id
stringlengths
5
7
query
stringlengths
4.64k
8.32k
answer
stringlengths
392
2.53k
PLOS300
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Herpes Simplex Virus 1 (HSV1) is amongst the most clinically advanced oncolytic virus platforms. However, efficient and sustained viral replication within tumours is limiting. Rapamycin can stimulate HSV1 replication in cancer cells, but active-site dual mTORC1 and mTORC2 (mammalian target of rapamycin complex 1 and 2) inhibitors (asTORi) were shown to suppress the virus in normal cells. Surprisingly, using the infected cell protein 0 (ICP0)-deleted HSV1 (HSV1-dICP0), we found that asTORi markedly augment infection in cancer cells and a mouse mammary cancer xenograft. Mechanistically, asTORi repressed mRNA translation in normal cells, resulting in defective antiviral response but also inhibition of HSV1-dICP0 replication. asTORi also reduced antiviral response in cancer cells, however in contrast to normal cells, transformed cells and cells transduced to elevate the expression of eukaryotic initiation factor 4E (eIF4E) or to silence the repressors eIF4E binding proteins (4E-BPs), selectively maintained HSV1-dICP0 protein synthesis during asTORi treatment, ultimately supporting increased viral replication. Our data show that altered eIF4E/4E-BPs expression can act to promote HSV1-dICP0 infection under prolonged mTOR inhibition. Thus, pharmacoviral combination of asTORi and HSV1 can target cancer cells displaying dysregulated eIF4E/4E-BPs axis. Output:
Dysregulated mRNA translation occurs frequently in tumours due to elevated eIF4E expression or a hyperactive mTOR complex 1 (mTORC1) signaling pathway that results in the inactivation of the eIF4E binding proteins (4E-BPs). Targeting the mTORC1/4E-BPs/eIF4E axis is a promising strategy in cancer therapies and for preventing resistance to treatment. Enhanced mTORC1 activity also drives innate immune responses by modulating protein expression of antiviral genes. It was previously shown that the mTORC1 inhibitor rapamycin limits antiviral responses and promotes replication of oncolytic viruses within tumour tissues. Active-site dual mTORC1 and mTORC2 inhibitors (asTORi) have been developed for superior mTOR inhibition and anti-cancer potency but have not been studied in the context of oncolytic viral infection. We show here that prolonged treatment with asTORi strongly augments infection of HSV1-dICP0 in cancer cells, but not in normal cells, an effect modulated via eIF4E/4E-BP expression. Thus, cancer cells with dysregulated translation could be amenable to the pharmacoviral combination of HSV1 and asTORi treatment.
PLOS301
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The mainstay of current schistosomiasis control programs is mass preventive chemotherapy of school-aged children with praziquantel. This treatment is delivered through school-based, community-based, or combined school- and community-based systems. Attaining very high coverage rates for children is essential in mass schistosomiasis treatment programs, as is ensuring that there are no persistently untreated subpopulations, a potential challenge for school-based programs in areas with low school enrollment. This review sought to compare the different treatment delivery methods based both on their coverage of school-aged children overall and on their coverage specifically of non-enrolled children. In addition, qualitative community or programmatic factors associated with high or low coverage rates were identified, with suggestions for overall coverage improvement. This review was registered prospectively with PROSPERO (CRD 42015017656). Five hundred forty-nine publication of potential relevance were identified through database searches, reference lists, and personal communications. Eligible studies included those published before October 2015, written in English or French, containing quantitative or qualitative data about coverage rates for MDA of school-aged children with praziquantel. Among the 22 selected studies, combined community- and school-based programs achieved the highest median coverage rates (89%), followed by community-based programs (72%). School-based programs had both the lowest median coverage of children overall (49%) and the lowest coverage of the non-enrolled subpopulation of children. Qualitatively, major factors affecting program success included fear of side effects, inadequate education about schistosomiasis, lack of incentives for drug distributors, and inequitable distribution to minority groups. This review provides an evidence-based framework for the development of future schistosomiasis control programs. Based on our results, a combined community and school-based delivery system should maximize coverage for both in- and out-of-school children, especially when combined with interventions such as snacks for treated children, educational campaigns, incentives for drug distributors, and active inclusion of marginalized groups. ClinicalTrials.gov CRD42015017656 Output:
Schistosomiasis is a chronic inflammatory condition, caused by parasitic flukes, that affects over 290 million people worldwide. Consequences of infection include anemia, stunted growth, liver abnormalities, and subfertility. Currently, the main approach to schistosomiasis control involves mass preventive treatment of school-aged children in endemic areas. The treatment, praziquantel, can be distributed through school-based, community-based, or combined school- and community-based systems. The first part of this systematic review compared the three delivery modes and found that combined delivery resulted in the best overall coverage of school-aged children, with community-only delivery the next-best approach. School-only delivery not only had the lowest overall coverage, but especially fell behind in targeting children not enrolled in school. As a whole, these results support the more frequent use of a combined approach to delivery in order to achieve the highest coverage rates and ensure that out-of-school children are not left persistently untreated. In the second part of this review the qualitative factors affecting program success were examined. The results indicate that overall treatment coverage can be improved via small interventions, such as snacks for participating children to reduce drug side effects, educational campaigns about schistosomiasis, incentives for drug distributors, and active inclusion of marginalized groups.
PLOS302
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Non-additive interactions between genomes have important implications, not only for practical applications such as breeding, but also for understanding evolution. In extreme cases, genes from different genomic backgrounds may be incompatible and compromise normal development or physiology. Of particular interest are non-additive interactions of alleles at the same locus. For example, overdominant behavior of alleles, with respect to plant fitness, has been proposed as an important component of hybrid vigor, while underdominance may lead to reproductive isolation. Despite their importance, only a few cases of genetic over- or underdominance affecting plant growth or fitness are understood at the level of individual genes. Moreover, the relationship between biochemical and fitness effects may be complex: genetic overdominance, that is, increased or novel activity of a gene may lead to evolutionary underdominance expressed as hybrid weakness. Here, we describe a non-additive interaction between alleles at the Arabidopsis thaliana OAK (OUTGROWTH-ASSOCIATED PROTEIN KINASE) gene. OAK alleles from two different accessions interact in F1 hybrids to cause a variety of aberrant growth phenotypes that depend on a recently acquired promoter with a novel expression pattern. The OAK gene, which is located in a highly variable tandem array encoding closely related receptor-like kinases, is found in one third of A. thaliana accessions, but not in the reference accession Col-0. Besides recruitment of exons from nearby genes as promoter sequences, key events in OAK evolution include gene duplication and divergence of a potential ligand-binding domain. OAK kinase activity is required for the aberrant phenotypes, indicating it is not recognition of an aberrant protein, but rather a true gain of function, or overdominance for gene activity, that leads to this underdominance for fitness. Our work provides insights into how tandem arrays, which are particularly prone to frequent, complex rearrangements, can produce genetic novelty. Output:
While intraspecific hybrids are vitally important in modern agriculture because they often perform better than their inbred parents, certain hybrid combinations fail to develop normally and are inferior to their parents. We have identified an Arabidopsis thaliana hybrid with several aberrant growth phenotypes that are caused by divergence at a single locus encoding the receptor-like kinase OUTGROWTH-ASSOCIATED PROTEIN KINASE (OAK). OAK belongs to a group of similar genes arranged in a tandem cluster that varies substantially between A. thaliana strains. OAK originated through duplication within the cluster with concurrent recruitment of coding sequences from nearby genes to form a new promoter with a novel expression pattern. Kinase activity of OAK is required for its effects, indicating that it is not recognition of an aberrant protein but rather a true gain of function that leads to the incompatibility. Most of the incompatibility seems to come from divergence within the extracellular ligand-binding domain of the OAK protein, indicating that heterodimers of OAK may have higher affinity for a natural substrate compared to either homodimer. Finally, mis-expression of the incompatible OAK alleles from the promoter present in the reference strain of A. thaliana also leads to genetic incompatibility, but with different phenotypic outcomes.
PLOS303
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Budding yeast, which undergoes polarized growth during budding and mating, has been a useful model system to study cell polarization. Bud sites are selected differently in haploid and diploid yeast cells: haploid cells bud in an axial manner, while diploid cells bud in a bipolar manner. While previous studies have been focused on the molecular details of the bud site selection and polarity establishment, not much is known about how different budding patterns give rise to different functions at the population level. In this paper, we develop a two-dimensional agent-based model to study budding yeast colonies with cell-type specific biological processes, such as budding, mating, mating type switch, consumption of nutrients, and cell death. The model demonstrates that the axial budding pattern enhances mating probability at an early stage and the bipolar budding pattern improves colony development under nutrient limitation. Our results suggest that the frequency of mating type switch might control the trade-off between diploidization and inbreeding. The effect of cellular aging is also studied through our model. Based on the simulations, colonies initiated by an aged haploid cell show declined mating probability at an early stage and recover as the rejuvenated offsprings become the majority. Colonies initiated with aged diploid cells do not show disadvantage in colony expansion possibly due to the fact that young cells contribute the most to colony expansion. Output:
Budding yeast is a model organism in understanding fundamental aspects of eukaryotic cells, such as cell polarization and cell aging. Previously, extensive research has focused on the molecular mechanisms of biological processes in yeast, but many questions regarding yeast budding remain unsolved. For example, how do different budding patterns affect yeast colony growth? How does declined spatial order due to aging impact the colony at the population level? To address these questions, we developed a computational agent-based model, which incorporates key biological processes, the effect of aging, as well as cell-environment interaction. We performed and analyzed a large number of simulations for a variety of situations, and obtained insightful results. We found that axial budding pattern enhances the percentage of diploid cells at early stage and bipolar budding pattern improves colony development under nutrient limitation; the frequency of mating type switch might control the trade-off between diploidization and inbreeding; aging affects the percentage of diploid cells in colonies initiated by a single haploid cell, but does not have much influence in the expansion of colonies initiated by diploid cells. The framework of the model can be extended to study other important systems, such as tissue with stem cell lineage.
PLOS304
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The WHO has established the disability-adjusted life year (DALY) as a metric for measuring the burden of human disease and injury globally. However, most DALY estimates have been calculated as national totals. We mapped spatial variation in the burden of human African trypanosomiasis (HAT) in Uganda for the years 2000–2009. This represents the first geographically delimited estimation of HAT disease burden at the sub-country scale. Disability-adjusted life-year (DALY) totals for HAT were estimated based on modelled age and mortality distributions, mapped using Geographic Information Systems (GIS) software, and summarised by parish and district. While the national total burden of HAT is low relative to other conditions, high-impact districts in Uganda had DALY rates comparable to the national burden rates for major infectious diseases. The calculated average national DALY rate for 2000–2009 was 486.3 DALYs/100 000 persons/year, whereas three districts afflicted by rhodesiense HAT in southeastern Uganda had burden rates above 5000 DALYs/100 000 persons/year, comparable to national GBD 2004 average burden rates for malaria and HIV/AIDS. These results provide updated and improved estimates of HAT burden across Uganda, taking into account sensitivity to under-reporting. Our results highlight the critical importance of spatial scale in disease burden analyses. National aggregations of disease burden have resulted in an implied bias against highly focal diseases for which geographically targeted interventions may be feasible and cost-effective. This has significant implications for the use of DALY estimates to prioritize disease interventions and inform cost-benefit analyses. Output:
Since the 1990s the World Health Organisation has established the disability-adjusted life year (DALY) as a metric for the burden of human disease and injury. However, disease burden has primarily been estimated at the national scale, which does not account for sub-country variations in burden levels. We used the case of human African trypanosomiasis (HAT), a highly focal NTD, in Uganda to calculate and map burden in DALYs. Our results show that HAT burden is highly sensitive to under-reporting estimates, and is particularly high in heavily affected parishes and districts of Uganda. Some districts in southeastern Uganda had HAT burden rates comparable to the national burden rates of major infectious diseases such as malaria and HIV/AIDS. Thus, the spatial scale of burden estimation is crucial, especially for focal diseases such as HAT, and national-level estimates may not reflect the level of impact in afflicted communities. We recommend sub-country burden estimation to identify key areas for prioritization of disease surveillance and targeted interventions.
