% (95% CI: 6.0%–61.0%) of those samples were tested positive in the commercial IgG ELISA. No false positive signals were observed in either IgM/IgG ELISA when analyzing a priori CCHFV IgM/IgG negative serum samples from healthy blood donors, malaria patients and flavivirus infected patients as well as CCHFV IgM/IgG IIFT negative serum samples from healthy Kosovar blood donors (for BLACKBOX CCHFV IgM/IgG: n = 218, 100% specificity, 95% CI: 98.3%–100.0%, for VectoCrimean-CHF-IgM/IgG: n = 113, 100% specificity, 95% CI: 96.8%–100.0%). Output:
Being endemic in several countries in Asia, Africa, the Middle East and Southeastern Europe, the Crimean-Congo Hemorrhagic Fever Virus (CCHFV) is the geographically most widespread tick-borne arbovirus. As evidenced by the recent occurrence of an autochthonous CCHFV infection in Spain, it possesses also a significant potential to spread to as yet non-endemic regions. Due to the severity of the disease caused by this bunyavirus, the lack of specific prophylactic and therapeutic measures and the infection’s epidemic potential, CCHFV was included in the WHO priority list of diseases needing urgent R&D attention, in particular the development and improvement of diagnostic tools. Here we present the development and validation of two novel ELISAs (BLACKBOX CCHFV IgM, BLACKBOX CCHFV IgG) for the detection of CCHFV-specific IgM and IgG antibodies employing recombinant CCHFV nucleoprotein (NP) as antigen. Test performance in comparison to both in-house gold standard testing (CCHFV IgM/IgG immunofluorescence test (IIFT)) and commercial ELISA kits (VectoCrimean-CHF-IgM/IgG; Vector-Best) was evaluated using a thoroughly characterized serum panel that was obtained from 15 Kosovar patients with an RT-PCR-confirmed CCHFV-infection collected during the years 2013–2016 and that comprised samples from both the acute and convalescent phase of the disease. While both IgM ELISAs, like the CCHFV IgM IIFT, detected CCHFV-specific IgM antibodies in all sera collected during the acute phase of the disease on day 5 after onset of symptoms or later, the BLACKBOX CCHFV IgG ELISA and the CCHFV IgG IIFT were found to be significantly more sensitive than the VectoCrimean-CHF-IgG ELISA in detecting the rising IgG antibody titers in samples collected between days 11 and 19 after onset of symptoms.
PLOS443
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Ecologists have been compiling ecological networks for over a century, detailing the interactions between species in a variety of ecosystems. To this end, they have built networks for mutualistic (e.g., pollination, seed dispersal) as well as antagonistic (e.g., herbivory, parasitism) interactions. The type of interaction being represented is believed to be reflected in the structure of the network, which would differ substantially between mutualistic and antagonistic networks. Here, we put this notion to the test by attempting to determine the type of interaction represented in a network based solely on its structure. We find that, although it is easy to separate different kinds of nonecological networks, ecological networks display much structural variation, making it difficult to distinguish between mutualistic and antagonistic interactions. We therefore frame the problem as a challenge for the community of scientists interested in computational biology and machine learning. We discuss the features a good solution to this problem should possess and the obstacles that need to be overcome to achieve this goal. Output:
In the late 1960s, Mark Kac asked, "Can one hear the shape of a drum?" challenging readers to reconstruct the geometry of the drum from a provided list of overtones. Physicists and mathematicians found that, although in general, one cannot hear the shape of a drum, many of its properties, such as its area and perimeter, can be "heard". Here, we ask whether the type of interaction being represented in a network can be "seen" when inspecting its shape—for example, whether we can distinguish networks reporting interactions between plants and their pollinators (mutually beneficial) from those representing interactions between plants and their herbivores (beneficial only to the herbivores). We show that many types of nonbiological networks can be easily separated based on structural properties, whereas determining the type of interaction represented by an ecological networks is harder. We therefore turn this problem into a challenge for the scientific community. We argue that solving this problem would greatly benefit the field, and we discuss what the consequences of a failure might be.
PLOS444
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The reovirus fusion-associated small transmembrane (FAST) proteins function as virus-encoded cellular fusogens, mediating efficient cell–cell rather than virus–cell membrane fusion. With ectodomains of only ∼20–40 residues, it is unclear how such diminutive viral fusion proteins mediate the initial stages (i.e. membrane contact and close membrane apposition) of the fusion reaction that precede actual membrane merger. We now show that the FAST proteins lack specific receptor-binding activity, and in their natural biological context of promoting cell–cell fusion, rely on cadherins to promote close membrane apposition. The FAST proteins, however, are not specifically reliant on cadherin engagement to mediate membrane apposition as indicated by their ability to efficiently utilize other adhesins in the fusion reaction. Results further indicate that surrogate adhesion proteins that bridge membranes as close as 13 nm apart enhance FAST protein-induced cell–cell fusion, but active actin remodelling is required for maximal fusion activity. The FAST proteins are the first example of membrane fusion proteins that have specifically evolved to function as opportunistic fusogens, designed to exploit and convert naturally occurring adhesion sites into fusion sites. The capacity of surrogate, non-cognate adhesins and active actin remodelling to enhance the cell–cell fusion activity of the FAST proteins are features perfectly suited to the structural and functional evolution of these fusogens as the minimal fusion component of a virus-encoded cellular fusion machine. These results also provide a basis for reconciling the rudimentary structure of the FAST proteins with their capacity to fuse cellular membranes. Output:
Much of our current understanding of how proteins mediate membrane fusion derives from the study of enveloped virus fusion proteins. These fusion protein complexes function autonomously to co-ordinately regulate virus–cell attachment and subsequent membrane merger. In contrast, the reovirus Fusion-Associated Small Transmembrane (FAST) proteins are the only example of virus-encoded cellular fusogens, specifically designed to mediate cell–cell rather than virus–cell membrane fusion. In view of their small size, it was unclear if, or how, the FAST proteins are responsible for promoting the membrane attachment and close apposition stages of the fusion reaction. We now show that the FAST proteins have specifically evolved to function as the fusion component in a biphasic cell–cell fusion reaction, where the membrane attachment and membrane merger stages represent two distinct, uncoupled phases. Exploiting cadherins as surrogate adhesins, the FAST proteins have retained within their rudimentary structures the minimal determinants required to convert pre-existing adherens junctions into sites of cell–cell membrane fusion. These results raise the interesting possibility that other, yet to be identified cellular fusion proteins may resemble the FAST proteins, using separate adhesins and less complex fusion proteins in a similar biphasic membrane fusion reaction.
PLOS445
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Mammalian genomes comprise many active and fossilized retroelements. The obligate requirement for retroelement integration affords host genomes an opportunity to ‘domesticate’ retroelement genes for their own purpose, leading to important innovations in genome defense and placentation. While many such exaptations involve retroviruses, the L1TD1 gene is the only known domesticated gene whose protein-coding sequence is almost entirely derived from a LINE-1 (L1) retroelement. Human L1TD1 has been shown to play an important role in pluripotency maintenance. To investigate how this role was acquired, we traced the origin and evolution of L1TD1. We find that L1TD1 originated in the common ancestor of eutherian mammals, but was lost or pseudogenized multiple times during mammalian evolution. We also find that L1TD1 has evolved under positive selection during primate and mouse evolution, and that one prosimian L1TD1 has ‘replenished’ itself with a more recent L1 ORF1 from the prosimian genome. These data suggest that L1TD1 has been recurrently selected for functional novelty, perhaps for a role in genome defense. L1TD1 loss is associated with L1 extinction in several megabat lineages, but not in sigmodontine rodents. We hypothesize that L1TD1 could have originally evolved for genome defense against L1 elements. Later, L1TD1 may have become incorporated into pluripotency maintenance in some lineages. Our study highlights the role of retroelement gene domestication in fundamental aspects of mammalian biology, and that such domesticated genes can adopt different functions in different lineages. Output:
Transposable elements comprise major portions of most animal genomes and are selfish genetic elements that may encode proteins needed for their own spread to new genomic locations. Though often considered genomic parasites, these elements also occasionally create novel genes that prove beneficial to the host, a process called 'domestication'. Here, we describe the evolution of a gene, L1TD1, which is derived from the protein-coding regions of the L1 mobile element family. We show that L1TD1 was born in the common ancestor of placental mammals. L1TD1 expression in stem cells and its requirement to maintain the pluripotent state of human embryonic stem cells suggested it might have been originally domesticated for such a pluripotency role. We find that L1TD1's evolution does not fit with the predictions of this model; in fact, L1TD1 has rapidly evolved in primates and mice and has been lost several times in mammals. We suggest an alternate model that L1TD1 was born as a means to defend genomes against transposable elements, perhaps L1 itself. We propose that following this initial domestication, L1TD1 later became incorporated into pluripotency programs in some mammalian lineages.
PLOS446
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Phosphorus (P) is essential for all living cells and organisms, and low-P stress is a major factor constraining plant growth and yield worldwide. In plants, P efficiency is a complex quantitative trait involving multiple genes, and the mechanisms underlying P efficiency are largely unknown. Combining linkage analysis, genome-wide and candidate-gene association analyses, and plant transformation, we identified a soybean gene related to P efficiency, determined its favorable haplotypes and developed valuable functional markers. First, six major genomic regions associated with P efficiency were detected by performing genome-wide associations (GWAs) in various environments. A highly significant region located on chromosome 8, qPE8, was identified by both GWAs and linkage mapping and explained 41% of the phenotypic variation. Then, a regional mapping study was performed with 40 surrounding markers in 192 diverse soybean accessions. A strongly associated haplotype (P = 10−7) consisting of the markers Sat_233 and BARC-039899-07603 was identified, and qPE8 was located in a region of approximately 250 kb, which contained a candidate gene GmACP1 that encoded an acid phosphatase. GmACP1 overexpression in soybean hairy roots increased P efficiency by 11–20% relative to the control. A candidate-gene association analysis indicated that six natural GmACP1 polymorphisms explained 33% of the phenotypic variation. The favorable alleles and haplotypes of GmACP1 associated with increased transcript expression correlated with higher enzyme activity. The discovery of the optimal haplotype of GmACP1 will now enable the accurate selection of soybeans with higher P efficiencies and improve our understanding of the molecular mechanisms underlying P efficiency in plants. Output:
In soybean plants, low-phosphorus (P) stress is more detrimental than other nutrient deficiencies, toxicities or diseases; however, it is difficult to select soybean varieties with high P efficiencies based on phenotypes. Although QTL map-based cloning is a powerful method, it is time-consuming, and the QTLs underlying P efficiency in soybeans have not been identified. Combining linkage and association analyses, we identified a highly significant region on chromosome 8, qPE8, which is associated with soybean P efficiency. Gene expression and plant transformation experiments indicated that the gene GmACP1 within qPE8 affects P efficiency. A haplotype survey of GmACP1 identified 10 haplotypes that explained 33% of the variation in P efficiency. The discovery of the optimal haplotype of GmACP1 will improve the accuracy of selecting soybeans with higher P efficiencies and increase our understanding of the molecular mechanisms underlying P efficiency in plants.
PLOS447
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Amyloid protein precursor (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2) mutations cause autosomal dominant forms of early-onset Alzheimer disease (AD-EOAD). Although these genes were identified in the 1990s, variant classification remains a challenge, highlighting the need to colligate mutations from large series. We report here a novel update (2012–2016) of the genetic screening of the large AD-EOAD series ascertained across 28 French hospitals from 1993 onwards, bringing the total number of families with identified mutations to n = 170. Families were included when at least two first-degree relatives suffered from early-onset Alzheimer disease (EOAD) with an age of onset (AOO) ≤65 y in two generations. Furthermore, we also screened 129 sporadic cases of Alzheimer disease with an AOO below age 51 (44% males, mean AOO = 45 ± 2 y). APP, PSEN1, or PSEN2 mutations were identified in 53 novel AD-EOAD families. Of the 129 sporadic cases screened, 17 carried a PSEN1 mutation and 1 carried an APP duplication (13%). Parental DNA was available for 10 sporadic mutation carriers, allowing us to show that the mutation had occurred de novo in each case. Thirteen mutations (12 in PSEN1 and 1 in PSEN2) identified either in familial or in sporadic cases were previously unreported. Of the 53 mutation carriers with available cerebrospinal fluid (CSF) biomarkers, 46 (87%) had all three CSF biomarkers—total tau protein (Tau), phospho-tau protein (P-Tau), and amyloid β (Aβ)42—in abnormal ranges. No mutation carrier had the three biomarkers in normal ranges. One limitation of this study is the absence of functional assessment of the possibly and probably pathogenic variants, which should help their classification. Our findings suggest that a nonnegligible fraction of PSEN1 mutations occurs de novo, which is of high importance for genetic counseling, as PSEN1 mutational screening is currently performed in familial cases only. Among the 90 distinct mutations found in the whole sample of families and isolated cases, definite pathogenicity is currently established for only 77%, emphasizing the need to pursue the effort to classify variants. Output:
Mutations in the amyloid protein precursor (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2) genes are a known cause of familial, early-onset Alzheimer disease (EOAD) (onset below age 65). However, in order to improve genetic counseling, it is necessary to report mutational screening from large cohorts of patients. In the present study, we performed sequencing of the APP, PSEN1, and PSEN2 genes in EOAD families and in 129 sporadic cases. Mutations were identified in 170 EOAD families and in 18 sporadic cases. In 10 sporadic cases, we showed that the mutation was absent in the parents, indicating that it occurred “de novo.” Sufficient evidence of pathogenicity is reached for 77% of the 90 distinct mutations identified in this sample, allowing their use in genetic counseling. Our results suggest a potential benefit to screening nonfamilial Alzheimer disease (AD) cases with onset before 50 y for APP, PSEN1, and PSEN2 mutations.
PLOS448
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Behavior is among the most dynamic animal phenotypes, modulated by a variety of internal and external stimuli. Behavioral differences are associated with large-scale changes in gene expression, but little is known about how these changes are regulated. Here we show how a transcription factor (TF), ultraspiracle (usp; the insect homolog of the Retinoid X Receptor), working in complex transcriptional networks, can regulate behavioral plasticity and associated changes in gene expression. We first show that RNAi knockdown of USP in honey bee abdominal fat bodies delayed the transition from working in the hive (primarily “nursing” brood) to foraging outside. We then demonstrate through transcriptomics experiments that USP induced many maturation-related transcriptional changes in the fat bodies by mediating transcriptional responses to juvenile hormone. These maturation-related transcriptional responses to USP occurred without changes in USP's genomic binding sites, as revealed by ChIP–chip. Instead, behaviorally related gene expression is likely determined by combinatorial interactions between USP and other TFs whose cis-regulatory motifs were enriched at USP's binding sites. Many modules of JH– and maturation-related genes were co-regulated in both the fat body and brain, predicting that usp and cofactors influence shared transcriptional networks in both of these maturation-related tissues. Our findings demonstrate how “single gene effects” on behavioral plasticity can involve complex transcriptional networks, in both brain and peripheral tissues. Output:
Animals use behavior as one of the principal means of meeting their basic needs and responding flexibly to changes in their environment. An emerging insight is that changes in behavior are associated with massive changes in gene expression in the brain, but we know relatively little about how these changes are regulated. One important class of gene regulators are transcription factors (TF), proteins that orchestrate the expression of tens to thousands of genes. We discovered that ultraspiracle (USP), a TF previously known primarily for its role in development, regulates behavioral change in the honey bee; and we show that USP causes behaviorally related changes in gene expression by mediating responses to an endocrine regulator, juvenile hormone. We present evidence that these effects on gene expression occur through combinatorial interactions between USP and other TFs, and that these hormonally related transcriptional networks are preserved between two tissues with causal roles in behavioral plasticity: the brain and the fat body, a peripheral nutrient-sensing organ. These results suggest that behavior is subserved by complex interactions between genes and gene networks, occurring both in the brain and in peripheral tissues. More generally our results suggest that molecular systems biology is a promising paradigm by which to understand the mechanistic basis for behavior.
PLOS449
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Schistosome parasites cause schistosomiasis, one of the most prevalent parasitemias worldwide affecting humans and animals. Constant pairing of schistosomes is essential for female sexual maturation and egg production, which causes pathogenesis. Female maturation involves signaling pathways controlling mitosis and differentiation within the gonads. In vitro studies had shown before that a Src-specific inhibitor, Herbimycin A (Herb A), and a TGFβ receptor (TβR) inhibitor (TRIKI) have physiological effects such as suppressed mitoses and egg production in paired females. As one Herb A target, the gonad-specifically expressed Src kinase SmTK3 was identified. Here, we comparatively analyzed the transcriptome profiles of Herb A- and TRIKI-treated females identifying transcriptional targets of Src-kinase and TβRI pathways. After demonstrating that TRIKI inhibits the schistosome TGFβreceptor SmTβRI by kinase assays in Xenopus oocytes, couples were treated with Herb A, TRIKI, or both inhibitors simultaneously in vitro. RNA was isolated from females for microarray hybridizations and transcription analyses. The obtained data were evaluated by Gene Ontology (GO) and Ingenuity Pathway Analysis (IPA), but also by manual classification and intersection analyses. Finally, extensive qPCR experiments were done to verify differential transcription of candidate genes under inhibitor influence but also to functionally reinforce specific physiological effects. A number of genes found to be differentially regulated are associated with mitosis and differentiation. Among these were calcium-associated genes and eggshell-forming genes. In situ hybridization confirmed transcription of genes coding for the calcium sensor hippocalcin, the calcium transporter ORAI-1, and the calcium-binding protein calmodulin-4 in the reproductive system pointing to a role of calcium in parasite reproduction. Functional qPCR results confirmed an inhibitor-influenced, varying dependence of the transcriptional activities of Smp14, Smp48, fs800, a predicted eggshell precursor protein and SmTYR1. The results show that eggshell-formation is regulated by at least two pathways cooperatively operating in a balanced manner to control egg production. Output:
As one of the most prevalent parasitic infections worldwide, schistosomiasis is caused by blood-flukes of the genus Schistosoma. Pathology coincides with egg production, which is started upon pairing of the dioeciously living adults. A constant pairing contact is required to induce mitoses and differentiation processes in the female leading to the development of the gonads. Although long known, the molecular processes controlling gonad development or egg-production in schistosomes or other platyhelminths are largely unknown. Using an established in vitro-culture system and specific, chemical inhibitors we have obtained first evidence in previous studies for the participation of signal transduction processes playing essential roles in controlling mitoses, differentiation and egg production. In the present study we applied combinatory inhibitor treatments combined with subsequent microarray and qPCR analyses and demonstrate for the first time that cooperating Src-Kinase- und TGFβ-signaling pathways control mitoses and egg formation processes. Besides direct evidence for managing transcription of eggshell-forming genes, new target molecules of these pathways were identified. Among these are calcium-associated genes providing a first hint towards a role of this ion for reproduction. Our finding shed first light on the signaling mechanisms controlling egg formation, which is important for life-cycling and pathology.
PLOS450
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Risk of cardiovascular associated death in dialysis patients is the highest among all other co-morbidities. Improving the identification of patients with the highest cardiovascular risk to design an adequate treatment is, therefore, of utmost importance. There are several non-invasive cardiovascular state biomarkers based on the pulse (pressure) wave propagation properties, but their major determinants are not fully understood. In the current study we aimed to provide a framework to precisely dissect the information available in non-invasively recorded pulse wave in hemodialysis patients. Radial pressure wave profiles were recorded before, during and after two independent hemodialysis sessions in 35 anuric prevalent hemodialysis patients and once in a group of 32 healthy volunteers. Each recording was used to estimate six subject-specific parameters of pulse wave propagation model. Pressure profiles were also analyzed using SphygmoCor software (AtCor Medical, Australia) to derive values of already established biomarkers, i.e. augmentation index and sub-endocardial viability ratio (SEVR). Data preprocessing using propensity score matching allowed to compare hemodialysis and healthy groups. Augmentation index remained on average stable at 142 ± 28% during dialysis and had similar values in both considered groups. SEVR, whose pre-dialytic value was on average lower by 12% compared to healthy participants, was improved by hemodialysis, with post-dialytic values indistinguishable from those in healthy population (p-value > 0.2). The model, however, identified that the patients on hemodialysis had significantly increased stiffness of both large and small arteries compared to healthy counterparts (> 60% before dialysis with p-value < 0.05 or borderline) and that it was only transiently decreased during hemodialysis session. Additionally, correlation-based clustering revealed that augmentation index reflects the shape of heart ejection profile and SEVR is associated with stiffness of larger arteries. Patient-specific pulse wave propagation modeling coupled with radial pressure profile recording correctly identified increased arterial stiffness in hemodialysis patients, while regular pulse wave analysis based biomarkers failed to show significant differences. Further model testing in larger populations and investigating other biomarkers are needed to confirm these findings. Output:
There are more than 2 million people receiving hemodialysis (HD) treatment worldwide. Cardiovascular disease is the most common cause of death in those patients. There are several non-invasive methods to assess if a person from general population has a high risk for developing cardiovascular disease, but it is unclear whether they are useful in hemodialysis patients. Here we assessed the ability of patient-specific pulse wave propagation modeling to correctly identify high cardiovascular risk factors in hemodialysis patients. We performed pulse wave analysis (PWA) in patients on hemodialysis and in healthy subjects. Recorded peripheral pressure profiles were simultaneously used to inform subject-specific mathematical model of pulse wave propagation. We found that standard PWA-derived biomarkers failed to clearly show the differences between hemodialysis patients and healthy subjects. However, proposed mathematical model of pulse wave propagation identified significantly increased arterial stiffness in HD patients and provided also the major determinants of PWA-derived biomarkers. Our study suggests that current pulse wave analysis based biomarkers can be insufficient to accurately diagnose hemodialysis patients. Proposed patient-specific pulse wave propagation modeling framework may be a new tool to assess the cardiovascular risk in both general and hemodialysis populations.
PLOS451
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Pseudomonas aeruginosa is an opportunistic pathogen capable of causing both acute and chronic infections in susceptible hosts. Chronic P. aeruginosa infections are thought to be caused by bacterial biofilms. Biofilms are highly structured, multicellular, microbial communities encased in an extracellular matrix that enable long-term survival in the host. The aim of this research was to develop an animal model that would allow an in vivo study of P. aeruginosa biofilm infections in a Drosophila melanogaster host. At 24 h post oral infection of Drosophila, P. aeruginosa biofilms localized to and were visualized in dissected Drosophila crops. These biofilms had a characteristic aggregate structure and an extracellular matrix composed of DNA and exopolysaccharide. P. aeruginosa cells recovered from in vivo grown biofilms had increased antibiotic resistance relative to planktonically grown cells. In vivo, biofilm formation was dependent on expression of the pel exopolysaccharide genes, as a pelB::lux mutant failed to form biofilms. The pelB::lux mutant was significantly more virulent than PAO1, while a hyperbiofilm strain (PAZHI3) demonstrated significantly less virulence than PAO1, as indicated by survival of infected flies at day 14 postinfection. Biofilm formation, by strains PAO1 and PAZHI3, in the crop was associated with induction of diptericin, cecropin A1 and drosomycin antimicrobial peptide gene expression 24 h postinfection. In contrast, infection with the non-biofilm forming strain pelB::lux resulted in decreased AMP gene expression in the fly. In summary, these results provide novel insights into host-pathogen interactions during P. aeruginosa oral infection of Drosophila and highlight the use of Drosophila as an infection model that permits the study of P. aeruginosa biofilms in vivo. Output:
Pseudomonas aeruginosa causes serious infections in people with compromised immune systems. Individuals with Cystic Fibrosis and hospital patients are particularly vulnerable to P. aeruginosa infections. This bacterium does not respond to many antibiotics, making these infections difficult to treat. P. aeruginosa can grow as free-floating planktonic cells or as microcolonies known as biofilms. The ability of P. aeruginosa to form biofilms is thought to contribute to their ability to cause chronic infections. The aim of this research was to develop a simple biofilm model of infection using the fruit fly (Drosophila melanogaster). The immune system of the fruit fly has similarities with the vertebrate innate immune system. Understanding how P. aeruginosa causes infections in Drosophila will aid in understanding virulence mechanisms in mammals. In this study we show that feeding P. aeruginosa to Drosophila results in a biofilm infection and biofilm infections induced expression of antimicrobial peptide immune response genes in the fly. Using fly survival as a measure of virulence we showed that biofilm infections were less virulent than non-biofilm infections. These results provide novel insight into host-pathogens interactions during P. aeruginosa infection.
PLOS452
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Primary Amoebic Meningoencephalitis (PAM) is caused by Naegleria fowleri, a free-living amoeba that occasionally infects humans. While considered “rare” (but likely underreported) the high mortality rate and lack of established success in treatment makes PAM a particularly devastating infection. In the absence of economic inducements to invest in development of anti-PAM drugs by the pharmaceutical industry, anti-PAM drug discovery largely relies on drug ‘repurposing’—a cost effective strategy to apply known drugs for treatment of rare or neglected diseases. Similar to fungi, N. fowleri has an essential requirement for ergosterol, a building block of plasma and cell membranes. Disruption of sterol biosynthesis by small-molecule inhibitors is a validated interventional strategy against fungal pathogens of medical and agricultural importance. The N. fowleri genome encodes the sterol 14-demethylase (CYP51) target sharing ~35% sequence identity to fungal orthologues. The similarity of targets raises the possibility of repurposing anti-mycotic drugs and optimization of their usage for the treatment of PAM. In this work, we (i) systematically assessed the impact of anti-fungal azole drugs, known as conazoles, on sterol biosynthesis and viability of cultured N. fowleri trophozotes, (ii) identified the endogenous CYP51 substrate by mass spectrometry analysis of N. fowleri lipids, and (iii) analyzed the interactions between the recombinant CYP51 target and conazoles by UV-vis spectroscopy and x-ray crystallography. Collectively, the target-based and parasite-based data obtained in these studies validated CYP51 as a potentially ‘druggable’ target in N. fowleri, and conazole drugs as the candidates for assessment in the animal model of PAM. Output:
The free-living amoeba, Naegleria fowleri, is commonly found in water sources including swimming pools having inadequate levels of chlorine, lakes, and rivers. N. fowleri can act as an opportunistic pathogen causing severe brain injury called Primary Amebic Meningoencephalitis (PAM), often in healthy children and young adults. With a fatality rate over 97%, N. fowleri is considered one of the most deadly human pathogens. Despite the fact that precious lives are lost annually, N. fowleri infection is rare and economic incentives to invest in development of anti-PAM drugs by the pharmaceutical industry are lacking. In the absence of economic inducements, drug ‘repurposing’ is a cost effective strategy for re-profiling known drugs for the treatment of neglected diseases. The similarity between pathogenic fungi and free-living amoebae in the sterol biosynthesis pathway encouraged us to assess anti-mycotic drugs, clinically-approved for treatment of a variety of fungal diseases, for anti-Naegleria activity. Carrying out biochemical studies and x-ray-crystallography of the target enzyme, we demonstrated that azole anti-fungal drugs, known as conazoles, disrupt sterol biosynthesis in amoebae by competing with the natural substrate for binding in the active site of the sterol 14-demethylase (CYP51). Disruption of sterol biosynthesis leads to a rapid death of pathogenic amoebae.
PLOS453
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Cystic hydatid disease (CHD) is a global parasitic zoonosis caused by the dog tapeworm, Echinococcus granulosus. The disease is hyperendemic in western China because of poor economic development; limited community knowledge of CHD; widespread, small-scale household animal production; home killing of livestock; and the feeding of dogs with uncooked offal. A control program focusing on monthly praziquantel (PZQ) treatment of all registered dogs and culling unwanted and stray dogs has been designed to control CHD in hyperendemic areas in China. A pilot field control project in two counties (Hutubi and Wensu) in Xinjiang, China showed that after 4 years of treatment, the prevalence of dogs with E. granulosus was reduced from 14.7% and 18.6%, respectively, to 0%, and this caused a 90%–100% decrease of CHD in sheep born after commencement of the control program. The strategy aimed at preventing eggs being released from dogs into the environment by treating animals before adult tapeworms are patent can decrease E. granulosus transmission and considerably reduce hyperendemic CHD. Monthly treatment of dogs with PZQ and culling unwanted and stray dogs have been shown to be an efficient, highly cost-effective and practicable measure for implementation in rural communities. As a result, the Chinese Ministry of Health has launched an extensive CHD control program in 117 counties in western China using this control strategy. Output:
Cystic hydatid disease (CHD), caused by the dog tapeworm, Echinococcus granulosus, is hyperendemic in western China. However, until recently the disease had been grossly neglected there due primarily to a weak economy and the primitive control measures used. The situation is now changing because of China's growing economy and the availability of the cheap and effective drug praziquantel (PZQ), which makes control programs practicable through mass preventive treatment of dogs in these endemic areas. In this study, we used a strategy to prevent parasite eggs from being released into the environment by dosing dogs monthly with baited PZQ and culling unwanted and stray dogs, as a result of which infection in humans and domestic animals can be reduced considerably. We undertook a pilot control study in two counties involving a population of 255,504 in 52,300 households and 30,380 dogs in Xinjiang, China, and showed that monthly PZQ treatment of dogs is an efficient, practicable, and affordable control method for communities to reduce considerably hyperendemic CHD. As a result, the Chinese Ministry of Health has extended the control measure to 117 counties in western China.
PLOS454
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Small for gestational age (SGA) has been associated with increased risks of stillbirth and neonatal mortality, but data on long-term childhood mortality are scarce. Maternal antenatal care, including globally reducing the risk of SGA birth, may be key to achieving the Millennium Development Goal of reducing under-5 mortality. We therefore aimed to examine the association between SGA and mortality from 28 days to <18 years using a population-based and a sibling control design. In a Swedish population study, we identified 3,795,603 non-malformed singleton live births and 2,781,464 full siblings born from January 1, 1973, to December 31, 2012. We examined the associations of severe (<3rd percentile) and moderate (3rd to <10th percentile) SGA with risks of death from 28 days to <18 years after birth. Children born SGA were first compared to non-SGA children from the population, and then to non-SGA siblings. The sibling-based analysis, by design, features a better control for unmeasured factors that are shared between siblings (e.g., socioeconomic status, lifestyle, and genetic factors). Hazard ratios (HRs) were calculated using Cox proportional hazards and flexible parametric survival models. During follow-up (1973–2013), there were 10,838 deaths in the population-based analysis and 1,572 deaths in sibling pairs with discordant SGA and mortality status. The crude mortality rate per 10,000 person-years was 5.32 in children born with severe SGA, 2.76 in children born with moderate SGA, and 1.93 in non-SGA children. Compared with non-SGA children, children born with severe SGA had an increased risk of death in both the population-based (HR = 2.58, 95% CI = 2.38–2.80) and sibling-based (HR = 2.61, 95% CI = 2.19–3.10) analyses. Similar but weaker associations were found for moderate SGA in the population-based (HR = 1.37, 95% CI = 1.28–1.47) and sibling-based (HR = 1.38, 95% CI = 1.22–1.56) analyses. The excess risk was most pronounced between 28 days and <1 year of age but remained throughout childhood. The greatest risk increase associated with severe SGA was noted for deaths due to infection and neurologic disease. Although we have, to our knowledge, the largest study sample so far addressing the research question, some subgroup analyses, especially the analysis of cause-specific mortality, had limited statistical power using the sibling-based approach. We found that SGA, especially severe SGA, was associated with an increased risk of childhood death beyond the neonatal period, with the highest risk estimates for death from infection and neurologic disease. The similar results obtained between the population- and sibling-based analyses argue against strong confounding by factors shared within families. Output:
Small for gestational age (SGA) occurs in more than 30 million infants every year. SGA has been associated with increased risks of stillbirth and neonatal mortality, but data on long-term childhood mortality are scarce. We evaluated the association between SGA and mortality from 28 days after birth to 18 years of age, using both general population and sibling comparators in more than 3.7 million Swedish children over a period of 40 years. Compared with non-SGA children, children born with severe SGA had an increased risk of death throughout childhood in both the population- and sibling-based analyses. The greatest risk increase associated with severe SGA was noted for deaths due to infection and neurologic disease. Similar but weaker associations were found for moderate SGA. Our findings provide insights on associations between SGA and causes of death in childhood. SGA cannot be reversed, and hence primary preventive strategies are needed to decrease the long-term risks of intrauterine growth restriction. Even if absolute risks are low, an opportunity to reduce the harms of SGA may exist in infectious disease prevention and treatment.
PLOS455
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The binding of short disordered peptide stretches to globular protein domains is important for a wide range of cellular processes, including signal transduction, protein transport, and immune response. The often promiscuous nature of these interactions and the conformational flexibility of the peptide chain, sometimes even when bound, make the binding specificity of this type of protein interaction a challenge to understand. Here we develop and test a Monte Carlo-based procedure for calculating protein-peptide binding thermodynamics for many sequences in a single run. The method explores both peptide sequence and conformational space simultaneously by simulating a joint probability distribution which, in particular, makes searching through peptide sequence space computationally efficient. To test our method, we apply it to 3 different peptide-binding protein domains and test its ability to capture the experimentally determined specificity profiles. Insight into the molecular underpinnings of the observed specificities is obtained by analyzing the peptide conformational ensembles of a large number of binding-competent sequences. We also explore the possibility of using our method to discover new peptide-binding pockets on protein structures. Output:
The interactions between proteins play a crucial role for almost every undertaking of a cell. Many of these interactions are mediated by the binding of relatively short unstructured polypeptide segments, or peptides, in one protein to well-folded domains in other proteins. Such protein-peptide interactions have some interesting and special properties, e.g., promiscuity, which means many different peptide sequences are able to bind the same protein domain. Peptides also often exhibit structural flexibility even after binding a protein. These special properties make it desirable, but also challenging, to simulate protein-peptide binding in atomistic detail for many different peptide sequences. To this end, we have developed a computational algorithm that simultaneously explores the structure of protein-peptide complexes and the amino acid sequences of the peptide. In particular, our algorithm allows binding-competent peptide sequences to be generated in direct relation to their binding strengths. We also explored the possibility of using our method to locate new peptide-binding pockets on protein structures. Computational algorithms such as the one developed here may pave the way to reveal the full complexity of protein-protein interaction networks used in cells.