PLOS305
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: In Africa, relapsing fever borreliae are neglected vector-borne pathogens that cause mild to deadly septicemia and miscarriage. Screening vectors for the presence of borreliae currently requires technically demanding, time- and resource-consuming molecular methods. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has recently emerged as a tool for the rapid identification of vectors and the identification of cultured borreliae. We investigated whether MALDI-TOF-MS could detect relapsing fever borreliae directly in ticks. As a first step, a Borrelia MALDI-TOF-MS database was created to house the newly determined Mean Spectrum Projections for four Lyme disease group and ten relapsing fever group reference borreliae. MALDI-TOF-MS yielded a unique protein profile for each of the 14 tested Borrelia species, with 100% reproducibility over 12 repeats. In a second proof-of-concept step, the Borrelia database and a custom software program that subtracts the uninfected O. sonrai profile were used to detect Borrelia crocidurae in 20 Ornithodoros sonrai ticks, including eight ticks that tested positive for B. crocidurae by PCR-sequencing. A B. crocidurae-specific pattern consisting of 3405, 5071, 5898, 7041, 8580 and 9757-m/z peaks was found in all B. crocidurae-infected ticks and not found in any of the un-infected ticks. In a final blind validation step, MALDI-TOF-MS exhibited 88.9% sensitivity and 93.75% specificity for the detection of B. crocidurae in 50 O. sonrai ticks, including 18 that tested positive for B. crocidurae by PCR-sequencing. MALDI-TOF-MS took 45 minutes to be completed. After the development of an appropriate database, MALDI-TOF-MS can be used to identify tick species and the presence of relapsing fever borreliae in a single assay. This work paves the way for the use of MALDI-TOF-MS for the dual identification of vectors and vectorized pathogens. Output:
In Africa, relapsing fever borreliae are neglected vector-borne infections that cause mild to deadly septicemia and miscarriage. The causative relapsing fever borreliae are transmitted by the bite of soft ticks, except for Borrelia recurrentis which is transmitted by body lice. Screening vectors for these relapsing fever borreliae currently relies on time- and resource-consuming methods such as polymerase chain reaction-based method. Here, we applied matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to the rapid detection of borreliae in ticks. As a first step, we created a Borrelia MALDI-TOF-MS database and we detected B. crocidurae in Ornithodoros sonrai ticks. As a blind validation step, the 45-minute MALDI-TOF-MS exhibited a 88.9% sensitivity and a 93.75% specificity for the detection of B. crocidurae in 50 O. sonrai ticks including 18 ticks detected positive for B. crocidurae by PCR-sequencing. These findings provide the proof-of-concept that MALDI-TOF-MS can be used to identify tick species and the presence of relapsing fever borreliae. This technique could be translated for field applications.
PLOS306
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Host control of influenza A virus (IAV) is associated with exuberant pulmonary inflammation characterized by the influx of myeloid cells and production of proinflammatory cytokines including interferons (IFNs). It is unclear, however, how the immune system clears the virus without causing lethal immunopathology. Here, we demonstrate that in addition to its known anti-viral activity, STAT1 signaling coordinates host inflammation during IAV infection in mice. This regulatory mechanism is dependent on both type I IFN and IFN-γ receptor signaling and, importantly, requires the functional interplay between the two pathways. The protective function of type I IFNs is associated with not only the recruitment of classical inflammatory Ly6Chi monocytes into IAV-infected lungs, but also the prevention of excessive monocyte activation by IFN-γ. Unexpectedly, type I IFNs preferentially regulate IFN-γ signaling in Ly6Clo rather than inflammatory Ly6Chi mononuclear cell populations. In the absence of type I IFN signaling, Ly6Clo monocytes/macrophages, become phenotypically and functionally more proinflammatory than Ly6Chi cells, revealing an unanticipated function of the Ly6Clo mononuclear cell subset in tissue inflammation. In addition, we show that type I IFNs employ distinct mechanisms to regulate monocyte and neutrophil trafficking. Type I IFN signaling is necessary, but not sufficient, for preventing neutrophil recruitment into the lungs of IAV-infected mice. Instead, the cooperation of type I IFNs and lymphocyte-produced IFN-γ is required to regulate the tissue neutrophilic response to IAV. Our study demonstrates that IFN interplay links innate and adaptive anti-viral immunity to orchestrate tissue inflammation and reveals an additional level of complexity for IFN-dependent regulatory mechanisms that function to prevent excessive immunopathology while preserving anti-microbial functions. Output:
Influenza A virus (IAV) is a leading cause of respiratory infection and induces a strong acute inflammation manifested by the recruitment of monocytes and neutrophils as well as the production of proinflammatory cytokines in infected lungs. The interferons (IFNs) are strongly induced by IAV and are known to mediate host resistance to the infection. However, in contrast to their well-studied inhibitory effect on viral replication, the effects of IFNs on host inflammatory responses are less well understood. In this manuscript, we demonstrate that anti-viral IFN signaling is also required for the orchestration of a tissue response associated with the protection against IAV infection in mice. Importantly, we identify that type I IFNs cross-regulate and cooperate with IFN-γ to inhibit monocyte activation and neutrophil infiltration, respectively. This study also demonstrates that Ly6Clo monocytes/macrophages can potentially mediate influenza virus-induced inflammation, suggesting that IFNs dictate the homeostasis versus inflammatory function of mononuclear phagocytes in viral infection. Our study reveals a novel IFN-dependent regulatory mechanism designed to prevent the excessive immunopathology while preserving its anti-microbial functions. Moreover, these observations have particular relevance for understanding the mechanisms underlying the strong inflammatory response associated with lethal IAV strains and have implications for the development of new immunotherapies to treat influenza.
PLOS307
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: MicroRNAs are short, noncoding RNAs that play important roles in post-transcriptional gene regulation. Although many functions of microRNAs in plants and animals have been revealed in recent years, the transcriptional mechanism of microRNA genes is not well-understood. To elucidate the transcriptional regulation of microRNA genes, we study and characterize, in a genome scale, the promoters of intergenic microRNA genes in Caenorhabditis elegans, Homo sapiens, Arabidopsis thaliana, and Oryza sativa. We show that most known microRNA genes in these four species have the same type of promoters as protein-coding genes have. To further characterize the promoters of microRNA genes, we developed a novel promoter prediction method, called common query voting (CoVote), which is more effective than available promoter prediction methods. Using this new method, we identify putative core promoters of most known microRNA genes in the four model species. Moreover, we characterize the promoters of microRNA genes in these four species. We discover many significant, characteristic sequence motifs in these core promoters, several of which match or resemble the known cis-acting elements for transcription initiation. Among these motifs, some are conserved across different species while some are specific to microRNA genes of individual species. Output:
MicroRNAs are a class of short RNA sequences that have many regulatory functions in complex organisms such as plants and animals. However, our knowledge of the transcriptional mechanisms of microRNA genes is limited. Here, we analyze the upstream sequences of known microRNA genes in four model species, i.e., C. elegans, H. sapiens, A. thaliana, and O. sativa, and compare them with the promoter sequences of protein-coding genes and other classes of RNA genes. This analysis provides genome-wide evidence that microRNA genes have the same type of promoter sequences as protein-coding genes, and therefore are likely transcribed by RNA polymerase II (pol II). Second, we present a novel computational method for promoter prediction, which is then applied to locate the core promoters of known microRNA genes in the four model species. Furthermore, we present an analysis of short DNA motifs that appear frequently in the predicted promoters of microRNA genes, and report several interesting motifs that may have some functional meanings. These results are important for understanding the initiation and regulation of microRNA gene transcription.
PLOS308
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: One of the three most frequently documented copy number variations associated with autism spectrum disorder (ASD) is a 1q21.1 duplication that encompasses sequences encoding DUF1220 protein domains, the dosage of which we previously implicated in increased human brain size. Further, individuals with ASD frequently display accelerated brain growth and a larger brain size that is also associated with increased symptom severity. Given these findings, we investigated the relationship between DUF1220 copy number and ASD severity, and here show that in individuals with ASD (n = 170), the copy number (dosage) of DUF1220 subtype CON1 is highly variable, ranging from 56 to 88 copies following a Gaussian distribution. More remarkably, in individuals with ASD CON1 copy number is also linearly associated, in a dose-response manner, with increased severity of each of the three primary symptoms of ASD: social deficits (p = 0.021), communicative impairments (p = 0.030), and repetitive behaviors (p = 0.047). These data indicate that DUF1220 protein domain (CON1) dosage has an ASD-wide effect and, as such, is likely to be a key component of a major pathway underlying ASD severity. Finally, these findings, by implicating the dosage of a previously unexamined, copy number polymorphic and brain evolution-related gene coding sequence in ASD severity, provide an important new direction for further research into the genetic factors underlying ASD. Output:
Autism Spectrum Disorder (ASD) is a common behaviorally defined condition noted by impairments in social reciprocity and communicative abilities and exaggerated repetitive behaviors and stereotyped interests. Individuals with ASD frequently have a larger and more rapidly growing brain than their typically developing peers. Given the widely documented heritability suggesting that ASD is predominantly a genetic condition and the well-established link between ASD and abnormal brain growth patterns, genes involved in brain growth would be excellent candidates to study regarding ASD. One such candidate is DUF1220, a highly copy number polymorphic protein domain that we have previously linked to brain evolution and brain size. However, due to the extreme copy number variability of DUF1220, it has not been directly investigated in previous genome wide polymorphism studies searching for genes important in ASD. Here we show that, in individuals with ASD, 1) DUF1220 subtype CON1 is highly variable, ranging from 56 to 88 copies, and 2) the copy number of CON1 is associated, in a linear dose-response manner, with increased severity of each of the three primary symptoms of ASD: as CON1 copy number increases each of the three primary symptoms of ASD (impaired social reciprocity, impaired communicative ability and increased repetitive behaviors) become incrementally worse.
PLOS309
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Strains of Saccharomyces cerevisiae used to make beer, bread, and wine are genetically and phenotypically distinct from wild populations associated with trees. The origins of these domesticated populations are not always clear; human-associated migration and admixture with wild populations have had a strong impact on S. cerevisiae population structure. We examined the population genetic history of beer strains and found that ale strains and the S. cerevisiae portion of allotetraploid lager strains were derived from admixture between populations closely related to European grape wine strains and Asian rice wine strains. Similar to both lager and baking strains, ale strains are polyploid, providing them with a passive means of remaining isolated from other populations and providing us with a living relic of their ancestral hybridization. To reconstruct their polyploid origin, we phased the genomes of two ale strains and found ale haplotypes to both be recombinants between European and Asian alleles and to also contain novel alleles derived from extinct or as yet uncharacterized populations. We conclude that modern beer strains are the product of a historical melting pot of fermentation technology. Output:
The budding yeast Saccharomyces cerevisiae has long been used to make beer. Yeast strains used to make ales are known to differ genetically and phenotypically from strains used to make wine and from strains isolated from nature, such as oak isolates. Beer strains are also known to be polyploid, having more than two copies of their genome per cell. To determine the ancestry of beer strains, we compared the genomes of beer strains with the genomes of a large collection of strains isolated from diverse sources and geographic locations. We found ale, baking, and the S. cerevisiae portion of lager strains to have ancestry that is a mixture of European grape wine strains and Asian rice wine strains and that they carry novel alleles from an extinct or uncharacterized population. The mixed ancestry of beer strains has been maintained in a polyploid state, which provided a means of strain diversification through gain or loss of genetic variation within a strain but also a means of maintaining brewing characteristics by reducing or eliminating genetic exchange with other strains. Our results show that ale strains emerged from a mixture of previously used fermentation technology.
PLOS310
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Understanding naturally acquired immune responses to Plasmodium in India is key to improving malaria surveillance and diagnostic tools. Here we describe serological profiling of immune responses at three sites in India by probing protein microarrays consisting of 515 Plasmodium vivax and 500 Plasmodium falciparum proteins with 353 plasma samples. A total of 236 malaria-positive (symptomatic and asymptomatic) plasma samples and 117 malaria-negative samples were collected at three field sites in Raurkela, Nadiad, and Chennai. Indian samples showed significant seroreactivity to 265 P. vivax and 373 P. falciparum antigens, but overall seroreactivity to P. vivax antigens was lower compared to P. falciparum antigens. We identified the most immunogenic antigens of both Plasmodium species that were recognized at all three sites in India, as well as P. falciparum antigens that were associated with asymptomatic malaria. This is the first genome-scale analysis of serological responses to the two major species of malaria parasite in India. The range of immune responses characterized in different endemic settings argues for targeted surveillance approaches tailored to the diverse epidemiology of malaria across the world. Output:
Although malaria deaths have fallen by 60% worldwide since 2000, the disease remains a significant public health problem. India has the highest burden of malaria in the South-East Asia Region, where Plasmodium vivax and Plasmodium falciparum are its main causes. While the two major malaria parasite species co-occur in India, their proportion varies across the country. Antibodies in an individual indicate current or past Plasmodium infection, and can be used to identify suitable vaccine candidates, as well as develop novel tools for malaria surveillance. We present the results of a pilot study undertaking the first large-scale characterization of antibody responses to ~1000 Plasmodium antigens at three field sites in India using high-throughput protein microarray technology. Individuals from the eco-epidemiologically diverse sites showed reactivity to 265 P. vivax and 373 P. falciparum antigens, regardless of infection status. Further comparison of individuals with symptomatic and asymptomatic malaria revealed the most immunogenic Plasmodium antigens, as well as antigens that were recognized with greater intensity in individuals that were asymptomatic at the point of sample collection. These results are a valuable addition to existing data from other malaria endemic regions, and will help to expand our understanding of host immunity against the disease.