PLOS456
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Chagas disease has historically been hyperendemic in the Bolivian Department of Cochabamba. In the early 2000s, an extensive vector control program was implemented; 1.34 million dwelling inspections were conducted to ascertain infestation (2000–2001/2003–2011), with blanket insecticide spraying in 2003–2005 and subsequent survey-spraying cycles targeting residual infestation foci. Here, we assess the effects of this program on dwelling infestation rates (DIRs). Program records were used to calculate annual, municipality-level aggregate DIRs (39 municipalities); very high values in 2000–2001 (median: 0.77–0.69) dropped to ∼0.03 from 2004 on. A linear mixed model (with municipality as a random factor) suggested that infestation odds decreased, on average, by ∼28% (95% confidence interval [CI95] 6–44%) with each 10-fold increase in control effort. A second, better-fitting mixed model including year as an ordinal predictor disclosed large DIR reductions in 2001–2003 (odds ratio [OR] 0.11, CI95 0.06–0.19) and 2003–2004 (OR 0.22, CI95 0.14–0.34). Except for a moderate decrease in 2005–2006, no significant changes were detected afterwards. In both models, municipality-level DIRs correlated positively with previous-year DIRs and with the extent of municipal territory originally covered by montane dry forests. Insecticide-spraying campaigns had very strong, long-lasting effects on DIRs in Cochabamba. However, post-intervention surveys consistently detected infestation in ∼3% of dwellings, underscoring the need for continuous surveillance; higher DIRs were recorded in the capital city and, more generally, in municipalities dominated by montane dry forest – an eco-region where wild Triatoma infestans are widespread. Traditional strategies combining insecticide spraying and longitudinal surveillance are thus confirmed as very effective means for area-wide Chagas disease vector control; they will be particularly beneficial in highly-endemic settings, but should also be implemented or maintained in other parts of Latin America where domestic infestation by triatomines is still commonplace. Output:
Chagas disease is among the most serious public health problems in Latin America; the highest prevalence of infection by its causative agent, the parasite Trypanosoma cruzi, has historically been recorded in some parts of Bolivia. In the early 2000s, a massive insecticide-spraying program was set up to control dwelling infestation by the blood-sucking bugs that transmit the disease. Here we provide a detailed assessment of the effects of this program in the Department of Cochabamba, one of the most highly-endemic settings worldwide. Our analyses show that municipality-level dwelling infestation rates plummeted from over 70–80% in 2001–2003 to about 2–3% in 2004–2011. This residual infestation was higher in the capital city and, more generally, in municipalities where montane dry forests dominate – probably because wild populations of the main vector, Triatoma infestans, are common in that eco-region. Despite the impressive early achievements of the program, with about 0.5 million people protected from contagion, sustained disease control will require fully operational long-term surveillance systems.
PLOS457
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: ChIP-seq enables genome-scale identification of regulatory regions that govern gene expression. However, the biological insights generated from ChIP-seq analysis have been limited to predictions of binding sites and cooperative interactions. Furthermore, ChIP-seq data often poorly correlate with in vitro measurements or predicted motifs, highlighting that binding affinity alone is insufficient to explain transcription factor (TF)-binding in vivo. One possibility is that binding sites are not equally accessible across the genome. A more comprehensive biophysical representation of TF-binding is required to improve our ability to understand, predict, and alter gene expression. Here, we show that genome accessibility is a key parameter that impacts TF-binding in bacteria. We developed a thermodynamic model that parameterizes ChIP-seq coverage in terms of genome accessibility and binding affinity. The role of genome accessibility is validated using a large-scale ChIP-seq dataset of the M. tuberculosis regulatory network. We find that accounting for genome accessibility led to a model that explains 63% of the ChIP-seq profile variance, while a model based in motif score alone explains only 35% of the variance. Moreover, our framework enables de novo ChIP-seq peak prediction and is useful for inferring TF-binding peaks in new experimental conditions by reducing the need for additional experiments. We observe that the genome is more accessible in intergenic regions, and that increased accessibility is positively correlated with gene expression and anti-correlated with distance to the origin of replication. Our biophysically motivated model provides a more comprehensive description of TF-binding in vivo from first principles towards a better representation of gene regulation in silico, with promising applications in systems biology. Output:
A quantitative description of transcription factor (TF) binding in vivo is critical for our understanding of gene regulation. Chromatin Immunoprecipitation followed by sequencing (ChIP-seq) provides a genome-scale map of TF-binding. However, a quantitative characterization of the impact of genome accessibility on TF-binding in bacteria remains elusive. In order to help recruit or block gene expression, TFs must have physical access to regulatory regions. This paper presents a thermodynamics model that describes TF-binding in terms of genome accessibility and binding site affinity. We apply this model in a ChIP-seq dataset for Mycobacterium tuberculosis and observed that genome accessibility is critical to our understanding of TF-binding in vivo. This new model provides practical applications, such as de novo prediction of TF-binding peaks and a framework to measure DNA accessibility from ChIP-seq data. Our model enables us to quantify the relationship of genome accessibility with genomic features and suggest mechanisms that influence genome accessibility in vivo (e.g. distance to oriC). The model proposed in this study gives new perspective for ChIP-seq analysis in bacteria towards an improved description of gene regulation in silico.
PLOS458
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Locomotor strategies in terrestrial tetrapods have evolved from the utilisation of sinusoidal contractions of axial musculature, evident in ancestral fish species, to the reliance on powerful and complex limb muscles to provide propulsive force. Within tetrapods, a hindlimb-dominant locomotor strategy predominates, and its evolution is considered critical for the evident success of the tetrapod transition onto land. Here, we determine the developmental mechanisms of pelvic fin muscle formation in living fish species at critical points within the vertebrate phylogeny and reveal a stepwise modification from a primitive to a more derived mode of pelvic fin muscle formation. A distinct process generates pelvic fin muscle in bony fishes that incorporates both primitive and derived characteristics of vertebrate appendicular muscle formation. We propose that the adoption of the fully derived mode of hindlimb muscle formation from this bimodal character state is an evolutionary innovation that was critical to the success of the tetrapod transition. Output:
The transition of vertebrates from water to land is a fundamental step in the evolution of terrestrial life. Innovations that were critical to this transition were the evolution of a weight bearing pelvis, hindlimbs and their associated musculature, and the development of the “rear wheel drive” strategy that predominates in terrestrial locomotion. The fossil record can reveal how the skeletal framework of the load-bearing limbs of tetrapods (animals descended from fish) has evolved, but as soft tissues are rarely preserved within the fossil record, it can shed little light on how the accompanying dramatic alterations of the limb musculature arose developmentally. To examine this question we determined the mechanisms that generate fin muscles within larvae of living species representing several clades of fish across the vertebrate phylogeny. Using this comparative approach and a novel somite transplantation technique in zebrafish, we determine that the pelvic fin muscles of bony fish are generated by a bimodal mechanism that has features of limb/fin muscle formation in tetrapods and primitive cartilaginous fish. Using these data, we propose a unifying evolutionary hypothesis on the origins of the muscle of the paired fins and limbs, and speculate that the adoption of tetrapod mode of hindlimb muscle formation was also an evolutionary innovation critical to the success of the tetrapod transition.
PLOS459
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Group VI Ca2+-independent phospholipase A2 (iPLA2) is a water-soluble enzyme that is active when associated with phospholipid membranes. Despite its clear pharmaceutical relevance, no X-ray or NMR structural information is currently available for the iPLA2 or its membrane complex. In this paper, we combine homology modeling with coarse-grained (CG) and all-atom (AA) molecular dynamics (MD) simulations to build structural models of iPLA2 in association with a phospholipid bilayer. CG-MD simulations of the membrane insertion process were employed to provide a starting point for an atomistic description. Six AA-MD simulations were then conducted for 60 ns, starting from different initial CG structures, to refine the membrane complex. The resulting structures are shown to be consistent with each other and with deuterium exchange mass spectrometry (DXMS) experiments, suggesting that our approach is suitable for the modeling of iPLA2 at the membrane surface. The models show that an anchoring region (residues 710–724) forms an amphipathic helix that is stabilized by the membrane. In future studies, the proposed iPLA2 models should provide a structural basis for understanding the mechanisms of lipid extraction and drug-inhibition. In addition, the dual-resolution approach discussed here should provide the means for the future exploration of the impact of lipid diversity and sequence mutations on the activity of iPLA2 and related enzymes. Output:
The Ca2+-independent phospholipase A2 (iPLA2) enzyme is a potential target for the development of medicinal agents against heart and neurological diseases, multiple sclerosis, arthritis, and cancer. However, no structural information is currently available for the iPLA2. The binding of the enzyme to human membranes is driven by favorable electrostatic and non-polar interactions, but the detailed influence of these factors is not well understood. In this paper, we have combined coarse-grained and all-atom simulations of a homology model of the iPLA2. The coarse-grained description allows highly efficient simulations of the protein insertion into a lipid bilayer, while the all-atom simulations are used to refine the structures of the protein–membrane complexes. Finally, the resulting structures are validated experimentally with deuterium exchange experiments. In future works, this approach could be used to build models of other PLA2s. The iPLA2 models presented here open the door to the computational design of new inhibitors with improved potency and selectivity.
PLOS460
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Arthropod-borne pathogens account for millions of deaths each year. Understanding the genetic mechanisms controlling vector susceptibility to pathogens has profound implications for developing novel strategies for controlling insect-transmitted infectious diseases. The fact that many viruses carry genes that have anti-apoptotic activity has long led to the hypothesis that induction of apoptosis could be a fundamental innate immune response. However, the cellular mechanisms mediating the induction of apoptosis following viral infection remained enigmatic, which has prevented experimental verification of the functional significance of apoptosis in limiting viral infection in insects. In addition, studies with cultured insect cells have shown that there is sometimes a lack of apoptosis, or the pro-apoptotic response happens relatively late, thus casting doubt on the functional significance of apoptosis as an innate immunity. Using in vivo mosquito models and the native route of infection, we found that there is a rapid induction of reaper-like pro-apoptotic genes within a few hours following exposure to DNA or RNA viruses. Recapitulating a similar response in Drosophila, we found that this rapid induction of apoptosis requires the function of P53 and is mediated by a stress–responsive regulatory region upstream of reaper. More importantly, we showed that the rapid induction of apoptosis is responsible for preventing the expression of viral genes and blocking the infection. Genetic changes influencing this rapid induction of reaper-like pro-apoptotic genes led to significant differences in susceptibility to viral infection. Output:
Arthropod-borne pathogens account for millions of deaths each year. Understanding the genetic mechanisms controlling arthropod susceptibility to pathogens has profound implications for developing novel strategies for controlling insect-transmitted infectious diseases. Although it was postulated that apoptosis (a genetically controlled form of cellular suicide) may play a very important role in insect innate immunity against viral infection, direct evidence has been lacking due to the lack of knowledge on the regulatory pathways responsible for the induction of apoptosis following viral infection. In this study, we found that there is a rapid induction of pro-apoptotic genes within 1–3 hours of exposure to virus. This rapid pro-apoptotic response was only observed in live animals but not in cultured cells. Genetic analysis indicated that animals lacking this rapid pro-apoptotic response were hypersensitive to viral infection. Thus our work provides unequivocal evidence indicating that rapid induction of apoptosis plays a very important role in mediating insect resistance to viral infection.
PLOS461
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Disrupting either the DNA annealing factor RAD52 or the A-family DNA polymerase POLQ can cause synthetic lethality with defects in BRCA1 and BRCA2, which are tumor suppressors important for homology-directed repair of DNA double-strand breaks (DSBs), and protection of stalled replication forks. A likely mechanism of this synthetic lethality is that RAD52 and/or POLQ are important for backup pathways for DSB repair and/or replication stress responses. The features of DSB repair events that require RAD52 vs. POLQ, and whether combined disruption of these factors causes distinct effects on genome maintenance, have been unclear. Using human U2OS cells, we generated a cell line with POLQ mutations upstream of the polymerase domain, a RAD52 knockout cell line, and a line with combined disruption of both genes. We also examined RAD52 and POLQ using RNA-interference. We find that combined disruption of RAD52 and POLQ causes at least additive hypersensitivity to cisplatin, and a synthetic reduction in replication fork restart velocity. We also examined the influence of RAD52 and POLQ on several DSB repair events. We find that RAD52 is particularly important for repair using ≥ 50 nt repeat sequences that flank the DSB, and that also involve removal of non-homologous sequences flanking the repeats. In contrast, POLQ is important for repair events using 6 nt (but not ≥ 18 nt) of flanking repeats that are at the edge of the break, as well as oligonucleotide microhomology-templated (i.e., 12–20 nt) repair events requiring nascent DNA synthesis. Finally, these factors show key distinctions with BRCA2, regarding effects on DSB repair events and response to stalled replication forks. These findings indicate that RAD52 and POLQ have distinct roles in genome maintenance, including for specific features of DSB repair events, such that combined disruption of these factors may be effective for genotoxin sensitization and/or synthetic lethal strategies. Output:
We have examined the role of two factors, RAD52 and POLQ, in genome maintenance pathways. While these factors are biochemically distinct, they are both synthetic lethal with loss of the BRCA1 and BRCA2 tumor suppressor genes, and hence are emerging therapeutic targets. Furthermore, RAD52 and POLQ have been implicated in chromosomal break repair events that use flanking repeats to restore the chromosome. We identified distinct features of chromosomal break repair events that are mediated by RAD52 vs. POLQ. Additionally, we have found that combined disruption of RAD52 and POLQ causes at least additive hypersensitivity to cisplatin and a synthetic reduction in replication fork restart velocity. These findings indicate that POLQ and RAD52 have distinct roles in genome maintenance, such that combined disruption of these factors could be a potential therapeutic strategy.
PLOS462
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The endosymbiont Wolbachia is known to block replication of several important arboviruses, including dengue virus (DENV), in the mosquito vector Aedes aegypti. So far, the exact mechanism of this viral inhibition is not fully understood. A recent study in Drosophila melanogaster has demonstrated an interaction between the pelo gene and Drosophila C virus. In this study, we explored the possible involvement of the pelo protein, that is involved in protein translation, in Wolbachia-mediated antiviral response and mosquito-DENV interaction. We found that pelo is upregulated during DENV replication and its silencing leads to reduced DENV virion production suggesting that it facilities DENV replication. However, in the presence of Wolbachia, specifically in female mosquitoes, the pelo protein is downregulated and its subcellular localization is altered, which could contribute to reduction in DENV replication in Ae. aegypti. In addition, we show that the microRNA aae-miR-2940-5p, whose abundance is highly enriched in Wolbachia-infected mosquitoes, might mediate regulation of pelo. Our data reveals identification of pelo as a host factor that is positively involved in DENV replication, and its suppression in the presence of Wolbachia may contribute to virus blocking exhibited by the endosymbiont. Output:
Dengue infection along with its related disease conditions poses a significant threat to human populations. The pathogen responsible for this infection is dengue virus (DENV), which is primarily transmitted to humans through the bites of Ae. aegypti mosquitoes. Unavailability of vaccines has recently sparked research endeavours aimed at vector control. To date, Wolbachia as an endosymbiotic bacterium, has shown promises as a novel biocontrol agent to restrict DENV replication in mosquitoes through a mechanism that is still elusive. In this study, we investigated the role of pelo in Wolbachia-mosquito-DENV interactions. We found that the pelo protein is upregulated upon DENV infection facilitating its replication, but Wolbachia infection leads to the suppression of the protein that may contribute to inhibition of DENV replication. Our findings provide novel insights into the role of the pelo protein in Wolbachia-mediated antiviral effect against DENV in Ae. aegypti mosquitoes.
PLOS463
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Candida albicans yeast cells are found in the intestine of most humans, yet this opportunist can invade host tissues and cause life-threatening infections in susceptible individuals. To better understand the host factors that underlie susceptibility to candidiasis, we developed a new model to study antifungal innate immunity. We demonstrate that the yeast form of C. albicans establishes an intestinal infection in Caenorhabditis elegans, whereas heat-killed yeast are avirulent. Genome-wide, transcription-profiling analysis of C. elegans infected with C. albicans yeast showed that exposure to C. albicans stimulated a rapid host response involving 313 genes (124 upregulated and 189 downregulated, ∼1.6% of the genome) many of which encode antimicrobial, secreted or detoxification proteins. Interestingly, the host genes affected by C. albicans exposure overlapped only to a small extent with the distinct transcriptional responses to the pathogenic bacteria Pseudomonas aeruginosa or Staphylococcus aureus, indicating that there is a high degree of immune specificity toward different bacterial species and C. albicans. Furthermore, genes induced by P. aeruginosa and S. aureus were strongly over-represented among the genes downregulated during C. albicans infection, suggesting that in response to fungal pathogens, nematodes selectively repress the transcription of antibacterial immune effectors. A similar phenomenon is well known in the plant immune response, but has not been described previously in metazoans. Finally, 56% of the genes induced by live C. albicans were also upregulated by heat-killed yeast. These data suggest that a large part of the transcriptional response to C. albicans is mediated through “pattern recognition,” an ancient immune surveillance mechanism able to detect conserved microbial molecules (so-called pathogen-associated molecular patterns or PAMPs). This study provides new information on the evolution and regulation of the innate immune response to divergent pathogens and demonstrates that nematodes selectively mount specific antifungal defenses at the expense of antibacterial responses. Output:
Despite being a part of the normal flora of healthy individuals, Candida albicans is the most common fungal pathogen of humans and can cause infections that are associated with staggeringly high mortality rates. Here we devise a model for the study of the host immune response to C. albicans infection using the nematode C. elegans. We found that infection with the yeast form of C. albicans induces rapid and robust transcriptional changes in C. elegans. Analyses of these differentially regulated genes indicate that the nematode mounts antifungal defenses that are remarkably distinct from the host responses to pathogenic bacteria and that the nematode recognizes components possessed by heat-killed C. albicans to initiate this response. Interestingly, during infection with a pathogenic fungus, the nematode downregulates antibacterial immune response genes, which may reflect an evolutionary tradeoff between bacterial and fungal defense.
PLOS464
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Zika virus (ZIKV) infection recently caused major epidemics in the Americas and is linked to congenital birth defects and Guillain-Barré Syndrome. A pilot study of ZIKV infection in Nicaraguan households was conducted from August 31 to October 21, 2016, in Managua, Nicaragua. We enrolled 33 laboratory-confirmed Zika index cases and their household members (109 contacts) and followed them on days 3–4, 6–7, 9–10, and 21, collecting serum/plasma, urine, and saliva specimens along with clinical, demographic, and socio-economic status information. Collected samples were processed by rRT-PCR to determine viral load (VL) and duration of detectable ZIKV RNA in human bodily fluids. At enrollment, 11 (10%) contacts were ZIKV rRT-PCR-positive and 23 (21%) were positive by IgM antibodies; 3 incident cases were detected during the study period. Twenty of 33 (61%) index households had contacts with ZIKV infection, with an average of 1.9 (range 1–6) positive contacts per household, and in 60% of these households, ≥50% of the members were positive for ZIKV infection. Analysis of clinical information allowed us to estimate the symptomatic to asymptomatic (S:A) ratio of 14:23 (1:1.6) among the contacts, finding 62% of the infections to be asymptomatic. The maximum number of days during which ZIKV RNA was detected was 7 days post-symptom onset in saliva and serum/plasma and 22 days in urine. Overall, VL levels in serum/plasma, saliva, and urine specimens were comparable, with means of 5.6, 5.3 and 4.5 log10 copies/ml respectively, with serum attaining the highest VL peak at 8.1 log10 copies/ml. Detecting ZIKV RNA in saliva over a similar time-period and level as in serum/plasma indicates that saliva could potentially serve as a more accessible diagnostic sample. Finding the majority of infections to be asymptomatic emphasizes the importance of silent ZIKV transmission and helps inform public health interventions in the region and globally. Output:
Zika virus (ZIKV) infection has become a major concern due to its association with congenital birth defects and Guillain-Barré Syndrome. We enrolled 33 laboratory-confirmed Zika cases (index cases) and their household members (109 contacts) in Managua, Nicaragua, and followed them for three weeks, collecting serum/plasma, urine and saliva specimens along with clinical, demographic, and socio-economic status information. We found that 61% of the index households had contacts with ZIKV infection, with an average of 1.9 (range 1–6) positive contacts per household, and in 60% of these households, ≥50% of the members were ZIKV-positive. Analysis of clinical information allowed estimating the symptomatic to asymptomatic (S:A) ratio of 14:23 (1:1.6) among the contacts. Finding 62% of the infections to be asymptomatic emphasizes the importance of silent transmission. Evaluating the maximum number of days during which ZIKV RNA was detectable showed that ZIKV was found up to 7 days post-symptom onset in serum/plasma and saliva and 22 days post-symptom onset in urine. Finding ZIKV RNA in saliva over a similar time period and concentration as serum/plasma indicates that saliva could potentially serve as a more accessible diagnostic sample. Overall, these data increase our understanding of ZIKV transmission and help inform public health interventions in the region and globally.
PLOS465
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Understanding how silent genes can be competent for activation provides insight into development as well as cellular reprogramming and pathogenesis. We performed genomic location analysis of the pioneer transcription factor FoxA in the adult mouse liver and found that about one-third of the FoxA bound sites are near silent genes, including genes without detectable RNA polymerase II. Virtually all of the FoxA-bound silent sites are within conserved sequences, suggesting possible function. Such sites are enriched in motifs for transcriptional repressors, including for Rfx1 and type II nuclear hormone receptors. We found one such target site at a cryptic “shadow” enhancer 7 kilobases (kb) downstream of the Cdx2 gene, where Rfx1 restricts transcriptional activation by FoxA. The Cdx2 shadow enhancer exhibits a subset of regulatory properties of the upstream Cdx2 promoter region. While Cdx2 is ectopically induced in the early metaplastic condition of Barrett's esophagus, its expression is not necessarily present in progressive Barrett's with dysplasia or adenocarcinoma. By contrast, we find that Rfx1 expression in the esophageal epithelium becomes gradually extinguished during progression to cancer, i.e, expression of Rfx1 decreased markedly in dysplasia and adenocarcinoma. We propose that this decreased expression of Rfx1 could be an indicator of progression from Barrett's esophagus to adenocarcinoma and that similar analyses of other transcription factors bound to silent genes can reveal unanticipated regulatory insights into oncogenic progression and cellular reprogramming. Output:
FoxA transcriptional regulatory proteins are “pioneer factors” that engage silent genes, helping to endow the competence for activation. About a third of the DNA sites we found to be occupied by FoxA in the adult liver are at genes that are silent. Analysis of transcription factor binding motifs near the FoxA sites at silent genes revealed a co-occurrence of motifs for the transcriptional repressors Rfx1 and type II nuclear hormone receptors (NHR-II). Further analysis of one such region downstream of the Cdx2 gene shows that it is a cryptic enhancer, in that it functions poorly unless Rfx1 or NHR-II binding is prevented, in which case FoxA1 promotes enhancer activity. Cdx2 encodes a transcription factor that promotes intestinal differentiation; ectopic expression of Cdx2 in the esophagus can help promote metaplasia and cancer. By screening numerous staged samples of human tissues, we show that Rfx1 expression is extinguished during the progression to esophageal adenocarcinoma and thus may serve as a marker of cancer progression. These studies exemplify how the analysis of pioneer factors bound to silent genes can reveal a basis for the competence of cells to deregulate gene expression and undergo transitions to cancer.
PLOS466
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Almost one third of herpesvirus proteins are expressed with late kinetics. Many of these late proteins serve crucial structural functions such as formation of virus particles, attachment to host cells and internalization. Recently, we and others identified a group of Epstein-Barr virus early proteins that form a pre-initiation complex (vPIC) dedicated to transcription of late genes. Currently, there is a fundamental gap in understanding the role of post-translational modifications in regulating assembly and function of the complex. Here, we used mass spectrometry to map potential phosphorylation sites in BGLF3, a core component of the vPIC module that connects the BcRF1 viral TATA box binding protein to other components of the complex. We identified threonine 42 (T42) in BGLF3 as a phosphoacceptor residue. T42 is conserved in BGLF3 orthologs encoded by other gamma herpesviruses. Abolishing phosphorylation at T42 markedly reduced expression of vPIC-dependent late genes and disrupted production of new virus particles, but had no effect on early gene expression, viral DNA replication, or expression of vPIC-independent late genes. We complemented failure of BGLF3(T42A) to activate late gene expression by ectopic expression of other components of vPIC. Only BFRF2 and BVLF1 were sufficient to suppress the defect in late gene expression associated with BGLF3(T42A). These results were corroborated by the ability of wild type BGLF3 but not BGLF3(T42A) to form a trimeric complex with BFRF2 and BVLF1. Our findings suggest that phosphorylation of BGLF3 at threonine 42 serves as a new checkpoint for subsequent formation of BFRF2:BGLF3:BVLF1; a trimeric subcomplex essential for transcription of late genes. Our findings provide evidence that post-translational modifications regulate the function of the vPIC nanomachine that initiates synthesis of late transcripts in herpesviruses. Output:
EBV is an oncogenic virus involved in the development of about 1.5% of human cancers worldwide. EBV infection has latent and lytic forms. Both forms of infection contribute to the oncogenic capacity of the virus. During the lytic cycle, a cascade of temporally regulated events takes place leading to release of new virus particles. A crucial event in the lytic cascade is expression of the class of EBV late genes, which occurs after viral genome amplification. Late genes mainly encode virus structural proteins that are essential for virus transmission. For many years, the mechanisms regulating expression of late genes remained unknown. Recently, a set of proteins that control expression of late genes was discovered. These proteins form a unique viral pre-initiation complex (vPIC), which initiates synthesis of late gene mRNAs. To this day we have yet to fully understand the process by which assembly of vPIC is synchronized to result in a functional transcription machinery. In this report, we demonstrated that BGLF3, a component of vPIC, is modified by phosphorylation during the lytic phase of the viral life cycle. Phosphorylation of BGLF3 is essential for the ability of the protein to interact with two other components of vPIC, BFRF2 and BVLF1. Our results show that formation of the BGLF3, BFRF2 and BVLF1 complex is integral for synthesis of viral structural proteins. This report establishes the importance of post-translational modifications in regulating the function of vPIC in synthesis of herpesvirus structural proteins. Our findings have the potential to promote the discovery of new anti-viral drugs that inhibit assembly and release of oncogenic herpesviruses.
PLOS467
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Large socio-economic disparities exist in US dietary habits and cardiovascular disease (CVD) mortality. While economic incentives have demonstrated success in improving dietary choices, the quantitative impact of different dietary policies on CVD disparities is not well established. We aimed to quantify and compare the potential effects on total CVD mortality and disparities of specific dietary policies to increase fruit and vegetable (F&V) consumption and reduce sugar-sweetened beverage (SSB) consumption in the US. Using the US IMPACT Food Policy Model and probabilistic sensitivity analyses, we estimated and compared the reductions in CVD mortality and socio-economic disparities in the US population potentially achievable from 2015 to 2030 with specific dietary policy scenarios: (a) a national mass media campaign (MMC) aimed to increase consumption of F&Vs and reduce consumption of SSBs, (b) a national fiscal policy to tax SSBs to increase prices by 10%, (c) a national fiscal policy to subsidise F&Vs to reduce prices by 10%, and (d) a targeted policy to subsidise F&Vs to reduce prices by 30% among Supplemental Nutrition Assistance Program (SNAP) participants only. We also evaluated a combined policy approach, combining all of the above policies. Data sources included the Surveillance, Epidemiology, and End Results Program, National Vital Statistics System, National Health and Nutrition Examination Survey, and published meta-analyses. Among the individual policy scenarios, a national 10% F&V subsidy was projected to be most beneficial, potentially resulting in approximately 150,500 (95% uncertainty interval [UI] 141,400–158,500) CVD deaths prevented or postponed (DPPs) by 2030 in the US. This far exceeds the approximately 35,100 (95% UI 31,700–37,500) DPPs potentially attributable to a 30% F&V subsidy targeting SNAP participants, the approximately 25,800 (95% UI 24,300–28,500) DPPs for a 1-y MMC, or the approximately 31,000 (95% UI 26,800–35,300) DPPs for a 10% SSB tax. Neither the MMC nor the individual national economic policies would significantly reduce CVD socio-economic disparities. However, the SNAP-targeted intervention might potentially reduce CVD disparities between SNAP participants and SNAP-ineligible individuals, by approximately 8% (10 DPPs per 100,000 population). The combined policy approach might save more lives than any single policy studied (approximately 230,000 DPPs by 2030) while also significantly reducing disparities, by approximately 6% (7 DPPs per 100,000 population). Limitations include our effect estimates in the model; these estimates use interventional and prospective observational studies (not exclusively randomised controlled trials). They are thus imperfect and should be interpreted as the best available evidence. Another key limitation is that we considered only CVD outcomes; the policies we explored would undoubtedly have additional beneficial effects upon other diseases. Further, we did not model or compare the cost-effectiveness of each proposed policy. Fiscal strategies targeting diet might substantially reduce CVD burdens. A national 10% F&V subsidy would save by far the most lives, while a 30% F&V subsidy targeting SNAP participants would most reduce socio-economic disparities. A combined policy would have the greatest overall impact on both mortality and socio-economic disparities. Output:
Suboptimal diet is a leading cause of cardiovascular disease, death, and health disparities. Dietary policies have the potential to reduce this burden. However, the potential benefits of policies targeting fruit, vegetable, and sugar-sweetened beverage consumption in the whole US population and among those participating in the Supplemental Nutrition Assistance Program (SNAP) have not been quantified. We modelled and compared the potential benefits of several dietary policies targeting fruit, vegetable, and sugar-sweetened beverage consumption. We found that a modest universal reduction in fruit and vegetable prices (10% subsidy) was most likely to reduce cardiovascular disease mortality, whilst a 30% fruit and vegetable subsidy offered to SNAP participants appeared most promising for reducing disparities in cardiovascular disease mortality. Finally, we found that a combination of all these policies potentially offered the biggest benefits in terms of reducing cardiovascular disease burden and also reducing disparities. Our findings highlight the potentially powerful effects of fiscal measures targeting diet in the US. Dietary policies could potentially reduce cardiovascular disease, death, and associated disparities. A modest subsidy of fruits and vegetables for all, accompanied by a larger subsidy for SNAP participants, might be most beneficial in terms of reducing the disease burden and disparities.
PLOS468
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The role of footwear in protection against a range of Neglected Tropical Diseases (NTDs) is gaining increasing attention. Better understanding of the behaviors that influence use of footwear will lead to improved ability to measure shoe use and will be important for those implementing footwear programs. Using the PRECEDE-PROCEED model we assessed social, behavioral, environmental, educational and ecological needs influencing whether and when children wear shoes in a rural highland Ethiopian community endemic for podoconiosis. Information was gathered from 242 respondents using focus groups, semi-structured interviews and extended case studies. Shoe-wearing norms were said to be changing, with going barefoot increasingly seen as ‘shameful’. Shoes were thought to confer dignity as well as protection against injury and cold. However, many practical and social barriers prevented the desire to wear shoes from being translated into practice. Limited financial resources meant that people were neither able to purchase more than one pair of shoes to ensure their longevity nor afford shoes of the preferred quality. As a result of this limited access, shoes were typically preserved for special occasions and might not be provided for children until they reached a certain age. While some barriers (for example fit of shoe and fear of labeling through use of a certain type of shoe) may be applicable only to certain diseases, underlying structural level barriers related to poverty (for example price, quality, unsuitability for daily activities and low risk perception) are likely to be relevant to a range of NTDs. Using well established conceptual models of health behavior adoption, we identified several barriers to shoe wearing that are amenable to intervention and which we anticipate will be of benefit to those considering NTD prevention through shoe distribution. Output:
Consistently wearing shoes may help in preventing onset or progression of a wide range of Neglected Tropical Diseases (NTDs). This study assessed the factors that influenced shoe wearing behaviors among people living in a rural community in highland Ethiopia. In this community, a substantial proportion of people are at risk for podoconiosis, a debilitating lower leg condition that can be prevented by wearing shoes. We conducted semi-structured individual interviews, focus group discussions and extended case studies among 242 adults and systematically analyzed the information. We found that shoe wearing is intermittent, and that different factors such as cost and ability to use the shoes for certain activities (such as farming) influenced consistent shoe wearing for most people. Some factors (such as shoe size, fear of stigma) were more relevant for podoconiosis patients. Social norms were found to be increasingly supportive of shoe wearing, and children exhibited greater desire to wear shoes than adults. These findings have relevance for preventing development and progression of a variety of NTDs in a range of settings.
PLOS469
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Striped skunks are one of the most important terrestrial reservoirs of rabies virus in North America, and yet the prevalence of rabies among this host is only passively monitored and the disease among this host remains largely unmanaged. Oral vaccination campaigns have not efficiently targeted striped skunks, while periodic spillovers of striped skunk variant viruses to other animals, including some domestic animals, are routinely recorded. In this study we evaluated the spatial and spatio-temporal patterns of infection status among striped skunk cases submitted for rabies testing in the North Central Plains of US in a Bayesian hierarchical framework, and also evaluated potential eco-climatological drivers of such patterns. Two Bayesian hierarchical models were fitted to point-referenced striped skunk rabies cases [n = 656 (negative), and n = 310 (positive)] received at a leading rabies diagnostic facility between the years 2007–2013. The first model included only spatial and temporal terms and a second covariate model included additional covariates representing eco-climatic conditions within a 4km2 home-range area for striped skunks. The better performing covariate model indicated the presence of significant spatial and temporal trends in the dataset and identified higher amounts of land covered by low-intensity developed areas [Odds ratio (OR) = 3.41; 95% Bayesian Credible Intervals (CrI) = 2.08, 3.85], higher level of patch fragmentation (OR = 1.70; 95% CrI = 1.25, 2.89), and diurnal temperature range (OR = 0.54; 95% CrI = 0.27, 0.91) to be important drivers of striped skunk rabies incidence in the study area. Model validation statistics indicated satisfactory performance for both models; however, the covariate model fared better. The findings of this study are important in the context of rabies management among striped skunks in North America, and the relevance of physical and climatological factors as risk factors for skunk to human rabies transmission and the space-time patterns of striped skunk rabies are discussed. Output:
Despite the long recognition that skunks are an important reservoir host for rabies, the control of this disease among this host has not been achieved, and the disease is currently only passively monitored in North America. The need for rabies control among striped skunks is, however, well acknowledged, and reports of occasional spill-over of skunk variant rabies viruses to non-reservoir species, including some domestic animals, remains a cause for public health concern and a major roadblock for eradicating rabies from North America. An understanding of the spatial and temporal dynamics of diseases is important in management and for setting future research agendas, and such knowledge could assist in effective striped skunk rabies control. In this study, we evaluated whether rabies among striped skunk cases submitted for testing in the North Central Plains exhibit discernable spatial and temporal patterns, and if there are any eco-climatic factors that influenced such patterns. Our findings indicate that the year-to-year and spatial origins of rabies incidences in the states of Kansas and Nebraska in the North Central Plains are currently stable, and certain physical environment (developed low-intensity areas and patch fragmentation) and climatic (diurnal temperature range) factors play an important role in determining such temporal and spatial patterns.