PLOS311
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems. Output:
Aphids are common pests of crops and ornamental plants. Facilitated by their ancient association with intracellular symbiotic bacteria that synthesize essential amino acids, aphids feed on phloem (sap). Exploitation of a diversity of long-lived woody and short-lived herbaceous hosts by many aphid species is a result of specializations that allow aphids to discover and exploit suitable host plants. Such specializations include production by a single genotype of multiple alternative phenotypes including asexual, sexual, winged, and unwinged forms. We have generated a draft genome sequence of the pea aphid, an aphid that is a model for the study of symbiosis, development, and host plant specialization. Some of the many highlights of our genome analysis include an expanded total gene set with remarkable levels of gene duplication, as well as aphid-lineage-specific gene losses. We find that the pea aphid genome contains all genes required for epigenetic regulation by methylation, that genes encoding the synthesis of a number of essential amino acids are distributed between the genomes of the pea aphid and its symbiont, Buchnera aphidicola, and that many genes encoding immune system components are absent. These genome data will form the basis for future aphid research and have already underpinned a variety of genome-wide approaches to understanding aphid biology.
PLOS312
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Higher plants exhibit a variety of different life histories. Annual plants live for less than a year and after flowering produce seeds and senesce. By contrast perennials live for many years, dividing their life cycle into episodes of vegetative growth and flowering. Environmental cues control key check points in both life histories. Genes controlling responses to these cues exhibit natural genetic variation that has been studied most in short-lived annuals. We characterize natural genetic variation conferring differences in the perennial life cycle of Arabis alpina. Previously the accession Pajares was shown to flower after prolonged exposure to cold (vernalization) and only for a limited period before returning to vegetative growth. We describe five accessions of A. alpina that do not require vernalization to flower and flower continuously. Genetic complementation showed that these accessions carry mutant alleles at PERPETUAL FLOWERING 1 (PEP1), which encodes a MADS box transcription factor orthologous to FLOWERING LOCUS C in the annual Arabidopsis thaliana. Each accession carries a different mutation at PEP1, suggesting that such variation has arisen independently many times. Characterization of these alleles demonstrated that in most accessions, including Pajares, the PEP1 locus contains a tandem arrangement of a full length and a partial PEP1 copy, which give rise to two full-length transcripts that are differentially expressed. This complexity contrasts with the single gene present in A. thaliana and might contribute to the more complex expression pattern of PEP1 that is associated with the perennial life-cycle. Our work demonstrates that natural accessions of A. alpina exhibit distinct life histories conferred by differences in PEP1 activity, and that continuous flowering forms have arisen multiple times by inactivation of the floral repressor PEP1. Similar phenotypic variation is found in other herbaceous perennial species, and our results provide a paradigm for how characteristic perennial phenotypes might arise. Output:
Perennial plants live for many years and cycle between flowering and vegetative growth. These stages of the life cycle are often initiated by environmental conditions and occur seasonally. However, many herbaceous perennial species such as strawberry, rose, or Arabis alpina contain varieties that flower continuously irrespective of the seasons. Here we characterize this genetic variation in A. alpina and show that five continuously flowering accessions carry independent mutations in the PERPETUAL FLOWERING 1 (PEP1) gene. These mutations impair the activity of the PEP1 floral repressor causing the plants to flower without requirement for winter cold and to flower continuously. This result has interesting parallels with strawberry and rose, where inactivation of a different floral repressor controlling response to day length gives rise to naturally occurring perpetual flowering forms. We also show that PEP1 in A. alpina has a complex duplicated structure that gives rise to two overlapping transcripts. This arrangement differs from the simple structure of PEP1 orthologues in related annual species, such as FLC of Arabidopsis thaliana, suggesting that duplication of PEP1 might contribute to the complex transcriptional patterns associated with PEP1 function in perennials. Our work provides insight into genetic variation contributing to the perennial life history of plants.
PLOS313
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The enzyme activities catalysed by flavivirus non-structural protein 3 (NS3) are essential for virus replication. They are distributed between the N-terminal protease domain in the first one-third and the C-terminal ATPase/helicase and nucleoside 5′ triphosphatase domain which forms the remainder of the 618-aa long protein. In this study, dengue full-length NS3 protein with residues 49 to 66 of NS2B covalently attached via a flexible linker, was used as bait in biopanning with a naïve human Fab phage-display library. Using a range of truncated constructs spanning the NS2B cofactor region and the full-length NS3, 10 unique Fab were identified and characterized. Of these, monoclonal Fab 3F8 was shown to bind residues 526 through 531 within subdomain III of the helicase domain. The antibody inhibits the ATPase and helicase activites of NS3 in biochemical assays and reduces DENV replication in HEK293 cells that were previously transfected with Fab 3F8 compared with mock transfected cells. Antibodies such as 3F8 are valuable tools for studying the molecular mechanisms of flaviviral replication and for the monospecific detection of replicating dengue virus in vivo. Output:
Dengue virus is the most prevalent mosquito transmitted infectious disease in humans and is responsible for febrile disease such as dengue fever, dengue hemorrhagic fever and dengue shock syndrome. Dengue non-structural protein 3 (NS3) is an essential, multifunctional, viral enzyme with two distinct domains; a protease domain required for processing of the viral polyprotein, and a helicase domain required for replication of the viral genome. In this study ten unique human antibody fragments (Fab) that specifically bind dengue NS3 were isolated from a diverse library of Fab clones using phage display technology. The binding site of one of these antibodies, Fab 3F8, has been precisely mapped to the third α-helix within subdomain III of the helicase domain (amino acids 526–531). The antibody inhibits the helicase activity of NS3 in biochemical assays and reduces DENV replication in human embryonic kidney cells. The antibody is a valuable tool for studying dengue replication mechanisms.
PLOS314
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Variation in the gut microbiome has been linked to colorectal cancer (CRC), as well as to host genetic variation. However, we do not know whether, in addition to baseline host genetics, somatic mutational profiles in CRC tumors interact with the surrounding tumor microbiome, and if so, whether these changes can be used to understand microbe-host interactions with potential functional biological relevance. Here, we characterized the association between CRC microbial communities and tumor mutations using microbiome profiling and whole-exome sequencing in 44 pairs of tumors and matched normal tissues. We found statistically significant associations between loss-of-function mutations in tumor genes and shifts in the abundances of specific sets of bacterial taxa, suggestive of potential functional interaction. This correlation allows us to statistically predict interactions between loss-of-function tumor mutations in cancer-related genes and pathways, including MAPK and Wnt signaling, solely based on the composition of the microbiome. In conclusion, our study shows that CRC microbiomes are correlated with tumor mutational profiles, pointing towards possible mechanisms of molecular interaction. Output:
Although the gut microbiome—the collection of microorganisms that inhabit our gastrointestinal tract—has been implicated in colorectal cancer, colorectal tumors are caused by genetic mutations in host DNA. Here, we explored whether various mutations in colorectal tumors are correlated with specific changes in the bacterial communities that live in and on these tumors. We find that the genes and biological pathways that are mutated in tumors are correlated with variation in the composition of the microbiome. This study provides a step towards understanding interactions between tumor genes and the microbiome in colorectal cancer.
PLOS315
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Division of labor and task specialization explain the success of human and insect societies. Social insect colonies are characterized by division of labor, with workers specializing in brood care early and foraging later in life. Theory posits that this task switching requires shifts in responsiveness to task-related cues, yet experimental evidence is weak. Here, we show that a Vitellogenin (Vg) ortholog identified in an RNAseq study on the ant T. longispinosus is involved in this process: using phylogenetic analyses of Vg and Vg-like genes, we firstly show that this candidate gene does not cluster with the intensively studied honey bee Vg but falls into a separate Vg-like A cluster. Secondly, an experimental knockdown of Vg-like A in the fat body caused a reduction in brood care and an increase in nestmate care in young ant workers. Nestmate care is normally exhibited by older workers. We demonstrate experimentally that this task switch is at least partly based on Vg-like A–associated shifts in responsiveness from brood to worker cues. We thus reveal a novel mechanism leading to early behavioral maturation via changes in social cue responsiveness mediated by Vg-like A and associated pathways, which proximately play a role in regulating division of labor. Output:
In social insects such as ants and bees, workers specialize in different tasks. This specialization is thought to be regulated via response thresholds to task-specific cues, which vary between workers conducting different tasks. Whether a worker takes care of the brood, cares for other workers, or leaves the nest to search for food is influenced by age, fat content, and the expression of associated genes. In the ant Temnothorax longispinosus, workers specializing in brood care are younger and exhibit a high expression of the gene Vg-like A. Here, we demonstrate that young workers reduce brood care activity upon down-regulation of Vg-like A. Simultaneously, they increase care for adult nestmates, a behavior typically exhibited by older workers. We show experimentally that Vg-like A down-regulation alters perception of social cues: a shift in the responsiveness from chemical cues from brood to adult worker underlies the behavioral switch to nestmate care. Hence, the expression of Vg-like A and its associated pathways influences task choice in ants and is involved in the regulation of division of labor. Copies of Vg-like A are present in other ants and further social and solitary insects, and future studies will reveal the role of this gene in these organisms.
PLOS316
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Various optimality principles have been proposed to explain the characteristics of coordinated eye and head movements during visual orienting behavior. At the same time, researchers have suggested several neural models to underly the generation of saccades, but these do not include online learning as a mechanism of optimization. Here, we suggest an open-loop neural controller with a local adaptation mechanism that minimizes a proposed cost function. Simulations show that the characteristics of coordinated eye and head movements generated by this model match the experimental data in many aspects, including the relationship between amplitude, duration and peak velocity in head-restrained and the relative contribution of eye and head to the total gaze shift in head-free conditions. Our model is a first step towards bringing together an optimality principle and an incremental local learning mechanism into a unified control scheme for coordinated eye and head movements. Output:
Human beings and many other species redirect their gaze towards targets of interest through rapid gaze shifts known as saccades. These are made approximately three to four times every second, and larger saccades result from fast and concurrent movement of the animal's eyes and head. Experimental studies have revealed that during saccades, the motor system follows certain principles such as respecting a specific relationship between the relative contribution of eye and head motor systems to total gaze shift. Various researchers have hypothesized that these principles are implications of some optimality criteria in the brain, but it remains unclear how the brain can learn such an optimal behavior. We propose a new model that uses a plausible learning mechanism to satisfy an optimality criterion. We show that after learning, the model is able to reproduce motor behavior with biologically plausible properties. In addition, it predicts the nature of the learning signals. Further experimental research is necessary to test the validity of our model.
PLOS317
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Fluoroquinolones are the most commonly used group of antimicrobials for the treatment of enteric fever, but no direct comparison between two fluoroquinolones has been performed in a large randomised trial. An open-label randomized trial was conducted to investigate whether gatifloxacin is more effective than ofloxacin in the treatment of uncomplicated enteric fever caused by nalidixic acid-resistant Salmonella enterica serovars Typhi and Paratyphi A. Adults and children clinically diagnosed with uncomplicated enteric fever were enrolled in the study to receive gatifloxacin (10 mg/kg/day) in a single dose or ofloxacin (20 mg/kg/day) in two divided doses for 7 days. Patients were followed for six months. The primary outcome was treatment failure in patients infected with nalidixic acid resistant isolates. 627 patients with a median age of 17 (IQR 9–23) years were randomised. Of the 218 patients with culture confirmed enteric fever, 170 patients were infected with nalidixic acid-resistant isolates. In the ofloxacin group, 6 out of 83 patients had treatment failure compared to 5 out of 87 in the gatifloxacin group (hazard ratio [HR] of time to failure 0.81, 95% CI 0.25 to 2.65, p = 0.73). The median time to fever clearance was 4.70 days (IQR 2.98–5.90) in the ofloxacin group versus 3.31 days (IQR 2.29–4.75) in the gatifloxacin group (HR = 1.59, 95% CI 1.16 to 2.18, p = 0.004). The results in all blood culture-confirmed patients and all randomized patients were comparable. Gatifloxacin was not superior to ofloxacin in preventing failure, but use of gatifloxacin did result in more prompt fever clearance time compared to ofloxacin. Trial registration: ISRCTN 63006567 (www.controlled-trials.com). Output:
Enteric fever, which comprises of typhoid and paratyphoid fevers, is common in many developing countries. It is also sometimes seen in the Western world in returning travellers. This present study of uncomplicated enteric fever in an outpatient setting in a hospital in Kathmandu, Nepal compared the newer gatifloxacin with the widely-used ofloxacin (two drugs of the fluroquinolone class) in the treatment of this illness. Although fluroquinolones are commonly considered the main group of drugs in the treatment of enteric fever, there have not been comparisons of efficacy between two drugs in this same class in the treatment of enteric fever. Furthermore, certain strains of enteric fever organism called nalidixic-acid resistant strains are proving very difficult to treat in both the local population and the Western travellers. The study focused primarily on the efficacy of the 2 drugs against these particular strains. The results revealed that both drugs were effective but gatifloxacin decreased the patient's fever more rapidly than ofloxacin. Dysglycemia was noted in a 35-year-old woman taking gatifloxacin who did not disclose a pre-existing diagnosis of diabetes at time of enrollment, but not in any other healthy child or young adult.
PLOS318
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Although bubonic plague is an endemic zoonosis in many countries around the world, the factors responsible for the persistence of this highly virulent disease remain poorly known. Classically, the endemic persistence of plague is suspected to be due to the coexistence of plague resistant and plague susceptible rodents in natural foci, and/or to a metapopulation structure of reservoirs. Here, we test separately the effect of each of these factors on the long-term persistence of plague. We analyse the dynamics and equilibria of a model of plague propagation, consistent with plague ecology in Madagascar, a major focus where this disease is endemic since the 1920s in central highlands. By combining deterministic and stochastic analyses of this model, and including sensitivity analyses, we show that (i) endemicity is favoured by intermediate host population sizes, (ii) in large host populations, the presence of resistant rats is sufficient to explain long-term persistence of plague, and (iii) the metapopulation structure of susceptible host populations alone can also account for plague endemicity, thanks to both subdivision and the subsequent reduction in the size of subpopulations, and extinction-recolonization dynamics of the disease. In the light of these results, we suggest scenarios to explain the localized presence of plague in Madagascar. Output:
Bubonic plague, known to have marked human history by three deadly pandemics, is an infectious disease which mainly circulates in wild rodent populations and is transmitted by fleas. Although this disease can be quickly lethal to its host, it has persisted on long-term in many rodent populations around the world. The reasons for this persistence remain poorly known. Two mechanisms have been invoked, but not yet explicitly and independently tested: first, the spatial structure of rodent populations (subdivision into several subpopulations) and secondly, the presence of, not only plague-susceptible rodents, but also plague-resistant ones. To gain insight into the role of the above two factors in plague persistence, we analysed a mathematical model of plague propagation. We applied our analyses to the case of Madagascar, where plague has persisted on central highlands since the 1920s and is responsible for about 30% of the human cases worldwide. We found that the long-term persistence of plague can be explained by the presence of any of the above two factors. These results allowed us to propose scenarios to explain the localized presence of plague in the Malagasy highlands, and help understand the persistence of plague in many wild foci.
PLOS319
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Architecture of phase relationships among neural oscillations is central for their functional significance but has remained theoretically poorly understood. We use phenomenological model of delay-coupled oscillators with increasing degree of topological complexity to identify underlying principles by which the spatio-temporal structure of the brain governs the phase lags between oscillatory activity at distant regions. Phase relations and their regions of stability are derived and numerically confirmed for two oscillators and for networks with randomly distributed or clustered bimodal delays, as a first approximation for the brain structural connectivity. Besides in-phase, clustered delays can induce anti-phase synchronization for certain frequencies, while the sign of the lags is determined by the natural frequencies and by the inhomogeneous network interactions. For in-phase synchronization faster oscillators always phase lead, while stronger connected nodes lag behind the weaker during frequency depression, which consistently arises for in-silico results. If nodes are in anti-phase regime, then a distance π is added to the in-phase trends. The statistics of the phases is calculated from the phase locking values (PLV), as in many empirical studies, and we scrutinize the method’s impact. The choice of surrogates do not affects the mean of the observed phase lags, but higher significance levels that are generated by some surrogates, cause decreased variance and might fail to detect the generally weaker coherence of the interhemispheric links. These links are also affected by the non-stationary and intermittent synchronization, which causes multimodal phase lags that can be misleading if averaged. Taken together, the results describe quantitatively the impact of the spatio-temporal connectivity of the brain to the synchronization patterns between brain regions, and to uncover mechanisms through which the spatio-temporal structure of the brain renders phases to be distributed around 0 and π. Trial registration: South African Clinical Trials Register: http://www.sanctr.gov.za/SAClinicalbrnbspTrials/tabid/169/Default.aspx, then link to respiratory tract then link to tuberculosis, pulmonary; and TASK Applied Sciences Clinical Trials, AP-TB-201-16 (ALOPEXX): https://task.org.za/clinical-trials/. Output:
Functional connectivity, and in particular, phase coupling between distant brain regions may be fundamental in regulating neuronal processing and communication. However, phase relationships between the nodes of the brain and how they are confined by its spatio-temporal structure, have been mostly overlooked. We use a model of oscillatory dynamics superimposed on the space-time structure defined by the connectome, and we analyze the possible regimes of synchronization. Limitations of data analysis are also considered and we show that the choice of the significance threshold for coherence does not essentially impact the statistics of the observed phase lags, although it is crucial for the right detection of statistically significant coherence. Analytical insights are obtained for networks with heterogeneous time-delays, based on the empirical data from the connectome, and these are confirmed by numerical simulations, which show in- or anti-phase synchronization depending on the frequency and the distribution of time-delays. Phase lags are shown to result from inhomogeneous network interactions, so that stronger connected nodes generally phase lag behind the weaker.
PLOS320
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Hepatitis C virus (HCV) naturally infects only humans and chimpanzees. The determinants responsible for this narrow species tropism are not well defined. Virus cell entry involves human scavenger receptor class B type I (SR-BI), CD81, claudin-1 and occludin. Among these, at least CD81 and occludin are utilized in a highly species-specific fashion, thus contributing to the narrow host range of HCV. We adapted HCV to mouse CD81 and identified three envelope glycoprotein mutations which together enhance infection of cells with mouse or other rodent receptors approximately 100-fold. These mutations enhanced interaction with human CD81 and increased exposure of the binding site for CD81 on the surface of virus particles. These changes were accompanied by augmented susceptibility of adapted HCV to neutralization by E2-specific antibodies indicative of major conformational changes of virus-resident E1/E2-complexes. Neutralization with CD81, SR-BI- and claudin-1-specific antibodies and knock down of occludin expression by siRNAs indicate that the adapted virus remains dependent on these host factors but apparently utilizes CD81, SR-BI and occludin with increased efficiency. Importantly, adapted E1/E2 complexes mediate HCV cell entry into mouse cells in the absence of human entry factors. These results further our knowledge of HCV receptor interactions and indicate that three glycoprotein mutations are sufficient to overcome the species-specific restriction of HCV cell entry into mouse cells. Moreover, these findings should contribute to the development of an immunocompetent small animal model fully permissive to HCV. Output:
The hepatitis C virus (HCV) infects only humans and chimpanzees, which has hampered development of suitable animal models. The inability of HCV to penetrate non-human cells is primarily due to inefficient usage of non-human CD81 and occludin. In this study we adapted HCV to mouse CD81. Efficient utilization of mouse CD81 is conferred by a combination of three mutations in the viral glycoproteins. These changes also permit entry via rat or hamster CD81, and lower viral dependence on additional HCV entry factors. Strikingly, mouse CD81 adapted HCV glycoproteins mediate entry into mouse cells in the absence of human entry factors. The adaptive mutations are not resident in viral domains implicated in direct CD81 binding. Nevertheless, they enhance binding to human CD81, increase susceptibility to different neutralizing antibodies and facilitate induction of viral cell fusion by low pH. This suggests that structural changes accompanied by exposure of the CD81 binding site and neutralizing epitopes have “unlocked” the viral envelope protein complex facilitating infection through non-human entry factors. These results highlight mechanisms of HCV receptor usage and tropism. They also demonstrate that HCV can be adapted to using non-human host factors, which may ultimately facilitate the development of small animal models.
PLOS321
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Host signal-transduction pathways are intimately involved in the switch between latency and productive infection of herpes viruses. As with other herpes viruses, infection by Kaposi's sarcoma herpesvirus (KSHV) displays these two phases. During latency only few viral genes are expressed, while in the productive infection the virus is reactivated with initiation of extensive viral DNA replication and gene expression, resulting in production of new viral particles. Viral reactivation is crucial for KSHV pathogenesis and contributes to the progression of KS. We have recently identified Pim-1 as a kinase reactivating KSHV upon over-expression. Here we show that another Pim family kinase, Pim-3, also induces viral reactivation. We demonstrate that expression of both Pim-1 and Pim-3 is induced in response to physiological and chemical reactivation in naturally KSHV-infected cells, and we show that they are required for KSHV reactivation under these conditions. Furthermore, our data indicate that Pim-1 and Pim-3 contribute to viral reactivation by phosphorylating the KSHV latency-associated nuclear antigen (LANA) on serine residues 205 and 206. This counteracts the LANA–mediated repression of the KSHV lytic gene transcription. The identification of Pim family kinases as novel cellular regulators of the gammaherpesvirus life cycle facilitates a deeper understanding of virus–host interactions during reactivation and may represent potential novel targets for therapeutic intervention. Output:
The switch from latency to productive viral replication (reactivation) is a crucial decision in the viral life cycle, and recent clinico-epidemiological studies support the importance of lytic replication in the development and progression of Kaposi's sarcoma. Hence, cellular signaling pathways operative during viral reactivation could represent potential novel targets for therapeutic intervention. Our work identifies Pim-1 and Pim-3 kinases as essential key regulators of the gammaherpesvirus life cycle. These kinases target the hallmark of KSHV latency, the LANA protein, by phosphorylation, which abolishes its ability to act as a transcriptional suppressor of viral lytic replication. This study facilitates a deeper understanding of virus–host interactions during reactivation and provides novel opportunities for pharmacological control and intervention also in virus-associated cancers.
PLOS322
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Successful execution of the meiotic program depends on the timely establishment and removal of sister chromatid cohesion. LAB-1 has been proposed to act in the latter by preventing the premature removal of the meiosis-specific cohesin REC-8 at metaphase I in C. elegans, yet the mechanism and scope of LAB-1 function remained unknown. Here we identify an unexpected earlier role for LAB-1 in promoting the establishment of sister chromatid cohesion in prophase I. LAB-1 and REC-8 are both required for the chromosomal association of the cohesin complex subunit SMC-3. Depletion of lab-1 results in partial loss of sister chromatid cohesion in rec-8 and coh-4 coh-3 mutants and further enhanced chromatid dissociation in worms where all three kleisins are mutated. Moreover, lab-1 depletion results in increased Aurora B kinase (AIR-2) signals in early prophase I nuclei, coupled with a parallel decrease in signals for the PP1 homolog, GSP-2. Finally, LAB-1 directly interacts with GSP-1 and GSP-2. We propose that LAB-1 targets the PP1 homologs to the chromatin at the onset of meiosis I, thereby antagonizing AIR-2 and cooperating with the cohesin complex to promote sister chromatid association and normal progression of the meiotic program. Output:
A critical step for achieving successful cell division is the regulation of how the cohesin complexes that bind sister chromatids are initially deposited, then maintained, and finally removed to allow the chromatids to separate into daughter cells. This is particularly challenging during meiosis, when the sister chromatids must remain partially connected to each other through the first division. In organisms that have a single focal centromere on each chromosome, such as mammals and flies, cohesin is protected through the first meiotic division by the protein Shugoshin, which binds the PP2A phosphatase. PP2A counteracts phosphorylation by the Aurora B kinase; if certain cohesins are phosphorylated by Aurora B they become targeted for removal, which allows the chromatids to separate. In the nematode C. elegans, the chromosomes lack a localized centromere and the predicted Shugoshin homolog is not required for protection of cohesins; instead, this function is executed in metaphase of the first meiotic division by the protein LAB-1. But it is not completely understood what leads to the deposition of cohesin prior to entry into meiosis and to its maintenance throughout early meiosis I. In this study, we show that LAB-1 is also required for the loading and maintenance of the cohesin complex. LAB-1 ensures that the chromatids are not separated prematurely, and thus enables the proper progression of events through prophase I of meiosis. We propose that LAB-1 may act at the onset of meiosis in a manner akin to Shugoshin, by recruiting the PP1 phosphatase to counteract Aurora B kinase, thereby ensuring sister chromatid cohesion.