PLOS470
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Parent-of-origin effects comprise a range of genetic and epigenetic mechanisms of inheritance. Recently, detection of such effects implicated epigenetic mechanisms in the etiology of multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system. We here sought to dissect the magnitude and the type of parent-of-origin effects in the pathogenesis of experimental neuroinflammation under controlled environmental conditions. We investigated inheritance of an MS-like disease in rat, experimental autoimmune encephalomyelitis (EAE), using a backcross strategy designed to identify the parental origin of disease-predisposing alleles. A striking 37–54% of all detected disease-predisposing loci depended on parental transmission. Additionally, the Y chromosome from the susceptible strain contributed to disease susceptibility. Accounting for parent-of-origin enabled more powerful and precise identification of novel risk factors and increased the disease variance explained by the identified factors by 2-4-fold. The majority of loci displayed an imprinting–like pattern whereby a gene expressed only from the maternal or paternal copy exerts an effect. In particular, a locus on chromosome 6 comprises a well-known cluster of imprinted genes including the paternally expressed Dlk1, an atypical Notch ligand. Disease-predisposing alleles at the locus conferred lower Dlk1 expression in rats and, together with data from transgenic overexpressing Dlk1 mice, demonstrate that reduced Dlk1 drives more severe disease and modulates adaptive immune reactions in EAE. Our findings suggest a significant epigenetic contribution to the etiology of EAE. Incorporating these effects enables more powerful and precise identification of novel risk factors with diagnostic and prognostic implications for complex disease. Output:
Even with recent progress in determining the genetic basis of complex diseases, the issue of ‘missing heritability’ remains and its potential sources are frequently speculated about but rarely explained. Parent-of-origin effects might contribute to the ‘missing heritability’ and involve genetic and epigenetic mechanisms of inheritance. Our study is the first that establishes (i) the magnitude and (ii) the type of parent-of-origin effects in the pathogenesis of a multiple sclerosis-like disease, experimental autoimmune encephalomyelitis (EAE) in rat, using a strategy designed to identify genes that confer risk only when inherited from either mother or father. A striking 37-54% of all risk loci depended on parental origin. Accounting for parent-of-origin enabled more powerful and precise identification of novel risk factors for EAE, such as the imprinted Dlk1gene. Disease-predisposing alleles conferred lower Dlk1 expression in rats and transgenic Dlk1 mice demonstrated that lower Dlk1 drives more severe EAE and modulates adaptive immune responses. Because parental-origin effects are epigenetically regulated, our data implicate a contributory role for epigenetic mechanisms in complex diseases. Considering parent-of-origin effects in complex disease has enabled more powerful and precise identification of novel risk factors.
PLOS471
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The Type VI secretion system (T6SS) is widely used by bacterial pathogens as an effective weapon against bacterial competitors and is also deployed against host eukaryotic cells in some cases. It is a contractile nanomachine which delivers toxic effector proteins directly into target cells by dynamic cycles of assembly and firing. Bacterial cells adopt distinct post-translational regulatory strategies for deployment of the T6SS. ‘Defensive’ T6SSs assemble and fire in response to incoming attacks from aggressive neighbouring cells, and can utilise the Threonine Protein Phosphorylation (TPP) regulatory pathway to achieve this control. However, many T6SSs are ‘offensive’, firing at all-comers without the need for incoming attack or other cell contact-dependent signal. Post-translational control of the offensive mode has been less well defined but can utilise components of the same TPP pathway. Here, we used the anti-bacterial T6SS of Serratia marcescens to elucidate post-translational regulation of offensive T6SS deployment, using single-cell microscopy and genetic analyses. We show that the integration of the TPP pathway with the negative regulator TagF to control core T6SS machine assembly is conserved between offensive and defensive T6SSs. Signal-dependent PpkA-mediated phosphorylation of Fha is required to overcome inhibition of membrane complex assembly by TagF, whilst PppA-mediated dephosphorylation promotes spatial reorientation and efficient killing. In contrast, the upstream input of the TPP pathway defines regulatory strategy, with a new periplasmic regulator, RtkS, shown to interact with the PpkA kinase in S. marcescens. We propose a model whereby the opposing actions of the TPP pathway and TagF impose a delay on T6SS re-assembly after firing, providing an opportunity for spatial re-orientation of the T6SS in order to maximise the efficiency of competitor cell targeting. Our findings provide a better understanding of how bacterial cells deploy competitive weapons effectively, with implications for the structure and dynamics of varied polymicrobial communities. Output:
Pathogenic bacteria use a weapon called the ‘Type VI secretion system’ (T6SS) to fire toxic proteins into other cells. These target cells are very often rival bacteria, allowing the T6SS-wielding bacteria to outcompete other pathogens or harmless bacteria. Some bacteria deploy this weapon defensively, only firing back at aggressive cells that have attacked them. Many others use it offensively, firing their T6SS pre-emptively, irrespective of whether they have been attacked by other cells. This work aimed to discover how the activity of the T6SS is controlled in offensive bacteria compared with defensive bacteria, and how this regulation facilitates efficient killing of targeted bacteria. To do this, we studied the offensive anti-bacterial T6SS of Serratia marcescens, a pathogen causing hospital-acquired infections. We found that offensive and defensive bacteria use similar regulatory pathways to activate their T6SSs efficiently, by controlling assembly of the basic machinery and allowing time for the machine to re-position around the cell between firing events. However, the sensing proteins feeding into the regulatory pathways are different and we were able to identify a new offensive input protein. Our findings provide a better understanding of how bacteria can kill competitors, whether aggressive or peaceful neighbours, so effectively.
PLOS472
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Inference of interaction rules of animals moving in groups usually relies on an analysis of large scale system behaviour. Models are tuned through repeated simulation until they match the observed behaviour. More recent work has used the fine scale motions of animals to validate and fit the rules of interaction of animals in groups. Here, we use a Bayesian methodology to compare a variety of models to the collective motion of glass prawns (Paratya australiensis). We show that these exhibit a stereotypical ‘phase transition’, whereby an increase in density leads to the onset of collective motion in one direction. We fit models to this data, which range from: a mean-field model where all prawns interact globally; to a spatial Markovian model where prawns are self-propelled particles influenced only by the current positions and directions of their neighbours; up to non-Markovian models where prawns have ‘memory’ of previous interactions, integrating their experiences over time when deciding to change behaviour. We show that the mean-field model fits the large scale behaviour of the system, but does not capture the observed locality of interactions. Traditional self-propelled particle models fail to capture the fine scale dynamics of the system. The most sophisticated model, the non-Markovian model, provides a good match to the data at both the fine scale and in terms of reproducing global dynamics, while maintaining a biologically plausible perceptual range. We conclude that prawns’ movements are influenced by not just the current direction of nearby conspecifics, but also those encountered in the recent past. Given the simplicity of prawns as a study system our research suggests that self-propelled particle models of collective motion should, if they are to be realistic at multiple biological scales, include memory of previous interactions and other non-Markovian effects. Output:
The collective movement of animals in a group is an impressive phenomenon whereby large scale spatio-temporal patterns emerge from simple interactions between individuals. Theoretically, much of our understanding of animal group motion comes from models inspired by statistical physics. In these models, animals are treated as moving (self-propelled) particles that interact with each other according to simple rules. Recently, researchers have shown greater interest in using experimental data to verify which rules are actually implemented by a particular animal species. In our study, we present a rigorous selection between alternative models inspired by the literature for a system of glass prawns. We find that the classic theoretical models do not accurately predict either the fine scale or large scale behaviour of the system. Instead, individual animals appear to be interacting even when completely separated from each other. To resolve this we introduce a new class of models wherein prawns ‘remember‚ their previous interactions, integrating their experiences over time when deciding to change behaviour. These show that the fine scale and large scale behaviour of the prawns is consistent with interactions only between individuals who are close together.
PLOS473
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The hippocampus is the main locus of episodic memory formation and the neurons there encode the spatial map of the environment. Hippocampal place cells represent location, but their role in the learning of preferential location remains unclear. The hippocampus may encode locations independently from the stimuli and events that are associated with these locations. We have discovered a unique population code for the experience-dependent value of the context. The degree of reward-driven navigation preference highly correlates with the spatial distribution of the place fields recorded in the CA1 region of the hippocampus. We show place field clustering towards rewarded locations. Optogenetic manipulation of the ventral tegmental area demonstrates that the experience-dependent place field assembly distribution is directed by tegmental dopaminergic activity. The ability of the place cells to remap parallels the acquisition of reward context. Our findings present key evidence that the hippocampal neurons are not merely mapping the static environment but also store the concurrent context reward value, enabling episodic memory for past experience to support future adaptive behavior. Output:
Episodic memories relate positive or negative experiences to environmental context. The neurophysiological mechanisms of this connection, however, remain unknown. Hippocampal place cells represent location, but it is unclear if they encode only the spatial representation of the environment or if they are also processing information about the reward valence for different locations. Here, we use population analysis to test the hypothesis that the place cells process the dual encoding of spatial representation and experience-dependent reward expectation. We show a unique population code for the experience-dependent value of the context. We present evidence that the accumulation of the place fields mediates the learning of the reward context of the environment. Our data reveal that the causal link between place field distribution and behavioral place preference is mediated by the tegmental dopaminergic activity. Optogenetic control of the ventral tegmental area demonstrates that dopaminergic signaling integrates the encoding of location and reward from hippocampal neurons. These findings shed a new light on the ability of hippocampal neurons to store the experience-dependent context reward value, enabling episodic memory for past experience to support future adaptive behavior.
PLOS474
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Upon viral infection, mitochondrial antiviral signaling (MAVS) protein serves as a key adaptor to promote cytokine production. We report here that murine gamma herpesvirus 68 (γHV68), a model virus for oncogenic human gamma herpesviruses, subverts cytokine production via the MAVS adaptor. During early infection, γHV68 hijacks MAVS and IKKβ to induce the site-specific phosphorylation of RelA, a crucial subunit of the transcriptionally active NFκB dimer, which primes RelA for the proteasome-mediated degradation. As such, γHV68 efficiently abrogated NFκB activation and cytokine gene expression. Conversely, uncoupling RelA degradation from γHV68 infection promoted NFκB activation and elevated cytokine production. Loss of MAVS increased cytokine production and immune cell infiltration in the lungs of γHV68-infected mice. Moreover, exogenous expression of the phosphorylation- and degradation-resistant RelA variant restored γHV68-induced cytokine production. Our findings uncover an intricate strategy whereby signaling via the upstream MAVS adaptor is intercepted by a pathogen to nullify the immediate downstream effector, RelA, of the innate immune pathway. Output:
Innate immunity represents the first line of defense against invading pathogens chiefly through anti-viral cytokines. The mitochondrial antiviral signaling (MAVS)-dependent innate immune pathways are critical for inflammatory cytokine production. Deficiency in essential innate immune components, such as MAVS, severely impairs cytokine production and host defense that are enabled by the master transcription factor, NFκB. Here we show that murine gamma herpesvirus 68 (γHV68), a model herpesvirus for human Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus, hijacks MAVS and IKKβ to abrogate NFκB activation and cytokine production. Uncoupling RelA degradation from γHV68 infection restored NFκB-dependent cytokine gene expression and elevated cytokine production. Thus, our results demonstrate that upstream innate immune activation can be harnessed by pathogens to inactivate the downstream effector and subvert cytokine production.
PLOS475
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Meiosis is unique to germ cells and essential for reproduction. During the first meiotic division, homologous chromosomes pair, recombine, and form chiasmata. The homologues connect via axial elements and numerous transverse filaments to form the synaptonemal complex. The synaptonemal complex is a critical component for chromosome pairing, segregation, and recombination. We previously identified a novel germ cell–specific HORMA domain encoding gene, Hormad1, a member of the synaptonemal complex and a mammalian counterpart to the yeast meiotic HORMA domain protein Hop1. Hormad1 is essential for mammalian gametogenesis as knockout male and female mice are infertile. Hormad1 deficient (Hormad1−/−) testes exhibit meiotic arrest in the early pachytene stage, and synaptonemal complexes cannot be visualized by electron microscopy. Hormad1 deficiency does not affect localization of other synaptonemal complex proteins, SYCP2 and SYCP3, but disrupts homologous chromosome pairing. Double stranded break formation and early recombination events are disrupted in Hormad1−/− testes and ovaries as shown by the drastic decrease in the γH2AX, DMC1, RAD51, and RPA foci. HORMAD1 co-localizes with γH2AX to the sex body during pachytene. BRCA1, ATR, and γH2AX co-localize to the sex body and participate in meiotic sex chromosome inactivation and transcriptional silencing. Hormad1 deficiency abolishes γH2AX, ATR, and BRCA1 localization to the sex chromosomes and causes transcriptional de-repression on the X chromosome. Unlike testes, Hormad1−/− ovaries have seemingly normal ovarian folliculogenesis after puberty. However, embryos generated from Hormad1−/− oocytes are hyper- and hypodiploid at the 2 cell and 8 cell stage, and they arrest at the blastocyst stage. HORMAD1 is therefore a critical component of the synaptonemal complex that affects synapsis, recombination, and meiotic sex chromosome inactivation and transcriptional silencing. Output:
The biology of germ cells is intimately intertwined with meiosis. Meiosis I is a unique biological event, when chromosomes pair, recombine, and segregate. The synaptonemal complex is a protein lattice that enables chromosome pairing and recombination and is unique to meiosis I. Meiosis I requires a subset of factors that are unique to germ cells and meiosis. Germ cell–specific factors are known to play crucial roles during formation of the synaptonemal complex and include synaptonemal complex proteins SYCP1, SYCP2, and SYCP3, among others. We discovered a mouse HORMA domain containing protein, Hormad1 (Nohma), which is germ cell–specific and essential for male and female fertility. Mice deficient in Hormad1 have severe defects in early recombination, synapsis, and segregation—functions attributed to yeast HORMA domain containing protein, Hop1. Moreover, Hormad1 is likely a germ cell–specific component of the meiotic sex chromosome inactivation and transcriptional silencing complex.
PLOS476
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: As infectious disease surveillance systems expand to include digital, crowd-sourced, and social network data, public health agencies are gaining unprecedented access to high-resolution data and have an opportunity to selectively monitor informative individuals. Contact networks, which are the webs of interaction through which diseases spread, determine whether and when individuals become infected, and thus who might serve as early and accurate surveillance sensors. Here, we evaluate three strategies for selecting sensors—sampling the most connected, random, and friends of random individuals—in three complex social networks—a simple scale-free network, an empirical Venezuelan college student network, and an empirical Montreal wireless hotspot usage network. Across five different surveillance goals—early and accurate detection of epidemic emergence and peak, and general situational awareness—we find that the optimal choice of sensors depends on the public health goal, the underlying network and the reproduction number of the disease (R0). For diseases with a low R0, the most connected individuals provide the earliest and most accurate information about both the onset and peak of an outbreak. However, identifying network hubs is often impractical, and they can be misleading if monitored for general situational awareness, if the underlying network has significant community structure, or if R0 is high or unknown. Taking a theoretical approach, we also derive the optimal surveillance system for early outbreak detection but find that real-world identification of such sensors would be nearly impossible. By contrast, the friends-of-random strategy offers a more practical and robust alternative. It can be readily implemented without prior knowledge of the network, and by identifying sensors with higher than average, but not the highest, epidemiological risk, it provides reasonably early and accurate information. Output:
As public health agencies strive to harness big data to improve outbreak surveillance, they face the challenge of extracting meaningful information that can be directly used to improve public health, without incurring additional costs. In this article, we address the question: Which nodes in a social network should be selectively monitored to detect and monitor outbreaks as early and accurately as possible? We derive best-case performance scenarios, and show that a practical strategy for data collection–recruiting friends of randomly selected individuals–is expected to perform reasonably well, in terms of the timing and reliability of the epidemiological information collected.
PLOS477
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Biological systems are characterized by a high number of interacting components. Determining the role of each component is difficult, addressed here in the context of biological oscillations. Rhythmic behavior can result from the interplay of positive feedback that promotes bistability between high and low activity, and slow negative feedback that switches the system between the high and low activity states. Many biological oscillators include two types of negative feedback processes: divisive (decreases the gain of the positive feedback loop) and subtractive (increases the input threshold) that both contribute to slowly move the system between the high- and low-activity states. Can we determine the relative contribution of each type of negative feedback process to the rhythmic activity? Does one dominate? Do they control the active and silent phase equally? To answer these questions we use a neural network model with excitatory coupling, regulated by synaptic depression (divisive) and cellular adaptation (subtractive feedback). We first attempt to apply standard experimental methodologies: either passive observation to correlate the variations of a variable of interest to system behavior, or deletion of a component to establish whether a component is critical for the system. We find that these two strategies can lead to contradictory conclusions, and at best their interpretive power is limited. We instead develop a computational measure of the contribution of a process, by evaluating the sensitivity of the active (high activity) and silent (low activity) phase durations to the time constant of the process. The measure shows that both processes control the active phase, in proportion to their speed and relative weight. However, only the subtractive process plays a major role in setting the duration of the silent phase. This computational method can be used to analyze the role of negative feedback processes in a wide range of biological rhythms. Output:
As modern experimental techniques uncover new components in biological systems and describe their mutual interactions, the problem of determining the contribution of each component becomes critical. The many feedback loops created by these interactions can lead to oscillatory behavior. Examples of oscillations in biology include the cell cycle, circadian rhythms, the electrical activity of excitable cells, and predator-prey systems. While we understand how negative feedback loops can cause oscillations, when multiple feedback loops are present it becomes difficult to identify the dominant mechanism(s), if any. We address the problem of establishing the relative contribution of a feedback process using a biological oscillator model for which oscillations are controlled by two types of slow negative feedback. To determine which is the dominant process, we first use standard experimental methodologies: either passive observation to correlate a variable's behavior to system activity, or deletion of a component to establish whether that component is critical for the system. We find that these methods have limited applicability to the determination of the dominant process. We then develop a new quantitative measure of the contribution of each process to the oscillations. This computational method can be extended to a wide variety of oscillatory systems.