PLOS323
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Cellular differentiation entails reprogramming of the transcriptome from a pluripotent to a unipotent fate. This process was suggested to coincide with a global increase of repressive heterochromatin, which results in a reduction of transcriptional plasticity and potential. Here we report the dynamics of the transcriptome and an abundant heterochromatic histone modification, dimethylation of histone H3 at lysine 9 (H3K9me2), during neuronal differentiation of embryonic stem cells. In contrast to the prevailing model, we find H3K9me2 to occupy over 50% of chromosomal regions already in stem cells. Marked are most genomic regions that are devoid of transcription and a subgroup of histone modifications. Importantly, no global increase occurs during differentiation, but discrete local changes of H3K9me2 particularly at genic regions can be detected. Mirroring the cell fate change, many genes show altered expression upon differentiation. Quantitative sequencing of transcripts demonstrates however that the total number of active genes is equal between stem cells and several tested differentiated cell types. Together, these findings reveal high prevalence of a heterochromatic mark in stem cells and challenge the model of low abundance of epigenetic repression and resulting global basal level transcription in stem cells. This suggests that cellular differentiation entails local rather than global changes in epigenetic repression and transcriptional activity. Output:
Epigenetic modifications of DNA and bound histones are major determinants of cell type–specific gene expression patterns. A prevalent model in stem cell biology suggests that the loss of pluripotency entails global increase in heterochromatin and coinciding shutdown of lineage unrelated genes. We performed analysis of both H3K9 dimethylation pattern and the global transcriptome in an advanced murine neuronal differentiation model. In this paradigm, we do not find evidence for a global increase in heterochromatic H3K9 dimethylation or reduction of transcriptome complexity as stem cells become terminally differentiated post-mitotic neurons. This suggests that pluripotent embryonic stem cells are not per se unique in regards to heterochromatin abundance and transcriptional plasticity as compared to somatic cells. Instead, focal changes in chromatin might help to stabilize cellular states at any developmental stage.
PLOS324
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Perceptual decisions are thought to be mediated by a mechanism of sequential sampling and integration of noisy evidence whose temporal weighting profile affects the decision quality. To examine temporal weighting, participants were presented with two brightness-fluctuating disks for 1, 2 or 3 seconds and were requested to choose the overall brighter disk at the end of each trial. By employing a signal-perturbation method, which deploys across trials a set of systematically controlled temporal dispersions of the same overall signal, we were able to quantify the participants’ temporal weighting profile. Results indicate that, for intervals of 1 or 2 sec, participants exhibit a primacy-bias. However, for longer stimuli (3-sec) the temporal weighting profile is non-monotonic, with concurrent primacy and recency, which is inconsistent with the predictions of previously suggested computational models of perceptual decision-making (drift-diffusion and Ornstein-Uhlenbeck processes). We propose a novel, dynamic variant of the leaky-competing accumulator model as a potential account for this finding, and we discuss potential neural mechanisms. Output:
An important process that supports decision-making is the integration of evidence over time, which optimizes decision quality by enhancing the signal to noise ratio. The nature of this process depends critically on the weight given to evidence across time: which information has more impact—early, intermediate or late? We used a novel psychophysical technique, which relies on differential temporal dispersion of evidence. This technique allowed us to extract the temporal weights people assign to the flow of evidence. We find that in decisions that are based on relatively short streams of evidence, people gave stronger weight to early information (primacy). Surprisingly, however, with longer streams of evidence, people assigned higher weights to early and late evidence, while underweighting intermediate evidence. This non-monotonic pattern of evidence integration is not predicted by the existing models of decision-making, posing a challenge to current theories. We propose a novel model that accounts for non-monotonic weighting, based on a change in leak and response-competition with integration-time, and we discuss potential neural mechanisms.
PLOS325
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Highly pathogenic avian influenza virus (HPAIV) of the subtype H5N1 causes severe, often fatal pneumonia in humans. The pathogenesis of HPAIV H5N1 infection is not completely understood, although the alveolar macrophage (AM) is thought to play an important role. HPAIV H5N1 infection of macrophages cultured from monocytes leads to high percentages of infection accompanied by virus production and an excessive pro-inflammatory immune response. However, macrophages cultured from monocytes are different from AM, both in phenotype and in response to seasonal influenza virus infection. Consequently, it remains unclear whether the results of studies with macrophages cultured from monocytes are valid for AM. Therefore we infected AM and for comparison macrophages cultured from monocytes with seasonal H3N2 virus, HPAIV H5N1 or pandemic H1N1 virus, and determined the percentage of cells infected, virus production and induction of TNF-alpha, a pro-inflammatory cytokine. In vitro HPAIV H5N1 infection of AM compared to that of macrophages cultured from monocytes resulted in a lower percentage of infected cells (up to 25% vs up to 84%), lower virus production and lower TNF-alpha induction. In vitro infection of AM with H3N2 or H1N1 virus resulted in even lower percentages of infected cells (up to 7%) than with HPAIV H5N1, while virus production and TNF-alpha induction were comparable. In conclusion, this study reveals that macrophages cultured from monocytes are not a good model to study the interaction between AM and these influenza virus strains. Furthermore, the interaction between HPAIV H5N1 and AM could contribute to the pathogenicity of this virus in humans, due to the relative high percentage of infected cells rather than virus production or an excessive TNF-alpha induction. Output:
Alveolar macrophages (AM), which reside in the alveolar lumen, usually dampen down the host immune response to incoming pathogens. However, they are thought to increase inflammation during highly pathogenic avian influenza virus (HPAIV) H5N1 infections, which cause severe and often fatal disease in humans. This is based on experiments with human macrophages cultured from monocytes rather than with human AM. Here we show that human AM, collected via broncho-alveolar lavage from healthy volunteers, can become infected with HPAIV H5N1. However, this results in neither induction of the pro-inflammatory cytokine TNF-alpha nor virus production. Therefore, AM are most likely not responsible for the excessive cytokine response or high viral load during human HPAIV H5N1 infections as assumed previously. These data significantly changes our insight into the pathogenesis of HPAIV H5N1 pneumonia in humans, indicating that other cells than AM must be responsible for the excessive pro-inflammatory cytokine profile observed during HPAIV H5N1 infections.
PLOS326
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: DNA repair is essential to maintain genome integrity, and genes with roles in DNA repair are frequently mutated in a variety of human diseases. Repair via homologous recombination typically restores the original DNA sequence without introducing mutations, and a number of genes that are required for homologous recombination DNA double-strand break repair (HR-DSBR) have been identified. However, a systematic analysis of this important DNA repair pathway in mammalian cells has not been reported. Here, we describe a genome-scale endoribonuclease-prepared short interfering RNA (esiRNA) screen for genes involved in DNA double strand break repair. We report 61 genes that influenced the frequency of HR-DSBR and characterize in detail one of the genes that decreased the frequency of HR-DSBR. We show that the gene KIAA0415 encodes a putative helicase that interacts with SPG11 and SPG15, two proteins mutated in hereditary spastic paraplegia (HSP). We identify mutations in HSP patients, discovering KIAA0415/SPG48 as a novel HSP-associated gene, and show that a KIAA0415/SPG48 mutant cell line is more sensitive to DNA damaging drugs. We present the first genome-scale survey of HR-DSBR in mammalian cells providing a dataset that should accelerate the discovery of novel genes with roles in DNA repair and associated medical conditions. The discovery that proteins forming a novel protein complex are required for efficient HR-DSBR and are mutated in patients suffering from HSP suggests a link between HSP and DNA repair. Output:
All cells in our bodies have to cope with numerous lesions to their DNA. Cells use a battery of genes to repair DNA and maintain genome integrity. Given the importance of an intact genome, it is not surprising that genes with roles in DNA repair are mutated in many human diseases. Here, we present the results of a genome-scale DNA repair screen in human cells and discover 61 genes that have a potential role in this process. We studied in detail a previously uncharacterized gene (KIAA0415/SPG48) and demonstrated its importance for efficient DNA double strand break repair. Further analyses revealed mutations in the SPG48 gene in some patients with hereditary spastic paraplegia (HSP). We showed that SPG48 physically interacts with other HSP proteins and that patient cells are sensitive to DNA damaging drugs. Our data suggest a link between HSP and DNA repair and we propose that HSP patients should be screened for KIAA0415/SPG48 mutations in the future.
PLOS327
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Bacterial bloodstream infection (bBSI) is one of the leading causes of death in critically ill patients and accurate diagnosis is therefore crucial. We here report a 16S metagenomics approach for diagnosing and understanding bBSI. The proof-of-concept was delivered in 75 children (median age 15 months) with severe febrile illness in Burkina Faso. Standard blood culture and malaria testing were conducted at the time of hospital admission. 16S metagenomics testing was done retrospectively and in duplicate on the blood of all patients. Total DNA was extracted from the blood and the V3–V4 regions of the bacterial 16S rRNA genes were amplified by PCR and deep sequenced on an Illumina MiSeq sequencer. Paired reads were curated, taxonomically labeled, and filtered. Blood culture diagnosed bBSI in 12 patients, but this number increased to 22 patients when combining blood culture and 16S metagenomics results. In addition to superior sensitivity compared to standard blood culture, 16S metagenomics revealed important novel insights into the nature of bBSI. Patients with acute malaria or recovering from malaria had a 7-fold higher risk of presenting polymicrobial bloodstream infections compared to patients with no recent malaria diagnosis (p-value = 0.046). Malaria is known to affect epithelial gut function and may thus facilitate bacterial translocation from the intestinal lumen to the blood. Importantly, patients with such polymicrobial blood infections showed a 9-fold higher risk factor for not surviving their febrile illness (p-value = 0.030). Our data demonstrate that 16S metagenomics is a powerful approach for the diagnosis and understanding of bBSI. This proof-of-concept study also showed that appropriate control samples are crucial to detect background signals due to environmental contamination. Output:
Bacterial bloodstream infection (bBSI) is one of the biggest causes of mortality in critically ill patients and standard diagnosis is still done by blood culture methods. Parallel deep sequencing of the 16S ribosomal RNA genes (16S metagenomics) is a new and rapidly evolving research field for profiling bacterial communities. We designed a 16S metagenomics approach for the identification of bacteria in the blood of patients with a bBSI, and evaluated its performance in 75 children with severe febrile illness in Burkina Faso. In addition to superior sensitivity compared to standard blood culture, 16S metagenomics revealed important novel insights into the nature of bBSI. Patients with acute malaria or recently recovered from acute malaria are at increased risk of presenting polymicrobial bloodstream infection, which was in itself a significant risk for non-survival. This proof-of-concept study shows that 16S metagenomics is a powerful approach to diagnose and understand bBSI but also that appropriate control samples are crucial for correct data interpretation.
PLOS328
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Gambian sleeping sickness (human African trypanosomiasis, HAT) outbreaks are brought under control by case detection and treatment although it is recognised that this typically only reaches about 75% of the population. Vector control is capable of completely interrupting HAT transmission but is not used because it is considered too expensive and difficult to organise in resource-poor settings. We conducted a full scale field trial of a refined vector control technology to determine its utility in control of Gambian HAT. The major vector of Gambian HAT is the tsetse fly Glossina fuscipes which lives in the humid zone immediately adjacent to water bodies. From a series of preliminary trials we determined the number of tiny targets required to reduce G. fuscipes populations by more than 90%. Using these data for model calibration we predicted we needed a target density of 20 per linear km of river in riverine savannah to achieve >90% tsetse control. We then carried out a full scale, 500 km2 field trial covering two HAT foci in Northern Uganda to determine the efficacy of tiny targets (overall target density 5.7/km2). In 12 months, tsetse populations declined by more than 90%. As a guide we used a published HAT transmission model and calculated that a 72% reduction in tsetse population is required to stop transmission in those settings. The Ugandan census suggests population density in the HAT foci is approximately 500 per km2. The estimated cost for a single round of active case detection (excluding treatment), covering 80% of the population, is US$433,333 (WHO figures). One year of vector control organised within the country, which can completely stop HAT transmission, would cost US$42,700. The case for adding this method of vector control to case detection and treatment is strong. We outline how such a component could be organised. Output:
Sleeping sickness is controlled by case detection and treatment but this often only reaches less than 75% of the population. Vector control is capable of completely interrupting HAT transmission but is not used because of expense. We conducted a full scale field trial of a refined vector control technology. From preliminary trials we determined the number of insecticidal tiny targets required to control tsetse populations by more than 90%. We then carried out a full scale, 500 km2 field trial covering two HAT foci in Northern Uganda (overall target density 5.7/km2). In 12 months tsetse populations declined by more than 90%. A mathematical model suggested that a 72% reduction in tsetse population is required to stop transmission in those settings. The Ugandan census suggests population density in the HAT foci is approximately 500 per km2. The estimated cost for a single round of active case detection (excluding treatment), covering 80% of the population, is US$433,333 (WHO figures). One year of vector control organised within country, which can completely stop HAT transmission, would cost US$42,700. The case for adding this new method of vector control to case detection and treatment is strong. We outline how such a component could be organised.