PLOS478
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: G-quadruplexes (G4) are secondary structures formed by guanine-rich nucleic acid sequences and shown to exist in living cells where they participate in regulation of gene expression and chromosome maintenance. G-quadruplexes with solvent-exposed guanine tetrads show the tendency to associate together through cofacial stacking, which may be important for packaging of G4-forming sequences and allows for the design of higher-order G4 DNA structures. To understand the molecular driving forces for G4 association, here, we study the binding interaction between two parallel-stranded G-quadruplexes using all-atom molecular dynamics simulations. The predicted dimerization free energies show that direct binding through the 5’-G-tetrads is the most preferred of all possible end-to-end stacking orientations, consistently with all available experimental data. Decomposition of dimerization enthalpies in combination with simulations at varying ionic strength further indicate that the observed orientational preferences arise from a fine balance between the electrostatic repulsion of the sugar-phosphate backbones and favorable counterion binding at the dimeric interface. We also demonstrate how these molecular-scale findings can be used to devise means of controlling G4 dimerization equilibrium, e.g., by altering salt concentration and using G4-targeted ligands. Output:
Native DNA usually folds to form the canonical double helix, however, under certain conditions, it can also fold into other secondary structures. Some of the most interesting ones are G-quadruplexes (G4)—compact DNA structures in which guanines assemble into multilayered tetrads, and whose formation has been reported at the ends of linear chromosomes (telomeres) and at different regulatory regions of the genome. Although structural and basic energetic properties, as well as some biological functions of G-quadruplexes are quite well understood, not much is known about their propensity to form agregated structures. A very high density of G-quadruplexes at telomeres along with their large exposed planar surfaces indeed favor G4 aggregation through end-to-end stacking, which might be important for the protection of telomeres and DNA packaging. In this research, using computer simulations, we provide insight into moleculsr origins of stability of the higher-order G-quadruplexes and explain in structural and energetic terms a strong preference for one particular end-to-end stacking orientation. Based on the recognized aggregation driving forces, we also suggest methods for controling the aggregation preferences openining up new opportunities for designing oligomeric G-quadruplexes.
PLOS479
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The entropy metric derived from information theory provides a means to quantify the amount of information transmitted in acoustic streams like speech or music. By systematically varying the entropy of pitch sequences, we sought brain areas where neural activity and energetic demands increase as a function of entropy. Such a relationship is predicted to occur in an efficient encoding mechanism that uses less computational resource when less information is present in the signal: we specifically tested the hypothesis that such a relationship is present in the planum temporale (PT). In two convergent functional MRI studies, we demonstrated this relationship in PT for encoding, while furthermore showing that a distributed fronto-parietal network for retrieval of acoustic information is independent of entropy. The results establish PT as an efficient neural engine that demands less computational resource to encode redundant signals than those with high information content. Output:
Understanding how the brain makes sense of our acoustic environment remains a major challenge. One way to describe the complexity of our acoustic environment is in terms of information entropy: acoustic signals with high entropy convey large amounts of information, whereas low entropy signifies redundancy. To investigate how the brain processes this information, we controlled the amount of entropy in the signal by using pitch sequences. Participants listened to pitch sequences with varying amounts of entropy while we measured their brain activity using functional magnetic resonance imaging (fMRI). We show that the planum temporale (PT), a region of auditory association cortex, is sensitive to the entropy in pitch sequences. In two convergent fMRI studies, activity in PT increases as the entropy in the pitch sequence increases. The results establish PT as an important “computational hub” that requires less resource to encode redundant signals than it does to encode signals with high information content.
PLOS480
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Penalized Multiple Regression (PMR) can be used to discover novel disease associations in GWAS datasets. In practice, proposed PMR methods have not been able to identify well-supported associations in GWAS that are undetectable by standard association tests and thus these methods are not widely applied. Here, we present a combined algorithmic and heuristic framework for PUMA (Penalized Unified Multiple-locus Association) analysis that solves the problems of previously proposed methods including computational speed, poor performance on genome-scale simulated data, and identification of too many associations for real data to be biologically plausible. The framework includes a new minorize-maximization (MM) algorithm for generalized linear models (GLM) combined with heuristic model selection and testing methods for identification of robust associations. The PUMA framework implements the penalized maximum likelihood penalties previously proposed for GWAS analysis (i.e. Lasso, Adaptive Lasso, NEG, MCP), as well as a penalty that has not been previously applied to GWAS (i.e. LOG). Using simulations that closely mirror real GWAS data, we show that our framework has high performance and reliably increases power to detect weak associations, while existing PMR methods can perform worse than single marker testing in overall performance. To demonstrate the empirical value of PUMA, we analyzed GWAS data for type 1 diabetes, Crohns's disease, and rheumatoid arthritis, three autoimmune diseases from the original Wellcome Trust Case Control Consortium. Our analysis replicates known associations for these diseases and we discover novel etiologically relevant susceptibility loci that are invisible to standard single marker tests, including six novel associations implicating genes involved in pancreatic function, insulin pathways and immune-cell function in type 1 diabetes; three novel associations implicating genes in pro- and anti-inflammatory pathways in Crohn's disease; and one novel association implicating a gene involved in apoptosis pathways in rheumatoid arthritis. We provide software for applying our PUMA analysis framework. Output:
Genome-wide association studies (GWAS) have identified hundreds of regions of the human genome that are associated with susceptibility to common diseases. Yet many lines of evidence indicate that many susceptibility loci, which cannot be detected by standard statistical methods, remain to be discovered. We have developed PUMA, a framework for applying a family of penalized regression methods that simultaneously consider multiple susceptibility loci in the same statistical model. We demonstrate through simulations that our framework has increased power to detect weak associations compared to both standard GWAS analysis methods and previous applications of penalized methods. We applied PUMA to identify novel susceptibility loci for type 1 diabetes, Crohn's disease and rheumatoid arthritis, where the novel disease loci we identified have been previously associated with similar diseases or are known to function in relevant biological pathways.
PLOS481
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The complement C3-like protein TEP1 of the mosquito Anopheles gambiae is required for defense against malaria parasites and bacteria. Two forms of TEP1 are present in the mosquito hemolymph, the full-length TEP1-F and the proteolytically processed TEP1cut that is part of a complex including the leucine-rich repeat proteins LRIM1 and APL1C. Here we show that the non-catalytic serine protease SPCLIP1 is a key regulator of the complement-like pathway. SPCLIP1 is required for accumulation of TEP1 on microbial surfaces, a reaction that leads to lysis of malaria parasites or triggers activation of a cascade culminating with melanization of malaria parasites and bacteria. We also demonstrate that the two forms of TEP1 have distinct roles in the complement-like pathway and provide the first evidence for a complement convertase-like cascade in insects analogous to that in vertebrates. Our findings establish that core principles of complement activation are conserved throughout the evolution of animals. Output:
Mosquitoes are vectors of numerous human diseases including malaria. Disease transmission requires that microbes overcome the robust mosquito immune system. In the African malaria mosquito, the TEP1 protein that is homologous to mammalian complement factor C3 is shown to play a central role in mosquito immunity to malaria parasites and bacteria. In this study, we report that another mosquito protein belonging to a class of non-catalytic enzymes that are specific to arthropods is a core component of the mosquito complement-like immune pathway. We found that this new protein, named SPCLIP1, regulates the accumulation of TEP1 on malaria parasites and bacteria, and show that this can lead to distinct defense reactions including lysis and melanization of the pathogen. This work is valuable because it reveals novel insight into the regulation of mosquito complement on microbial surfaces such as those of the malaria parasites. Unraveling the molecular mechanisms regulating these defense responses may ultimately lead to the design of novel disease blocking strategies in the vector.
PLOS482
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Constraint-based modeling techniques have become a standard tool for the in silico analysis of metabolic networks. To further improve their accuracy, recent methodological developments focused on integration of thermodynamic information in metabolic models to assess the feasibility of flux distributions by thermodynamic driving forces. Here we present OptMDFpathway, a method that extends the recently proposed framework of Max-min Driving Force (MDF) for thermodynamic pathway analysis. Given a metabolic network model, OptMDFpathway identifies both the optimal MDF for a desired phenotypic behavior as well as the respective pathway itself that supports the optimal driving force. OptMDFpathway is formulated as a mixed-integer linear program and is applicable to genome-scale metabolic networks. As an important theoretical result, we also show that there exists always at least one elementary mode in the network that reaches the maximal MDF. We employed our new approach to systematically identify all substrate-product combinations in Escherichia coli where product synthesis allows for concomitant net CO2 assimilation via thermodynamically feasible pathways. Although biomass synthesis cannot be coupled to net CO2 fixation in E. coli we found that as many as 145 of the 949 cytosolic carbon metabolites contained in the genome-scale model iJO1366 enable net CO2 incorporation along thermodynamically feasible pathways with glycerol as substrate and 34 with glucose. The most promising products in terms of carbon assimilation yield and thermodynamic driving forces are orotate, aspartate and the C4-metabolites of the tricarboxylic acid cycle. We also identified thermodynamic bottlenecks frequently limiting the maximal driving force of the CO2-fixing pathways. Our results indicate that heterotrophic organisms like E. coli hold a possibly underestimated potential for CO2 assimilation which may complement existing biotechnological approaches for capturing CO2. Furthermore, we envision that the developed OptMDFpathway approach can be used for many other applications within the framework of constrained-based modeling and for rational design of metabolic networks. Output:
When analyzing metabolic networks, one often searches for metabolic pathways with certain (desired) properties, for example, conversion routes that maximize the yield of a product from a given substrate. While those problems can be solved with established methods of constraint-based modeling, no algorithm is currently available for genome-scale models to identify the pathway that has the highest possible thermodynamic driving force among all solutions with predefined stoichiometric properties. This gap is closed with our new approach OptMDFpathway which is based on the recently introduced concept of Max-min Driving Force (MDF). OptMDFpathway offers various applications, especially in the context of metabolic design of cell factories. To demonstrate the power and usefulness of OptMDFpathway, we employed it to analyze the endogenous CO2 fixation potential of Escherichia coli. While E. coli cannot assimilate CO2 into biomass, net CO2 fixation can take place along linear pathways from substrate to product and we show that thermodynamically feasible pathways with net CO2 assimilation exist for 145 (34) products when choosing glycerol (glucose) as substrate. Our results indicate that heterotrophic organisms like E. coli hold a possibly underestimated potential for CO2 assimilation which may complement existing biotechnological approaches for capturing CO2.
PLOS483
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Adhesive pili on the surface of pathogenic bacteria comprise polymerized pilin subunits and are essential for initiation of infections. Pili assembled by the chaperone-usher pathway (CUP) require periplasmic chaperones that assist subunit folding, maintain their stability, and escort them to the site of bioassembly. Until now, CUP chaperones have been classified into two families, FGS and FGL, based on the short and long length of the subunit-interacting loops between its F1 and G1 β-strands, respectively. CfaA is the chaperone for assembly of colonization factor antigen I (CFA/I) pili of enterotoxigenic E. coli (ETEC), a cause of diarrhea in travelers and young children. Here, the crystal structure of CfaA along with sequence analyses reveals some unique structural and functional features, leading us to propose a separate family for CfaA and closely related chaperones. Phenotypic changes resulting from mutations in regions unique to this chaperone family provide insight into their function, consistent with involvement of these regions in interactions with cognate subunits and usher proteins during pilus assembly. Output:
Bacterial infection begins with microbial adhesion to host cells. For gram-negative bacteria, adhesion is often mediated by pili, proteinaceous polymers that protrude from the bacterial surface and recognize host receptors. During assembly, each pilus protein subunit is assisted in folding by a chaperone that shuttles the subunit to an outer membrane usher complex, which serves as assembly platform. There, the chaperone transfers its subunit cargo into the growing pilus polymer, which protrudes out the usher pore. Here, we present the crystal structure of CfaA, the chaperone protein of the CFA/I pilus. The CFA/I pilus is the archetypal colonization factor (CF) for enterotoxigenic Escherichia coli, a major cause of life-threatening, dehydrating diarrhea in young children of low-income countries and in travelers to these regions. This structure reveals unique features that allow us to define a new class of chaperones that assist pilus assembly in bacteria. Probing these unique features with site-direct mutagenesis, we were able to gain new insight into the mechanism of pilus assembly.
PLOS484
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Polarity coordinates cell movement, differentiation, proliferation and apoptosis to build and maintain complex epithelial tissues such as the mammary gland. Loss of polarity and the deregulation of these processes are critical events in malignant progression but precisely how and at which stage polarity loss impacts on mammary development and tumourigenesis is unclear. Scrib is a core polarity regulator and tumour suppressor gene however to date our understanding of Scrib function in the mammary gland has been limited to cell culture and transplantation studies of cell lines. Utilizing a conditional mouse model of Scrib loss we report for the first time that Scrib is essential for mammary duct morphogenesis, mammary progenitor cell fate and maintenance, and we demonstrate a critical and specific role for Scribble in the control of the early steps of breast cancer progression. In particular, Scrib-deficiency significantly induced Fra1 expression and basal progenitor clonogenicity, which resulted in fully penetrant ductal hyperplasia characterized by high cell turnover, MAPK hyperactivity, frank polarity loss with mixing of apical and basolateral membrane constituents and expansion of atypical luminal cells. We also show for the first time a role for Scribble in mammalian spindle orientation with the onset of mammary hyperplasia being associated with aberrant luminal cell spindle orientation and a failure to apoptose during the final stage of duct tubulogenesis. Restoring MAPK/Fra1 to baseline levels prevented Scrib-hyperplasia, whereas persistent Scrib deficiency induced alveolar hyperplasia and increased the incidence, onset and grade of mammary tumours. These findings, based on a definitive genetic mouse model provide fundamental insights into mammary duct maturation and homeostasis and reveal that Scrib loss activates a MAPK/Fra1 pathway that alters mammary progenitor activity to drive premalignancy and accelerate tumour progression. Output:
Polarity allows the specialization of cell function and is required to coordinate cell movements, differentiation, proliferation and apoptosis to build and maintain complex tissues such as the mammary gland. Disruption of polarity is a diagnostic criterion of cancer, but exactly how deregulation of core polarity genes contribute to cancer and at which stage polarity loss promotes breast cancer development in vivo is still poorly understood. To address this directly, we deleted the core polarity gene Scrib specifically in the mouse mammary gland. Scrib loss resulted in loss of tissue architecture and duct hyperplasia in mature but not pubescent mice. Onset of hyperplasia was associated with defective spindle orientations, a failure to apoptose and was sustained by high cell turnover and Ras/Erk/Fra1 MAPK pathway activation. Scrib deficiency activated progenitors and resulted in the excess growth of atypical luminal cells and the development of ductal and alveolar hyperplasia. Overall these mice exhibited an increased incidence, onset and grade of mammary tumours. These studies provide a definitive demonstration of the critical role played by core polarity genes in maintaining mammary epithelial integrity in vivo. This mouse model is a valuable tool for understanding the role of polarity in mammary development and the most initial stages of breast cancer.
PLOS485
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Triatomines are hematophagous insects that act as vectors of Chagas disease. Rhodnius neglectus is one of these kissing bugs found, contributing to the transmission of this American trypanosomiasis. The saliva of hematophagous arthropods contains bioactive molecules responsible for counteracting host haemostatic, inflammatory, and immune responses. Next generation sequencing and mass spectrometry-based protein identification were performed to investigate the content of triatomine R. neglectus saliva. We deposited 4,230 coding DNA sequences (CDS) in GenBank. A set of 636 CDS of proteins of putative secretory nature was extracted from the assembled reads, 73 of them confirmed by proteomic analysis. The sialome of R. neglectus was characterized and serine protease transcripts detected. The presence of ubiquitous protein families was revealed, including lipocalins, serine protease inhibitors, and antigen-5. Metalloproteases, disintegrins, and odorant binding protein families were less abundant. The data presented improve our understanding of hematophagous arthropod sialomes, and aid in understanding hematophagy and the complex interplay among vectors and their vertebrate hosts. Output:
Chagas disease is caused by the Trypanosoma cruzi protozoan, which is transmitted to vertebrates through the feces of infected triatomines during blood sucking. The vascular injury caused by the bite triggers mechanisms capable of preventing the association with hosts, such as immune response, inflammation and haemostasis. However, hematophagous insects are able to counteract these defenses through a complex repertoire of salivary molecules that have specific targets in the host. Our results show that R. neglectus salivary glands express different protein gene families, possessing multi-functional features directly related to different anti-haemostatic activities. For instance, lipocalins are proteins possessing anti-coagulant and vasodilator functions. Saliva contents have evolved to adapt to blood-feeding habit, ensuring the maintenance of blood flow, the success of the meal, and transmission of diseases.