PLOS329
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Many proteins fold into highly regular and repetitive three dimensional structures. The analysis of structural patterns and repeated elements is fundamental to understand protein function and evolution. We present recent improvements to the CE-Symm tool for systematically detecting and analyzing the internal symmetry and structural repeats in proteins. In addition to the accurate detection of internal symmetry, the tool is now capable of i) reporting the type of symmetry, ii) identifying the smallest repeating unit, iii) describing the arrangement of repeats with transformation operations and symmetry axes, and iv) comparing the similarity of all the internal repeats at the residue level. CE-Symm 2.0 helps the user investigate proteins with a robust and intuitive sequence-to-structure analysis, with many applications in protein classification, functional annotation and evolutionary studies. We describe the algorithmic extensions of the method and demonstrate its applications to the study of interesting cases of protein evolution. Output:
Many protein structures show a great deal of regularity. Even within single polypeptide chains, about 25% of proteins contain self-similar repeating structures, which can be organized in ring-like symmetric arrangements or linear open repeats. The repeats are often related, and thus comparing the sequence and structure of repeats can give an idea as to the early evolutionary history of a protein family. Additionally, the conservation and divergence of repeats can lead to insights about the function of the proteins. This work describes CE-Symm 2.0, a tool for the analysis of protein symmetry. The method automatically detects internal symmetry in protein structures and produces a multiple alignment of structural repeats. The algorithm is able to detect the geometric relationships between the repeats, including cyclic, dihedral, and polyhedral symmetries, translational repeats, and cases where multiple symmetry operators are applicable in a hierarchical manner. These complex relationships can then be visualized in a graphical interface as a complete structure, as a superposition of repeats, or as a multiple alignment of the protein sequence. CE-Symm 2.0 can be systematically used for the automatic detection of internal symmetry in protein structures, or as an interactive tool for the analysis of structural repeats.
PLOS330
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Embryonic stem cells (ESC) have the potential to self-renew indefinitely and to differentiate into any of the three germ layers. The molecular mechanisms for self-renewal, maintenance of pluripotency and lineage specification are poorly understood, but recent results point to a key role for epigenetic mechanisms. In this study, we focus on quantifying the impact of histone 3 acetylation (H3K9,14ac) on gene expression in murine embryonic stem cells. We analyze genome-wide histone acetylation patterns and gene expression profiles measured over the first five days of cell differentiation triggered by silencing Nanog, a key transcription factor in ESC regulation. We explore the temporal and spatial dynamics of histone acetylation data and its correlation with gene expression using supervised and unsupervised statistical models. On a genome-wide scale, changes in acetylation are significantly correlated to changes in mRNA expression and, surprisingly, this coherence increases over time. We quantify the predictive power of histone acetylation for gene expression changes in a balanced cross-validation procedure. In an in-depth study we focus on genes central to the regulatory network of Mouse ESC, including those identified in a recent genome-wide RNAi screen and in the PluriNet, a computationally derived stem cell signature. We find that compared to the rest of the genome, ESC-specific genes show significantly more acetylation signal and a much stronger decrease in acetylation over time, which is often not reflected in a concordant expression change. These results shed light on the complexity of the relationship between histone acetylation and gene expression and are a step forward to dissect the multilayer regulatory mechanisms that determine stem cell fate. Output:
Stem cell differentiation and the maintenance of self-renewal are intrinsically complex processes that require coordinated regulation on many different cellular levels. Here we focus on the relationship between two important layers and follow it over the first five days of differentiation. The first layer – measured by acetylation of one of the histone proteins – describes which parts of the DNA are tightly wrapped up and which lie open. The second layer describes the activity of genes measured by their mRNA expression. Using a wide array of statistical approaches we show that changes in histone acetylation are very predictive for gene expression and that the concordance between the two levels increases over time. Concentrating on genes central to the regulatory networks in embryonic stem cells we find that key genes show very high acetylation signal in the beginning that decreases quickly over time, indicating that they lie in initially open regions that are rapidly closing down. These results are a step forward to a better understanding of the complexities of the relationship between histone acetylation and gene expression, which will help to dissect the multilayer regulatory mechanisms that determine stem cell fate.
PLOS331
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Most bacteria live in colonies, where they often express different cell types. The ecological significance of these cell types and their evolutionary origin are often unknown. Here, we study the evolution of cell differentiation in the context of surface colonization. We particularly focus on the evolution of a ‘sticky’ cell type that is required for surface attachment, but is costly to express. The sticky cells not only facilitate their own attachment, but also that of non-sticky cells. Using individual-based simulations, we show that surface colonization rapidly evolves and in most cases leads to phenotypic heterogeneity, in which sticky and non-sticky cells occur side by side on the surface. In the presence of regulation, cell differentiation leads to a remarkable set of bacterial life cycles, in which cells alternate between living in the liquid and living on the surface. The dominant life stage is formed by the surface-attached colony that shows many complex features: colonies reproduce via fission and by producing migratory propagules; cells inside the colony divide labour; and colonies can produce filaments to facilitate expansion. Overall, our model illustrates how the evolution of an adhesive cell type goes hand in hand with the evolution of complex bacterial life cycles. Output:
In nature, most bacteria occur in surface-attached colonies. Inside these colonies, cells often express many different phenotypes. The significance of these phenotypes often remains unknown. We study the evolution of cell differentiation in the context of surface colonization. We particularly focus on the evolution of a ‘sticky’ cell type that is needed for surface attachment. We show that the sticky cell type readily evolves and escapes from competition in the liquid by attaching to the surface. In most cases, surface colonization is accompanied by phenotypic heterogeneity, in which sticky and non-sticky cell co-occupy the surface. The non-sticky cells hitchhike with the sticky cells, thereby profiting from surface attachment without paying the cost of being sticky. In the presence of regulation, cell differentiation leads to the evolution of intricate bacterial life cycles in which cells alternate between living in surface-attached colonies and living in the liquid. The bacterial life cycles are orchestrated by temporal and spatial pattern formation of cell types. Our model illustrates how cell differentiation can be of key importance for the evolution of bacterial life cycles.
PLOS332
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Cytosine methylation of DNA is an important epigenetic gene silencing mechanism in plants, fungi, and animals. In the filamentous fungus Neurospora crassa, nearly all known DNA methylations occur in transposon relics and repetitive sequences, and DNA methylation does not depend on the canonical RNAi pathway. disiRNAs are Dicer-independent small non-coding RNAs that arise from gene-rich part of the Neurospora genome. Here we describe a new type of DNA methylation that is associated with the disiRNA loci. Unlike the known DNA methylation in Neurospora, disiRNA loci DNA methylation (DLDM) is highly dynamic and is regulated by an on/off mechanism. Some disiRNA production appears to rely on pol II directed transcription. Importantly, DLDM is triggered by convergent transcription and enriched in promoter regions. Together, our results establish a new mechanism that triggers DNA methylation. Output:
DNA methylation in eukayrotes refers to the modification of cytidines at 5th position with methyl group (5mC). Though absent in some species, DNA methylation is conserved across fungi, plants and animals and plays a critical role in X chromosome inactivation, genomic imprinting, transposon silencing etc. In addition, DNA methylation also occurs at the promoter sequence to regulate gene expression. Filamentous fungus Neurospora crassa has a well-known mechanism of DNA methylation for genomic defense. During sexual stage repetitive sequences (e.g. transposons) are recognized and point mutations are introduced. During vegetative stage these mutations serve as signals for establishing static DNA methylation to silence all copies of the sequences. In this study, we report a new type of DNA methylation in Neurospora. It is tightly linked to a type of non-coding small RNA termed dicer-independent siRNA (disiRNA) and therefore was termed disiRNA loci DNA methylation (DLDM). DLDM is dynamic regulated and shows an on/off pattern, i.e. most alleles contain no 5mC but some are densely methylated. Interestingly, DLDM can be triggered by convergent transcription and is accumulated at promoter regions. In summary, our findings demonstrate a new type of dynamic DNA methylation.
PLOS333
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Chronic Schistosoma infection is often characterized by a state of T cell hyporesponsiveness of the host. Suppression of dendritic cell (DC) function could be one of the mechanisms underlying this phenomenon, since Schistosoma antigens are potent modulators of dendritic cell function in vitro. Yet, it remains to be established whether DC function is modulated during chronic human Schistosoma infection in vivo. To address this question, the effect of Schistosoma haematobium infection on the function of human blood DC was evaluated. We found that plasmacytoid (pDC) and myeloid DC (mDC) from infected subjects were present at lower frequencies in peripheral blood and that mDC displayed lower expression levels of HLA-DR compared to those from uninfected individuals. Furthermore, mDC from infected subjects, but not pDC, were found to have a reduced capacity to respond to TLR ligands, as determined by MAPK signaling, cytokine production and expression of maturation markers. Moreover, the T cell activating capacity of TLR-matured mDC from infected subjects was lower, likely as a result of reduced HLA-DR expression. Collectively these data show that S. haematobium infection is associated with functional impairment of human DC function in vivo and provide new insights into the underlying mechanisms of T cell hyporesponsiveness during chronic schistosomiasis. Output:
A key feature of schistosomiasis, as well as of other systemic helminth infections, is their chronic nature. This reflects the successful evasion and suppression of host immune responses by the parasites. One of the mechanisms that could underlie this phenomenon is modulation of the dendritic cells (DC), which play a central role in initiation and control of T cell responses. Although several in vitro studies have documented the modulatory capacity of Schistosoma antigens on DC function, it is still unclear what effect schistosomiasis has on human DC function in vivo. To address this question, we isolated the two main DC subsets present in peripheral blood from infected and uninfected individuals living in a Schistosoma-endemic area in central Africa, and found that specifically the myeloid DC from Schistosoma-infected subjects displayed an impaired capacity to respond to Toll-like receptor ligands and to drive T cell responses. These findings provide new insights into how schistosomiasis suppresses host immune responses, which can be exploited for new strategies to enhance immunity against the parasites.
PLOS334
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The within-host evolution of influenza is a vital component of its epidemiology. A question of particular interest is the role that selection plays in shaping the viral population over the course of a single infection. We here describe a method to measure selection acting upon the influenza virus within an individual host, based upon time-resolved genome sequence data from an infection. Analysing sequence data from a transmission study conducted in pigs, describing part of the haemagglutinin gene (HA1) of an influenza virus, we find signatures of non-neutrality in six of a total of sixteen infections. We find evidence for both positive and negative selection acting upon specific alleles, while in three cases, the data suggest the presence of time-dependent selection. In one infection we observe what is potentially a specific immune response against the virus; a non-synonymous mutation in an epitope region of the virus is found to be under initially positive, then strongly negative selection. Crucially, given the lack of homologous recombination in influenza, our method accounts for linkage disequilibrium between nucleotides at different positions in the haemagglutinin gene, allowing for the analysis of populations in which multiple mutations are present at any given time. Our approach offers a new insight into the dynamics of influenza infection, providing a detailed characterisation of the forces that underlie viral evolution. Output:
The evolution of the influenza virus is of great importance for human health. Through evolution, current influenza viruses develop the ability to infect people who have been vaccinated against earlier strains. New strains of influenza that infect birds and pigs could evolve to infect and spread between people, causing a global pandemic. The influenza virus lives within a human or animal host, so that viral evolution happens within, or in the spread between, individuals. As such, what happens to the virus during the course of an infection is a question of great interest. We here describe a statistical method that uses viral genome sequence data to measure how evolution affects the influenza virus within a single host. Studying data from infections transmitted between pigs, we find evidence for evolutionary adaptation in six of sixteen animals for which data were available. In one case, an immune response mounted by a pig against the virus is apparent. Our method provides a statistical framework for using sequence data to study viral evolution on very short timescales, enabling new research into within-host viral evolution.