PLOS486
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Idiopathic chronic diarrhea (ICD) is a leading cause of morbidity amongst rhesus monkeys kept in captivity. Here, we show that exposure of affected animals to the whipworm Trichuris trichiura led to clinical improvement in fecal consistency, accompanied by weight gain, in four out of the five treated monkeys. By flow cytometry analysis of pinch biopsies collected during colonoscopies before and after treatment, we found an induction of a mucosal TH2 response following helminth treatment that was associated with a decrease in activated CD4+ Ki67+ cells. In parallel, expression profiling with oligonucleotide microarrays and real-time PCR analysis revealed reductions in TH1-type inflammatory gene expression and increased expression of genes associated with IgE signaling, mast cell activation, eosinophil recruitment, alternative activation of macrophages, and worm expulsion. By quantifying bacterial 16S rRNA in pinch biopsies using real-time PCR analysis, we found reduced bacterial attachment to the intestinal mucosa post-treatment. Finally, deep sequencing of bacterial 16S rRNA revealed changes to the composition of microbial communities attached to the intestinal mucosa following helminth treatment. Thus, the genus Streptophyta of the phylum Cyanobacteria was vastly increased in abundance in three out of five ICD monkeys relative to healthy controls, but was reduced to control levels post-treatment; by contrast, the phylum Tenericutes was expanded post-treatment. These findings suggest that helminth treatment in primates can ameliorate colitis by restoring mucosal barrier functions and reducing overall bacterial attachment, and also by altering the communities of attached bacteria. These results also define ICD in monkeys as a tractable preclinical model for ulcerative colitis in which these effects can be further investigated. Output:
Young macaques kept in captivity at Primate Research Centers often develop chronic diarrhea, which is difficult to treat because it is poorly understood. This disease shares many features with ulcerative colitis, which is an autoimmune disease affecting the intestinal tract of humans. Recently, parasitic worms have been used in clinical trials to treat inflammatory bowel diseases in humans with positive results, but very little is known about how worms can improve symptoms. We performed a trial where we treated macaques suffering from chronic diarrhea with human whipworms, collecting gut biopsies before and after treatment. We found that 4 out of the 5 treated macaques improved their symptoms and studied the changes in their gut immune responses, as they got better. We found that after treatment with worms, the monkeys had less bacteria attached to their intestinal wall and a reduced inflammatory response to the gut bacteria. Additionally, the composition of gut bacteria was altered in the sick macaques and was restored close to normal after treatment with whipworms. These results provide a potential mechanism by which parasitic worms may improve the symptoms of intestinal inflammation, by reducing the immune response against intestinal bacteria.
PLOS487
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The threadworm, Strongyloides stercoralis, endemic in tropical and temperate climates, is a neglected tropical disease. Its diagnosis requires specific methods, and accurate information on its geographic distribution and global burden are lacking. We predicted prevalence, using Bayesian geostatistical modeling, and determined risk factors in northern Cambodia. From February to June 2010, we performed a cross-sectional study among 2,396 participants from 60 villages in Preah Vihear Province, northern Cambodia. Two stool specimens per participant were examined using Koga agar plate culture and the Baermann method for detecting S. stercoralis infection. Environmental data was linked to parasitological and questionnaire data by location. Bayesian mixed logistic models were used to explore the spatial correlation of S. stercoralis infection risk. Bayesian Kriging was employed to predict risk at non-surveyed locations. Of the 2,396 participants, 44.7% were infected with S. stercoralis. Of 1,071 strongyloidiasis cases, 339 (31.6%) were among schoolchildren and 425 (39.7%) were found in individuals under 16 years. The incidence of S. stercoralis infection statistically increased with age. Infection among male participants was significantly higher than among females (OR: 1.7; 95% CI: 1.4–2.0; P<0.001). Participants who defecated in latrines were infected significantly less than those who did not (OR: 0.6; 95% CI: 0.4–0.8; P = 0.001). Strongyloidiasis cases would be reduced by 39% if all participants defecated in latrines. Incidence of S. stercoralis infections did not show a strong tendency toward spatial clustering in this province. The risk of infection significantly decreased with increasing rainfall and soil organic carbon content, and increased in areas with rice fields. Prevalence of S. stercoralis in rural Cambodia is very high and school-aged children and adults over 45 years were the most at risk for infection. Lack of access to adequate treatment for chronic uncomplicated strongyloidiasis is an urgent issue in Cambodia. We would expect to see similar prevalence rates elsewhere in Southeast Asia and other tropical resource poor countries. Output:
Data on the prevalence and distribution of Strongyloides stercoralis (threadworm) is scarce in many resource-poor countries. We carried out a cross-sectional study during the dry season among 2,396 rural Cambodians of all ages. We used a rigorous diagnostic approach, involving two stool samples per person and two examination techniques, namely, Koga agar plate culture and the Baermann method. We predicted the spatial distribution of S. stercoralis using Bayesian Kriging analysis. Almost half of the participants (44.7%) were infected with S. stercoralis. Of the S. stercoralis cases, 39.7% involved participants under 16 years old. S. stercoralis infection prevalence was significantly higher in males than in females. Participants younger than 10 years old had a lower risk of infection than did older participants. Furthermore, our study showed that toilet use could prevent threadworm infections by 39%. Infection prevalence in the province was negatively associated with rainfall and soil organic content and positively associated with land covered by rice fields. We conclude that access to adequate treatment for S. stercoralis must be addressed in Cambodia. Infection prevalence is likely to be similar in other countries of the region and the developing world.
PLOS488
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The presence of amyloid deposits consisting primarily of Amyloid-β (Aβ) fibril in the brain is a hallmark of Alzheimer's disease (AD). The morphologies of these fibrils are exquisitely sensitive to environmental conditions. Using molecular dynamics simulations combined with data from previously published solid-state NMR experiments, we propose the first atomically detailed structures of two asymmetric polymorphs of the Aβ9-40 peptide fibril. The first corresponds to synthetic fibrils grown under quiescent conditions and the second to fibrils derived from AD patients' brain-extracts. Our core structure in both fibril structures consists of a layered structure in which three cross-β subunits are arranged in six tightly stacked β-sheet layers with an antiparallel hydrophobic-hydrophobic and an antiparallel polar-polar interface. The synthetic and brain-derived structures differ primarily in the side-chain orientation of one β-strand. The presence of a large and continually exposed hydrophobic surface (buried in the symmetric agitated Aβ fibrils) may account for the higher toxicity of the asymmetric fibrils. Our model explains the effects of external perturbations on the fibril lateral architecture as well as the fibrillogenesis inhibiting action of amphiphilic molecules. Output:
Amyloid diseases are characterized by the presence of amyloid fibrils on organs and tissue in the body. Alzheimer's disease, Parkinson's diseases and Type II Diabetes are all examples of amyloid diseases. Determining the structure of amyloid fibrils is critical for understanding the mechanism of fibril formation as well as for the design of inhibitor molecules that can prevent aggregation. In the case of the Alzheimer Amyloid-β (Aβ) peptide, the structure of fibrils grown under conditions of mechanical agitation has been elucidated from a combination of simulation and experiments. However, the structures of the asymmetric quiescent Aβ fibrils (grown under conditions akin to physiological conditions) and of Alzheimer's brain–derived fibrils are not known. In this paper, we propose the first atomically detailed structures of these two fibrils, using molecular dynamics simulations combined with data from previously published experiments. In additions, we suggest a unifying lateral growth mechanism that explains the increased toxicity of quiescent Aβ fibrils, the effects of external perturbations on fibril lateral architecture and the inhibition mechanism of the small molecule inhibitors on fibril formation.
PLOS489
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Infection with Burkholderia pseudomallei or B. thailandensis triggers activation of the NLRP3 and NLRC4 inflammasomes leading to release of IL-1β and IL-18 and death of infected macrophages by pyroptosis, respectively. The non-canonical inflammasome composed of caspase-11 is also activated by these bacteria and provides protection through induction of pyroptosis. The recent generation of bona fide caspase-1-deficient mice allowed us to reexamine in a mouse model of pneumonic melioidosis the role of caspase-1 independently of caspase-11 (that was also absent in previously generated Casp1-/- mice). Mice lacking either caspase-1 or caspase-11 were significantly more susceptible than wild type mice to intranasal infection with B. thailandensis. Absence of caspase-1 completely abolished production of IL-1β and IL-18 as well as pyroptosis of infected macrophages. In contrast, in mice lacking caspase-11 IL-1β and IL-18 were produced at normal level and macrophages pyroptosis was only marginally affected. Adoptive transfer of bone marrow indicated that caspase-11 exerted its protective action both in myeloid cells and in radio-resistant cell types. B. thailandensis was shown to readily infect mouse lung epithelial cells triggering pyroptosis in a caspase-11-dependent way in vitro and in vivo. Importantly, we show that lung epithelial cells do not express inflammasomes components or caspase-1 suggesting that this cell type relies exclusively on caspase-11 for undergoing cell death in response to bacterial infection. Finally, we show that IL-18’s protective action in melioidosis was completely dependent on its ability to induce IFNγ production. In turn, protection conferred by IFNγ against melioidosis was dependent on generation of ROS through the NADPH oxidase but independent of induction of caspase-11. Altogether, our results identify two non-redundant protective roles for caspase-1 and caspase-11 in melioidosis: Caspase-1 primarily controls pyroptosis of infected macrophages and production of IL-18. In contrast, caspase-11 mediates pyroptosis of infected lung epithelial cells. Output:
Burkholderia pseudomallei is a bacterium that infect macrophages and other cell types and causes a diseases called melioidosis. Inflammasomes are multiprotein complexes that control activation of the proteases caspase-1 and caspase-11 resulting in production of the inflammatory mediators IL-1β and IL-18 and death of infected cells. Mice deficient of caspase-1 or caspase-11 are more susceptible to infection with B. pseudomallei or the closely related B. thailandensis. Here we show that absence of caspase-1 completely abolished production of IL-1β and IL-18 as well as death of macrophages infected with B. thailandensis. In contrast, in the highly susceptible caspase-11-deficient mice, IL-1β and IL-18 production and macrophages death were not significantly affected. Rather, absence of caspase-11 abolished death of infected lung epithelial cells. Taken together, our results show that caspase-1 and caspase-11 have non-redundant protective roles in melioidosis: Caspase-1 primarily controls cell death of infected macrophages and production of IL-18. In contrast, caspase-11 mediates cell death of infected lung epithelial cells.
PLOS490
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: With the increase in people living with HIV in sub-Saharan Africa and expanding eligibility criteria for antiretroviral therapy (ART), there is intense interest in the use of novel delivery models that allow understaffed health systems to successfully deal with an increasing demand for antiretroviral drugs (ARVs). This pragmatic randomized controlled trial in Dar es Salaam, Tanzania, evaluated a novel model of ARV community delivery: lay health workers (home-based carers [HBCs]) deliver ARVs to the homes of patients who are clinically stable on ART, while nurses and physicians deliver standard facility-based care for patients who are clinically unstable. Specifically, the trial aimed to assess whether the ARV community delivery model performed at least equally well in averting virological failure as the standard of care (facility-based care for all ART patients). The study took place from March 1, 2016, to October 27, 2017. All (48) healthcare facilities in Dar es Salaam that provided ART and had an affiliated team of public-sector HBCs were randomized 1:1 to either (i) ARV community delivery (intervention) or (ii) the standard of care (control). Our prespecified primary endpoint was the proportion of adult non-pregnant ART patients with virological failure at the end of the study period. The prespecified margin of non-inferiority was a risk ratio (RR) of 1.45. The mean follow-up period was 326 days. We obtained intent-to-treat (ITT) RRs using a log-binomial model adjusting standard errors for clustering at the level of the healthcare facility. A total of 2,172 patients were enrolled at intervention (1,163 patients) and control (1,009 patients) facilities. Of the 1,163 patients in the intervention arm, 516 (44.4%) were both clinically stable on ART and opted to receive ARVs in their homes or at another meeting point of their choosing in the community. At the end of the study period, 10.9% (95/872) of patients in the control arm and 9.7% (91/943) in the intervention arm were failing virologically. The ITT RR for virological failure demonstrated non-inferiority of the ARV community delivery model (RR 0.89 [1-sided 95% CI 0.00–1.18]). We observed no significant difference between study arms in self-reported patient healthcare expenditures over the last 6 months before study exit. Of those who received ARVs in the community, 97.2% (95% CI 94.7%–98.7%) reported being either “satisfied” or “very satisfied” with the program. Other than loss to follow-up (18.9% in the intervention and 13.6% in the control arm), the main limitation of this trial was that substantial decongestion of healthcare facilities was not achieved, thus making the logic for our preregistered ITT approach (which includes those ineligible to receive ARVs at home in the intervention sample) less compelling. In this study, an ARV community delivery model performed at least as well as the standard of care regarding the critical health indicator of virological failure. The intervention did not significantly reduce patient healthcare expenditures, but satisfaction with the program was high and it is likely to save patients time. Policy-makers should consider piloting, evaluating, and scaling more ambitious ARV community delivery programs that can reach higher proportions of ART patients. ClinicalTrials.gov NCT02711293. Output:
The number of individuals in sub-Saharan Africa needing antiretroviral therapy (ART) for HIV—and chronic disease care more broadly—is expected to increase over the coming decades, further straining already under-resourced health systems in the region. Community delivery of antiretroviral drugs (ARVs) has the potential to decrease ART patient volume at healthcare facilities and reduce patient and government healthcare expenditures, while maintaining the positive effects of ART on health outcomes. We randomized 48 ART facilities in Dar es Salaam, Tanzania, 1:1 to (i) ARV community delivery (lay health workers deliver ARVs to the homes of patients who are clinically stable on ART while nurses and physicians deliver standard facility-based care for patients who are clinically unstable on ART) or (ii) control (standard facility-based care for all patients). We measured whether the risk of virological failure (i.e., poor control of one’s HIV infection) in the ARV community delivery arm was lower than, or equal to that in the control arm using a prespecified threshold above which we considered the intervention to be inferior to the standard of care. As implemented in this study, in which roughly 40% of patients enrolled in the intervention arm received ARVs at home at least once and 60% remained in standard facility-based care, the new ARV community delivery model performed at least as well as the standard of care regarding the critical health indicator of virological failure. While we did not observe any differences in patient healthcare expenditures between the 2 arms of the study, patients’ satisfaction with receiving ARVs at home was high. While ARV community delivery appears to have been safe with respect to controlling patients’ HIV infection, some of the expected benefits of the program—decongestion of healthcare facilities and reduction in patients’ healthcare expenditures—were not realized. Nonetheless, the program was popular with patients, presumably because it makes ART care more convenient and saves patients time. Policy-makers should consider piloting, scaling, and evaluating more ambitious ARV community delivery programs that reach higher proportions of ART patients than reached in this trial.
PLOS491
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: For most organisms, food is only intermittently available; therefore, molecular mechanisms that couple sensation of nutrient availability to growth and development are critical for survival. These mechanisms, however, remain poorly defined. In the absence of nutrients, newly hatched first larval (L1) stage Caenorhabditis elegans halt development and survive in this state for several weeks. We isolated mutations in unc-31, encoding a calcium-activated regulator of neural dense-core vesicle release, which conferred enhanced starvation survival. This extended survival was reminiscent of that seen in daf-2 insulin-signaling deficient mutants and was ultimately dependent on daf-16, which encodes a FOXO transcription factor whose activity is inhibited by insulin signaling. While insulin signaling modulates metabolism, adult lifespan, and dauer formation, insulin-independent mechanisms that also regulate these processes did not promote starvation survival, indicating that regulation of starvation survival is a distinct program. Cell-specific rescue experiments identified a small subset of primary sensory neurons where unc-31 reconstitution modulated starvation survival, suggesting that these neurons mediate perception of food availability. We found that OCR-2, a transient receptor potential vanilloid (TRPV) channel that localizes to the cilia of this subset of neurons, regulates peptide-hormone secretion and L1 starvation survival. Moreover, inactivation of ocr-2 caused a significant extension in adult lifespan. These findings indicate that TRPV channels, which mediate sensation of diverse noxious, thermal, osmotic, and mechanical stimuli, couple nutrient availability to larval starvation survival and adult lifespan through modulation of neural dense-core vesicle secretion. Output:
Starvation is a common physiological condition encountered by most organisms in their natural environments. However, the molecular mechanisms that allow organisms to accurately sense nutrient availability and match their energetic demands accordingly are not well understood. To elucidate these mechanisms, we isolated mutants in C. elegans that survive about 50% longer than wild-type animals when starved. For one such mutant, we found that the extended survival was due to mutation in the unc-31 gene, which functions in the nervous system to mediate release of neuroendocrine signaling molecules including insulin. Although this gene is broadly expressed in the nervous system, we found that its activity is required in a small subset of sensory neurons to regulate starvation survival. These neurons have ciliated endings that function in detection of environmental cues. Disruption of these cilia, or inactivation of a TRPV channel localized to these cilia, mimicked the perception of nutrient deprivation leading to extended starvation survival, which is dependent on an insulin-regulated transcription factor. Disruption of this channel also extended adult lifespan. Taken together, our findings reveal that TRPV channels couple nutritional cues to neuroendocrine secretion, which in turn determines adult lifespan and larval starvation survival.