PLOS335
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Malaria transmission has declined substantially in the 21st century, but pregnant women in areas of sustained transmission still require protection to prevent the adverse pregnancy and birth outcomes associated with malaria in pregnancy (MiP). A recent call to action has been issued to address the continuing low coverage of intermittent preventive treatment of malaria in pregnancy (IPTp). This call has, however, been questioned by some, in part due to concerns about resistance to sulphadoxine-pyrimethamine (SP), the only drug currently recommended for IPTp. Using an existing mathematical model of MiP, we combined estimates of the changing endemicity of malaria across Africa with maps of SP resistance mutations and current coverage of antenatal access and IPTp with SP (IPTp-SP) across Africa. Using estimates of the relationship between SP resistance mutations and the parasitological efficacy of SP during pregnancy, we estimated the varying impact of IPTp-SP across Africa and the incremental value of enhancing IPTp-SP uptake to match current antenatal care (ANC) coverage. The risks of MiP and malaria-attributable low birthweight (mLBW) in unprotected pregnancies (i.e., those not using insecticide-treated nets [ITNs]) leading to live births fell by 37% (33%–41% 95% credible interval [crI]) and 31% (27%–34% 95% crI), respectively, from 2000 to 2015 across endemic areas in sub-Saharan Africa. However, these gains are fragile, and coverage is far from optimal. In 2015, 9.5 million (8.3 million–10.4 million 95% crI) of 30.6 million pregnancies in these areas would still have been infected with Plasmodium falciparum without intervention, leading to 750,000 (390,000–1.1 million 95% crI) mLBW deliveries. In all, 6.6 million (5.6 million–7.3 million 95% crI) of these 9.5 million (69.3%) pregnancies at risk of infection (and 53.4% [16.3 million/30.6 million] of all pregnancies) occurred in settings with near-perfect SP curative efficacy (>99%) based on the most recent estimates of resistance. Forty-four percent of these pregnancies (23% of all pregnancies) were not receiving any IPTp-SP despite making ≥3 ANC visits, representing 160,000 (94,000–236,000 95% crI) preventable low birthweight (LBW) deliveries. Only 4% (1.4 million) of pregnancies occurred in settings with >10% prevalence of the sextuple haplotype associated with compromised SP effectiveness. Forty-two percent of all pregnancies occurred in settings where the quintuple dhfr/dhps haplotype had become established but where in vivo efficacy data suggest SP maintains the majority of its effectiveness in clearing infections. Not accounting for protection from the use of ITNs during pregnancy, expanding IPTp-SP to all women with ≥3 ANC visits in Africa could prevent an additional 215,000 (128,000–318,000 95% crI) LBW deliveries. In 26 countries with sufficient recent data to estimate ITN impact (population-based ITN usage data that can be stratified by gravidity), we estimate that, due primarily to low ITN use by primigravidae, only 16.5% of the potential LBW births prevented by scaling up IPTp-SP would in fact have already have been prevented through ITN use. Our analysis also highlights the difficulties associated with estimating the relationship between the effectiveness of interventions against parasitological endpoints such as placental infection at delivery and health outcomes including birthweight, which is also determined by a wide range of unrelated factors. We also did not capture other aspects of malaria burden such as clinical malaria, maternal and neonatal anaemia, and miscarriage, all of which increase the overall importance of effective preventative strategies but have their own relationship with transmission intensity, parity, and SP resistance. Despite recent declines in malaria transmission in Africa, the burden of MiP in the absence of adequate prevention remains substantial. Even accounting for SP resistance, extending IPTp-SP to all women attending ANC, as well as long-lasting insecticidal net distribution targeted towards first-time mothers, would have a sizeable impact upon maternal and infant health in almost all malaria-endemic settings in sub-Saharan Africa. Output:
Universal access to intermittent preventive treatment of malaria in pregnancy with the drug sulphadoxine-pyrimethamine (IPTp-SP) has been a cornerstone of prevention of malaria in pregnancy, and a Global Call to Action has been launched by the Roll Back Malaria Partnership based upon its high safety, acceptability, effectiveness, and cost-effectiveness. The development of resistance by the parasite in some regions—particularly a sequential chain of six mutations that may severely compromise the efficacy of the drug—and recent falls in malaria transmission have led some to question the wisdom of this call to action. Using a mathematical model, we combined maps of the current risk of malaria in pregnancy with maps of the level of drug resistance across Africa to estimate the likely impact of scaling up IPTp-SP, taking into account the effects of resistance. We found that in the large majority of pregnancies in areas of sustained malaria transmission in Africa, IPTp-SP is likely to retain substantial effectiveness against malaria in pregnancy, with areas affected by the sextuple mutation representing a small proportion of these pregnancies. We found that, even accounting for recent declines in malaria transmission, the benefits of providing IPTp-SP in lots of areas of Africa remain substantial, but uptake of the intervention remains low despite large increases in antenatal clinic attendance in many countries. In general, these findings support the suggestion that, if successful, the drive to increase IPTp-SP use will have a substantial and, given that the majority of women already access antenatal care, highly cost-effective impact upon maternal and neonatal health. Although the sextuple mutation was confined to only a small proportion of areas in Africa as of 2010, there are large areas of Africa (one in five women of childbearing age at risk reside in such areas) where the quintuple mutation (the immediate precursor to having the sextuple mutation) has reached saturation, which highlights the need for careful monitoring of the spread of resistance and also highlights the benefits of research into alternative strategies if the sextuple mutation spreads.
PLOS336
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Polycystic ovary syndrome (PCOS) is a disorder characterized by hyperandrogenism, ovulatory dysfunction and polycystic ovarian morphology. Affected women frequently have metabolic disturbances including insulin resistance and dysregulation of glucose homeostasis. PCOS is diagnosed with two different sets of diagnostic criteria, resulting in a phenotypic spectrum of PCOS cases. The genetic similarities between cases diagnosed based on the two criteria have been largely unknown. Previous studies in Chinese and European subjects have identified 16 loci associated with risk of PCOS. We report a fixed-effect, inverse-weighted-variance meta-analysis from 10,074 PCOS cases and 103,164 controls of European ancestry and characterisation of PCOS related traits. We identified 3 novel loci (near PLGRKT, ZBTB16 and MAPRE1), and provide replication of 11 previously reported loci. Only one locus differed significantly in its association by diagnostic criteria; otherwise the genetic architecture was similar between PCOS diagnosed by self-report and PCOS diagnosed by NIH or non-NIH Rotterdam criteria across common variants at 13 loci. Identified variants were associated with hyperandrogenism, gonadotropin regulation and testosterone levels in affected women. Linkage disequilibrium score regression analysis revealed genetic correlations with obesity, fasting insulin, type 2 diabetes, lipid levels and coronary artery disease, indicating shared genetic architecture between metabolic traits and PCOS. Mendelian randomization analyses suggested variants associated with body mass index, fasting insulin, menopause timing, depression and male-pattern balding play a causal role in PCOS. The data thus demonstrate 3 novel loci associated with PCOS and similar genetic architecture for all diagnostic criteria. The data also provide the first genetic evidence for a male phenotype for PCOS and a causal link to depression, a previously hypothesized comorbid disease. Thus, the genetics provide a comprehensive view of PCOS that encompasses multiple diagnostic criteria, gender, reproductive potential and mental health. Output:
We performed an international meta-analysis of genome-wide association studies combining over 10,000,000 genetic markers in more than 10,000 European women with polycystic ovary syndrome (PCOS) and 100,000 controls. We found three new risk variants associated with PCOS. Our data demonstrate that the genetic architecture does not differ based on the diagnostic criteria used for PCOS. We also demonstrate a genetic pathway shared with male pattern baldness, representing the first evidence for shared disease biology in men, and shared genetics with depression, previously postulated based only on observational studies.
PLOS337
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Bacteria encode a single-stranded DNA (ssDNA) binding protein (SSB) crucial for genome maintenance. In Bacillus subtilis and Streptococcus pneumoniae, an alternative SSB, SsbB, is expressed uniquely during competence for genetic transformation, but its precise role has been disappointingly obscure. Here, we report our investigations involving comparison of a null mutant (ssbB−) and a C-ter truncation (ssbBΔ7) of SsbB of S. pneumoniae, the latter constructed because SSBs' acidic tail has emerged as a key site for interactions with partner proteins. We provide evidence that SsbB directly protects internalized ssDNA. We show that SsbB is highly abundant, potentially allowing the binding of ∼1.15 Mb ssDNA (half a genome equivalent); that it participates in the processing of ssDNA into recombinants; and that, at high DNA concentration, it is of crucial importance for chromosomal transformation whilst antagonizing plasmid transformation. While the latter observation explains a long-standing observation that plasmid transformation is very inefficient in S. pneumoniae (compared to chromosomal transformation), the former supports our previous suggestion that SsbB creates a reservoir of ssDNA, allowing successive recombination cycles. SsbBΔ7 fulfils the reservoir function, suggesting that SsbB C-ter is not necessary for processing protein(s) to access stored ssDNA. We propose that the evolutionary raison d'être of SsbB and its abundance is maintenance of this reservoir, which contributes to the genetic plasticity of S. pneumoniae by increasing the likelihood of multiple transformation events in the same cell. Output:
Natural genetic transformation can compensate for the absence of sexual reproduction in bacteria, allowing genetic diversification by frequent recombination. In many species, transformability is a transient property relying on a specialized membrane-associated machinery for binding exogenous double-stranded DNA and internalization of single-stranded DNA (ssDNA) fragments extracted from exogenous DNA. Subsequent physical integration of internalized ssDNA into the recipient chromosome by homologous recombination requires dedicated cytosolic ssDNA–processing proteins. Here, we document the roles in the model transformable species Streptococcus pneumoniae of one of these processing proteins, SsbB, a paralogue of SsbA the ssDNA–binding protein essential for genome maintenance in bacteria, which is expressed uniquely in cells competent for genetic transformation. We show that SsbB is highly abundant, potentially allowing the binding of ∼1.15 Mb ssDNA (half a genome equivalent); that it participates in the processing of ssDNA into recombinants; that it protects and stabilizes internalized ssDNA; and that, at high DNA concentration, it is of crucial importance for chromosomal transformation whilst antagonizing plasmid transformation. We conclude that SsbB creates a reservoir of ssDNA, presumably allowing multiple transformations in the same cell, and that S. pneumoniae has evolved SsbB to optimize chromosomal transformation, thereby contributing to its remarkable genetic plasticity.
PLOS338
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Siderophore biosynthesis by the highly lethal mould Aspergillus fumigatus is essential for virulence, but non-existent in humans, presenting a rare opportunity to strategize therapeutically against this pathogen. We have previously demonstrated that A. fumigatus excretes fusarinine C and triacetylfusarinine C to capture extracellular iron, and uses ferricrocin for hyphal iron storage. Here, we delineate pathways of intra- and extracellular siderophore biosynthesis and show that A. fumigatus synthesizes a developmentally regulated fourth siderophore, termed hydroxyferricrocin, employed for conidial iron storage. By inactivation of the nonribosomal peptide synthetase SidC, we demonstrate that the intracellular siderophores are required for germ tube formation, asexual sporulation, resistance to oxidative stress, catalase A activity, and virulence. Restoration of the conidial hydroxyferricrocin content partially rescues the virulence of the apathogenic siderophore null mutant ΔsidA, demonstrating an important role for the conidial siderophore during initiation of infection. Abrogation of extracellular siderophore biosynthesis following inactivation of the acyl transferase SidF or the nonribosomal peptide synthetase SidD leads to complete dependence upon reductive iron assimilation for growth under iron-limiting conditions, partial sensitivity to oxidative stress, and significantly reduced virulence, despite normal germ tube formation. Our findings reveal distinct cellular and disease-related roles for intra- and extracellular siderophores during mammalian Aspergillus infection. Output:
Patients with suppressed immune systems due to cancer treatments, HIV/AIDS, organ transplantation, or genetic disorders are at high risk of infection with the ubiquitously present fungal pathogen Aspergillus fumigatus. Treatments for this disease, collectively termed invasive aspergillosis, are often not successful, and prospects for survival can be slim. A. fumigatus produces small molecules, termed siderophores, for acquisition and storage of iron, an element essential for growth. We found that these siderophores are crucial for virulence of A. fumigatus because their removal (by gene deletion) prevents or lessens disease in a mouse model of invasive aspergillosis. Siderophores are not produced by humans so they present good prospects for new therapies, as drugs that specifically target siderophore production, rather than activities shared by humans and fungi, are less likely to affect patients adversely.