PLOS492
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The function of Toll pathway defense against bacterial infection has been well established in shrimp, however how this pathway responds to viral infection is still largely unknown. In this study, we report the Toll4-Dorsal-AMPs cascade restricts the white spot syndrome virus (WSSV) infection of shrimp. A total of nine Tolls from Litopenaeus vannamei namely Toll1-9 are identified, and RNAi screening in vivo reveals the Toll4 is important for shrimp to oppose WSSV infection. Knockdown of Toll4 results in elevated viral loads and renders shrimp more susceptible to WSSV. Furthermore, Toll4 could be a one of upstream pattern recognition receptor (PRR) to detect WSSV, and thereby leading to nuclear translocation and phosphorylation of Dorsal, the known NF-κB transcription factor of the canonical Toll pathway. More importantly, silencing of Toll4 and Dorsal contributes to impaired expression of a specific set of antimicrobial peptides (AMPs) such as anti-LPS-factor (ALF) and lysozyme (LYZ) family, which exert potent anti-WSSV activity. Two AMPs of ALF1 and LYZ1 as representatives are demonstrated to have the ability to interact with several WSSV structural proteins to inhibit viral infection. Taken together, we therefore identify that the Toll4-Dorsal pathway mediates strong resistance to WSSV infection by inducing some specific AMPs. Output:
The TLR pathway mediated antiviral immune response is well identified in mammals, yet, Toll pathway governing this protection in invertebrates remains unknown. In the present study, we uncover that a shrimp Toll4 from a total of nine Tolls in L. vannamei confers resistance to WSSV thought inducing the NF-κB transcription factor Dorsal to inspire the production of some antimicrobial peptides (AMPs) with antiviral activity. The anti-LPS-factor (ALF) and lysozyme (LYZ) family are identified as the Toll4-Dorsal pathway targeted genes with the ability to interact with viral structural proteins in response to WSSV infection. These results suggest that the Toll receptor induces the expression of AMPs with antiviral activity could be a general antiviral mechanism in invertebrates and Toll pathway established antiviral defense could be conserved during evolution.
PLOS493
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: In response to replication stress cells activate the intra-S checkpoint, induce DNA repair pathways, increase nucleotide levels, and inhibit origin firing. Here, we report that Rrm3 associates with a subset of replication origins and controls DNA synthesis during replication stress. The N-terminal domain required for control of DNA synthesis maps to residues 186–212 that are also critical for binding Orc5 of the origin recognition complex. Deletion of this domain is lethal to cells lacking the replication checkpoint mediator Mrc1 and leads to mutations upon exposure to the replication stressor hydroxyurea. This novel Rrm3 function is independent of its established role as an ATPase/helicase in facilitating replication fork progression through polymerase blocking obstacles. Using quantitative mass spectrometry and genetic analyses, we find that the homologous recombination factor Rdh54 and Rad5-dependent error-free DNA damage bypass act as independent mechanisms on DNA lesions that arise when Rrm3 catalytic activity is disrupted whereas these mechanisms are dispensable for DNA damage tolerance when the replication function is disrupted, indicating that the DNA lesions generated by the loss of each Rrm3 function are distinct. Although both lesion types activate the DNA-damage checkpoint, we find that the resultant increase in nucleotide levels is not sufficient for continued DNA synthesis under replication stress. Together, our findings suggest a role of Rrm3, via its Orc5-binding domain, in restricting DNA synthesis that is genetically and physically separable from its established catalytic role in facilitating fork progression through replication blocks. Output:
When cells duplicate their genome, the replication machinery is constantly at risk of encountering obstacles, including unusual DNA structures, bound proteins, or transcribing polymerases and transcripts. Cells possess DNA helicases that facilitate movement of the replication fork through such obstacles. Here, we report the discovery that one of these DNA helicases, Rrm3, is also required for restricting DNA synthesis under replication stress. We find that the site in Rrm3 critical for this new replication function is also required for binding a subunit of the replication origin recognition complex, which raises the possibility that Rrm3 controls replication by affecting initiation. This is supported by our finding that Rrm3 associates with a subset of replication origins. Rrm3’s ability to restrict replication does not require its helicase activity or the phosphorylation site that regulates this activity. Notably, cells need error-free bypass pathways and homologous recombination to deal with DNA lesions that arise when the helicase function of Rrm3 is disrupted, but not when its replication function is disrupted. This indicates that the DNA lesions that form in the absence of the two distinct Rrm3 function are different, although both activate the DNA-damage checkpoint and are toxic to cells that lack the mediator of the replication checkpoint Mrc1.
PLOS494
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Aging is associated with highly reproducible DNA methylation (DNAm) changes, which may contribute to higher prevalence of malignant diseases in the elderly. In this study, we analyzed epigenetic aging signatures in 5,621 DNAm profiles of 25 cancer types from The Cancer Genome Atlas (TCGA). Overall, age-associated DNAm patterns hardly reflect chronological age of cancer patients, but they are coherently modified in a non-stochastic manner, particularly at CpGs that become hypermethylated upon aging in non-malignant tissues. This coordinated regulation in epigenetic aging signatures can therefore be used for aberrant epigenetic age-predictions, which facilitate disease stratification. For example, in acute myeloid leukemia (AML) higher epigenetic age-predictions are associated with increased incidence of mutations in RUNX1, WT1, and IDH2, whereas mutations in TET2, TP53, and PML-PARA translocation are more frequent in younger age-predictions. Furthermore, epigenetic aging signatures correlate with overall survival in several types of cancer (such as lower grade glioma, glioblastoma multiforme, esophageal carcinoma, chromophobe renal cell carcinoma, cutaneous melanoma, lung squamous cell carcinoma, and neuroendocrine neoplasms). In conclusion, age-associated DNAm patterns in cancer are not related to chronological age of the patient, but they are coordinately regulated, particularly at CpGs that become hypermethylated in normal aging. Furthermore, the apparent epigenetic age-predictions correlate with clinical parameters and overall survival in several types of cancer, indicating that regulation of DNAm patterns in age-associated CpGs is relevant for cancer development. Output:
Our genome harbors epigenetic marks, such as DNA methylation (DNAm) at cytosine residues, which govern cellular differentiation. Some epigenetic modifications accumulate throughout life in a highly reproducible manner–they may contribute to the aging process and facilitate reliable age-predictions. So far, little is known how these “epigenetic aging signatures” are modified in cancer tissue and whether or not they are accelerated as compared to normal tissue. In this study, we systematically analyzed age-associated DNAm patterns in many types of cancer. In contrast to non-malignant tissue the epigenetic aging signatures hardly reflect chronological age of cancer patients. This may at least partially be attributed to the fact that cancer is a clonal disease capturing only the epigenetic make-up of the tumor-initiating cell. Notably, the aberrant DNAm patterns are not randomly distributed but reveal co-regulation at regions that become methylated upon aging in non-malignant tissue. Furthermore, we demonstrate that deviations of epigenetic age-predictions correlate with clinical parameters. In fact, they are clearly associated with overall survival in many types of cancer. These findings are particularly important, as they indicate relevance of age-associated DNA methylation patterns for malignant transformation, cancer development and prognosis.
PLOS495
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Like many organisms the fungal pathogen Candida albicans senses changes in the environmental CO2 concentration. This response involves two major proteins: adenylyl cyclase and carbonic anhydrase (CA). Here, we demonstrate that CA expression is tightly controlled by the availability of CO2 and identify the bZIP transcription factor Rca1p as the first CO2 regulator of CA expression in yeast. We show that Rca1p upregulates CA expression during contact with mammalian phagocytes and demonstrate that serine 124 is critical for Rca1p signaling, which occurs independently of adenylyl cyclase. ChIP-chip analysis and the identification of Rca1p orthologs in the model yeast Saccharomyces cerevisiae (Cst6p) point to the broad significance of this novel pathway in fungi. By using advanced microscopy we visualize for the first time the impact of CO2 build-up on gene expression in entire fungal populations with an exceptional level of detail. Our results present the bZIP protein Rca1p as the first fungal regulator of carbonic anhydrase, and reveal the existence of an adenylyl cyclase independent CO2 sensing pathway in yeast. Rca1p appears to regulate cellular metabolism in response to CO2 availability in environments as diverse as the phagosome, yeast communities or liquid culture. Output:
Skin infection, oral and vaginal thrush, or bloodstream candidiasis are some of the diseases caused by the human pathogen Candida albicans. The high versatility of infection niches reflects the capacity of this yeast to respond to strong variations in its environment such as CO2 concentration. This molecule initiates the regulation of an essential protein: carbonic anhydrase, not through the known adenylyl cyclase CO2 sensor but as we discovered via a novel fungal CO2 sensing pathway involving the transcriptional regulator Rca1p. This protein is additionally implicated in growth, yeast-to-hyphae morphological switch and cell wall stability of C. albicans. The ortholog of Rca1p in Saccharomyces cerevisiae demonstrated a conserved function in the induction of the carbonic anhydrase in low CO2 concentration atmospheres pointing to the broad significance of Rca1p in fungal CO2 sensing.
PLOS496
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Visceral leishmaniasis (VL) is characterized by parasite-specific immunosuppression besides an intense pro-inflammatory response. Lipopolisaccharide (LPS) has been implicated in the immune activation of T-cell deficient diseases such as HIV/AIDS and idiopathic lymphocytopenia. The source of LPS is gram-negative bacteria that enter the circulation because of immunological mucosal barrier breakdown. As gut parasitization also occurs in VL, it was hypothesized that LPS may be elevated in leishmaniasis, contributing to cell activation. Flow cytometry analysis and immunoassays (ELISA and luminex micro-beads system) were used to quantify T-cells and soluble factors. Higher LPS and soluble CD14 levels were observed in active VL in comparison to healthy subjects, indicating that LPS was bioactive; there was a positive correlation between these molecules (r = 0.61;p<0.05). Interestingly, LPS was negatively correlated with CD4+ (r = −0.71;p<0.01) and CD8+ T-cells (r = −0.65;p<0.05). Moreover, higher levels of activation-associated molecules (HLA-DR, CD38, CD25) were seen on T lymphocytes, which were positively associated with LPS levels. Pro-inflammatory cytokines and macrophage migration inhibitory factor (MIF) were also augmented in VL patients. Consistent with the higher immune activation status, LPS levels were positively correlated with the inflammatory cytokines IL-6 (r = 0.63;p<0.05), IL-8 (r = 0.89;p<0.05), and MIF (r = 0.64;p<0.05). Also, higher plasma intestinal fatty acid binding protein (IFABP) levels were observed in VL patients, which correlated with LPS levels (r = 0.57;p<0.05). Elevated levels of LPS in VL, in correlation with T-cell activation and elevated pro-inflammatory cytokines and MIF indicate that this bacterial product may contribute to the impairment in immune effector function. The cytokine storm and chronic immune hyperactivation status may contribute to the observed T-cell depletion. LPS probably originates from microbial translocation as suggested by IFABP levels and, along with Leishmania antigen-mediated immune suppression, may play a role in the immunopathogenesis of VL. These findings point to possible benefits of antimicrobial prophylaxis in conjunction with anti-Leishmania therapy. Output:
Visceral leishmaniasis (VL) affects organs rich in lymphocytes, being characterized by intense Leishmania-induced T-cell depletion and reduction in other hematopoietic cells. In other infectious and non-infectious diseases in which the immune system is affected, such as HIV-AIDS and inflammatory bowel disease, damage to gut-associated lymphocyte tissues occurs, enabling luminal bacteria to enter into the circulation. Lipopolisaccharide (LPS) is a bacterial product that stimulates macrophages, leading to the production of pro-inflammatory cytokines and other soluble factors such as MIF, which in turn activate lymphocytes. Continuous and exaggerated stimulation causes exhaustion of the T-cell compartment, contributing to immunosuppression. Herein, we show that an increment in LPS plasma levels also occurs in VL; the higher the LPS levels, the lower the TCD4+ and TCD8+ cell count in the blood. This T-cell depletion may affect the mucosal immune system, which, along with intestinal parasitization by amastigotes, may contribute to gut barrier damage and consequent microbial translocation. LPS levels were correlated with T-cell activation, pro-inflammatory cytokine plasma levels, MIF, and IFABP, showing that a bacterial molecule, probably from luminal origin, not associated with Leishmania infection can negatively affect the immune system. These findings points to possible benefits of antimicrobial prophylaxis in conjunction with anti-Leishmania therapy.
PLOS497
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Oxidative stress is a major cause of mutation but little is known about how growth in the absence of oxygen impacts the rate and spectrum of mutations. We employed long-term mutation accumulation experiments to directly measure the rates and spectra of spontaneous mutation events in Escherichia coli populations propagated under aerobic and anaerobic conditions. To detect mutations, whole genome sequencing was coupled with methods of analysis sufficient to identify a broad range of mutational classes, including structural variants (SVs) generated by movement of repetitive elements. The anaerobically grown populations displayed a mutation rate nearly twice that of the aerobic populations, showed distinct asymmetric mutational strand biases, and greater insertion element activity. Consistent with mutation rate and spectra observations, genes for transposition and recombination repair associated with SVs were up-regulated during anaerobic growth. Together, these results define differences in mutational spectra affecting the evolution of facultative anaerobes. Output:
When organisms are exposed to different environments, the rates and types of mutations that spontaneously arise in each environment can vary due to differing mutagenic pressures imposed by each environment, and these can potentially influence the evolution of the organism. Little is known about the types of mutations that arise when facultative anaerobes are grown in the absence of oxygen. To investigate the effect of oxygen availability on spontaneous mutation at the genome level, we directly measured the mutation rates of bacteria that were grown with and without oxygen under controlled laboratory conditions. To our knowledge, we have obtained the most comprehensive mutation rate estimate of anaerobically grown Escherichia coli, where mutation rates are higher in the absence of oxygen. We found that genomic structural variations, a class of mutations that are typically not investigated due to technical difficulties, were more prevalent under anaerobic growth conditions. We also identified distinct DNA strand biases for substitution types under aerobic and anaerobic growth conditions. Our findings provide new insights into the impact that oxygen availability may have on spontaneous mutations, and the mutational processes that underlie them.
PLOS498
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Gene co-expression network analysis is an effective method for predicting gene functions and disease biomarkers. However, few studies have systematically identified co-expressed genes involved in the molecular origin and development of various types of tumors. In this study, we used a network mining algorithm to identify tightly connected gene co-expression networks that are frequently present in microarray datasets from 33 types of cancer which were derived from 16 organs/tissues. We compared the results with networks found in multiple normal tissue types and discovered 18 tightly connected frequent networks in cancers, with highly enriched functions on cancer-related activities. Most networks identified also formed physically interacting networks. In contrast, only 6 networks were found in normal tissues, which were highly enriched for housekeeping functions. The largest cancer network contained many genes with genome stability maintenance functions. We tested 13 selected genes from this network for their involvement in genome maintenance using two cell-based assays. Among them, 10 were shown to be involved in either homology-directed DNA repair or centrosome duplication control including the well- known cancer marker MKI67. Our results suggest that the commonly recognized characteristics of cancers are supported by highly coordinated transcriptomic activities. This study also demonstrated that the co-expression network directed approach provides a powerful tool for understanding cancer physiology, predicting new gene functions, as well as providing new target candidates for cancer therapeutics. Output:
Proteins interact with each other in a network manner to precisely regulate complicated physiological functions of life. Diseases such as cancer may occur if the network regulations go wrong. In cancer research, network mining has been utilized to identify biomarkers, predict therapeutic targets, and discover new mechanisms for cancer development. Among these applications, the search for genes with similar expression patterns (co-expression) over different samples is particularly successful. However, few network mining approaches were systematically applied to different types of cancers to extract common cancer features. We carried out a systematic study to identify frequently co-expressed gene networks in multiple cancers and compared them with the gene networks found in multiple normal tissues. We found dramatic differences between networks from the two sources, with gene networks in cancer corresponding to specific traits of cancer. Specifically, the largest gene network in cancer contains many genes with cell cycle control and DNA stability functions. We thus predicted that a set of poorly studied genes in this network share similar functions and validated that most of these genes are involved in DNA break repair or proper cell division. To the best of our knowledge, this is the largest scale of such a study.
PLOS499
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Selective dimerization of the basic-region leucine-zipper (bZIP) transcription factors presents a vivid example of how a high degree of interaction specificity can be achieved within a family of structurally similar proteins. The coiled-coil motif that mediates homo- or hetero-dimerization of the bZIP proteins has been intensively studied, and a variety of methods have been proposed to predict these interactions from sequence data. In this work, we used a large quantitative set of 4,549 bZIP coiled-coil interactions to develop a predictive model that exploits knowledge of structurally conserved residue-residue interactions in the coiled-coil motif. Our model, which expresses interaction energies as a sum of interpretable residue-pair and triplet terms, achieves a correlation with experimental binding free energies of R = 0.68 and significantly out-performs other scoring functions. To use our model in protein design applications, we devised a strategy in which synthetic peptides are built by assembling 7-residue native-protein heptad modules into new combinations. An integer linear program was used to find the optimal combination of heptads to bind selectively to a target human bZIP coiled coil, but not to target paralogs. Using this approach, we designed peptides to interact with the bZIP domains from human JUN, XBP1, ATF4 and ATF5. Testing more than 132 candidate protein complexes using a fluorescence resonance energy transfer assay confirmed the formation of tight and selective heterodimers between the designed peptides and their targets. This approach can be used to make inhibitors of native proteins, or to develop novel peptides for applications in synthetic biology or nanotechnology. Output:
Protein interactions are important for all life processes, and an ability to rationally control or selectively inhibit protein complexes would impact studies of cellular structure, biological information processing, molecular regulatory processes and other phenomena. Rational protein design has applications in developing biotherapeutics and in advancing synthetic biology and nanotechnology. Rational protein-interaction design has been approached in many ways over the past decades, but it remains a challenge. Computational methods require models to predict binding and tools for applying predictive models in design. Many such methods are based on modeling and evaluating protein structure using physical or semi-physical energy terms. In this work, we used a different strategy, deriving a binding model that describes the protein-protein interactions of basic-region leucine-zipper (bZIP) transcriptions factors directly from a large body of experimental interaction data. Our model showed much better performance than previously published predictors. We used our model, in conjunction with a protein-design strategy that builds new proteins from modular parts of known proteins, to successfully design novel bZIP-like protein domains. We demonstrated experimentally that the designed proteins bind tightly and specifically to a number of human bZIPs that regulate important processes including stress responses and oncogenesis.