PLOS339
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Biochemical pathways are often genetically encoded as simple transcription regulation networks, where one transcription factor regulates the expression of multiple genes in a pathway. The relative timing of each promoter’s activation and shut-off within the network can impact physiology. In the DNA damage repair pathway (known as the SOS response) of Escherichia coli, approximately 40 genes are regulated by the LexA repressor. After a DNA damaging event, LexA degradation triggers SOS gene transcription, which is temporally separated into subsets of ‘early’, ‘middle’, and ‘late’ genes. Although this feature plays an important role in regulating the SOS response, both the range of this separation and its underlying mechanism are not experimentally defined. Here we show that, at low doses of DNA damage, the timing of promoter activities is not separated. Instead, timing differences only emerge at higher levels of DNA damage and increase as a function of DNA damage dose. To understand mechanism, we derived a series of synthetic SOS gene promoters which vary in LexA-operator binding kinetics, but are otherwise identical, and then studied their activity over a large dose-range of DNA damage. In distinction to established models based on rapid equilibrium assumptions, the data best fit a kinetic model of repressor occupancy at promoters, where the drop in cellular LexA levels associated with higher doses of DNA damage leads to non-equilibrium binding kinetics of LexA at operators. Operators with slow LexA binding kinetics achieve their minimal occupancy state at later times than operators with fast binding kinetics, resulting in a time separation of peak promoter activity between genes. These data provide insight into this remarkable feature of the SOS pathway by demonstrating how a single transcription factor can be employed to control the relative timing of each gene’s transcription as a function of stimulus dose. Output:
As the precise timing of gene expression is critical for cells to respond and adapt to new environments, it is important to understand the underlying mechanisms which control this timing. In this report, we studied the timing of transcription for genes in the bacterial DNA damage repair pathway (known as the SOS response), a regulatory system where each gene is controlled by the same transcriptional repressor, LexA. By specifically isolating the role of the LexA binding interaction at SOS gene promoters, we found a relationship between the amount of DNA damage incurred by the cell, LexA binding kinetics at a promoter, and the timing of promoter activation. Our data fit a kinetic model that reveals how a disequilibrium between the LexA-operator binding reaction and cellular LexA concentrations causes timing differences between genes to emerge only at higher doses of DNA damage. Taken together, we show that non-equilibrium DNA binding kinetics is the mechanism by which a single transcription factor can modulate timing differences across an entire network of genes as a function of stimulus dose.
PLOS340
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: West Nile virus (WNV), a zoonotic pathogen naturally transmitted by mosquitoes whose natural hosts are birds, has spread worldwide during the last few decades. Resident birds play an important role in flavivirus epidemiology, since they can serve as reservoirs and facilitate overwintering of the virus. Herein, we report the first experimental infection of magpie (Pica pica) with two strains of West Nile virus, lineages 1 (NY-99) and 2 (SRB Novi-Sad/12), which are currently circulating in Europe. Magpies were highly susceptible to WNV infection, with similar low survival rates (30% and 42.8%) for both lineages. All infected magpies developed viremia detectable at 3 days post-infection with titers above those necessary for successful transmission of WNV to a mosquito. Neutralizing antibodies were detected at all time points analyzed (from 7 to 17 days post-infection). WNV genome was detected in the brains and hearts of all magpies that succumbed to the infection, and, in some of the surviving birds. WNV-RNA was amplified from swabs (oral and cloacal) at 3, 6 and 7 days post-infection and feather pulps, from 3 to 17 days post-infection, of infected animals. Even more, infectious virus was recovered from swabs up to 7 days post-infection and from feather pulps up to 10 days post infection. Sham-infected control animals were negative for viremia, viral RNA, and antibodies. These results suggest that the magpie, which is one of the most abundant corvid species in Europe, could represent a source of WNV transmission for birds and humans. Our observations shed light on the pathogenesis, transmission, and ecology of WNV and can benefit the implementation of surveillance and control programs. Output:
Birds play an important role in the epidemiology of flaviviruses such as West Nile virus (WNV) since birds are natural hosts and facilitate hibernation of the virus in periods of absence of mosquitoes that transmit the virus. Since it has been proposed that magpies play an important role in an endemic WNV cycle in human habitats in Europe, we conducted the first experimental infection of magpie with the two WNV lineages currently circulating in Europe. We observed high susceptibility of magpie to WNV infection with virus titers higher than those necessary for the successful transmission of WNV to a mosquito and often resulting in death. Likewise, we detected elevated titers of neutralizing antibodies in all the samples tested as well as the viral genome in the organs, oropharyngeal and cloacal swabs and feather pulps of the infected animals. Our results suggest that the magpie, which is one of the most abundant corvid species in Europe, could be a source of WNV transmission to other birds and humans, which expands the knowledge about WNV pathogenesis, transmission and ecology, that benefits monitoring and control programs.
PLOS341
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The recent epidemic of the arthritogenic alphavirus, chikungunya virus (CHIKV) has prompted a quest to understand the correlates of protection against virus and disease in order to inform development of new interventions. Herein we highlight the propensity of CHIKV infections to persist long term, both as persistent, steady-state, viraemias in multiple B cell deficient mouse strains, and as persistent RNA (including negative-strand RNA) in wild-type mice. The knockout mouse studies provided evidence for a role for T cells (but not NK cells) in viraemia suppression, and confirmed the role of T cells in arthritis promotion, with vaccine-induced T cells also shown to be arthritogenic in the absence of antibody responses. However, MHC class II-restricted T cells were not required for production of anti-viral IgG2c responses post CHIKV infection. The anti-viral cytokines, TNF and IFNγ, were persistently elevated in persistently infected B and T cell deficient mice, with adoptive transfer of anti-CHIKV antibodies unable to clear permanently the viraemia from these, or B cell deficient, mice. The NOD background increased viraemia and promoted arthritis, with B, T and NK deficient NOD mice showing high-levels of persistent viraemia and ultimately succumbing to encephalitic disease. In wild-type mice persistent CHIKV RNA and negative strand RNA (detected for up to 100 days post infection) was associated with persistence of cellular infiltrates, CHIKV antigen and stimulation of IFNα/β and T cell responses. These studies highlight that, secondary to antibodies, several factors are involved in virus control, and suggest that chronic arthritic disease is a consequence of persistent, replicating and transcriptionally active CHIKV RNA. Output:
The largest epidemic ever recorded for chikungunya virus (CHIKV) started in 2004 in Africa, then spread across Asia and recently caused tens of thousands of cases in Papua New Guinea and the Caribbean. This mosquito-borne alphavirus primarily causes an often debilitating, acute and chronic polyarthritis/polyarthalgia. Despite robust anti-viral immune responses CHIKV is able to persist, with such persistence poorly understood and the likely cause of chronic disease. Herein we highlight the propensity of CHIKV to persist long term, both as a persistent viraemia in different B cell deficient mouse strains, but also as persistent viral RNA in wild-type mice. These studies suggest that, aside from antibodies, other immune factors, such as CD4 T cells and TNF, are active in viraemia control. The work also supports the notion that CHIKV disease, with the exception of encephalitis, is largely an immunopathology. Persistent CHIKV RNA in wild-type mice continues to stimulate type I interferon and T cell responses, with this model of chronic disease recapitulating many of the features seen in chronic CHIKV patients.
PLOS342
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Despite significant efforts and remarkable progress, the inference of signaling networks from experimental data remains very challenging. The problem is particularly difficult when the objective is to obtain a dynamic model capable of predicting the effect of novel perturbations not considered during model training. The problem is ill-posed due to the nonlinear nature of these systems, the fact that only a fraction of the involved proteins and their post-translational modifications can be measured, and limitations on the technologies used for growing cells in vitro, perturbing them, and measuring their variations. As a consequence, there is a pervasive lack of identifiability. To overcome these issues, we present a methodology called SELDOM (enSEmbLe of Dynamic lOgic-based Models), which builds an ensemble of logic-based dynamic models, trains them to experimental data, and combines their individual simulations into an ensemble prediction. It also includes a model reduction step to prune spurious interactions and mitigate overfitting. SELDOM is a data-driven method, in the sense that it does not require any prior knowledge of the system: the interaction networks that act as scaffolds for the dynamic models are inferred from data using mutual information. We have tested SELDOM on a number of experimental and in silico signal transduction case-studies, including the recent HPN-DREAM breast cancer challenge. We found that its performance is highly competitive compared to state-of-the-art methods for the purpose of recovering network topology. More importantly, the utility of SELDOM goes beyond basic network inference (i.e. uncovering static interaction networks): it builds dynamic (based on ordinary differential equation) models, which can be used for mechanistic interpretations and reliable dynamic predictions in new experimental conditions (i.e. not used in the training). For this task, SELDOM’s ensemble prediction is not only consistently better than predictions from individual models, but also often outperforms the state of the art represented by the methods used in the HPN-DREAM challenge. Output:
Signaling pathways play a key role in complex diseases such as cancer, for which the development of novel therapies is a difficult, expensive and laborious task. Computational models that can predict the effect of a new combination of drugs without having to test it experimentally can help in accelerating this process. In particular, network-based dynamic models of these pathways hold promise to both understand and predict the effect of therapeutics. However, their use is currently hampered by limitations in our knowledge of the underlying biochemistry, as well as in the experimental and computational technologies used for calibrating the models. Thus, the results from such models need to be carefully interpreted and used in order to avoid biased predictions. Here we present a procedure that deals with this uncertainty by using experimental data to build an ensemble of dynamic models. The method incorporates steps to reduce overfitting and maximize predictive capability. We find that by combining the outputs of individual models in an ensemble it is possible to obtain a more robust prediction. We report results obtained with this method, which we call SELDOM (enSEmbLe of Dynamic lOgic-based Models), showing that it improves the predictions previously reported for several challenging problems.
PLOS343
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The response of a neuronal population over a space of inputs depends on the intrinsic properties of its constituent neurons. Two main modes of single neuron dynamics–integration and resonance–have been distinguished. While resonator cell types exist in a variety of brain areas, few models incorporate this feature and fewer have investigated its effects. To understand better how a resonator’s frequency preference emerges from its intrinsic dynamics and contributes to its local area’s population firing rate dynamics, we analyze the dynamic gain of an analytically solvable two-degree of freedom neuron model. In the Fokker-Planck approach, the dynamic gain is intractable. The alternative Gauss-Rice approach lifts the resetting of the voltage after a spike. This allows us to derive a complete expression for the dynamic gain of a resonator neuron model in terms of a cascade of filters on the input. We find six distinct response types and use them to fully characterize the routes to resonance across all values of the relevant timescales. We find that resonance arises primarily due to slow adaptation with an intrinsic frequency acting to sharpen and adjust the location of the resonant peak. We determine the parameter regions for the existence of an intrinsic frequency and for subthreshold and spiking resonance, finding all possible intersections of the three. The expressions and analysis presented here provide an account of how intrinsic neuron dynamics shape dynamic population response properties and can facilitate the construction of an exact theory of correlations and stability of population activity in networks containing populations of resonator neurons. Output:
Dynamic gain, the amount by which features at specific frequencies in the input to a neuron are amplified or attenuated in its output spiking, is fundamental for the encoding of information by neural populations. Most studies of dynamic gain have focused on neurons without intrinsic degrees of freedom exhibiting integrator-type subthreshold dynamics. Many neuron types in the brain, however, exhibit complex subthreshold dynamics such as resonance, found for instance in cortical interneurons, stellate cells, and mitral cells. A resonator neuron has at least two degrees of freedom for which the classical Fokker-Planck approach to calculating the dynamic gain is largely intractable. Here, we lift the voltage-reset rule after a spike, allowing us to derive a complete expression of the dynamic gain of a resonator neuron model. We find the gain can exhibit only six shapes. The resonant ones have peaks that become large due to intrinsic adaptation and become sharp due to an intrinsic frequency. A resonance can nevertheless result from either property. The analysis presented here helps explain how intrinsic neuron dynamics shape population-level response properties and provides a powerful tool for developing theories of inter-neuron correlations and dynamic responses of neural populations.
PLOS344
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Ixodes ricinus is the most widespread and abundant tick in Europe, frequently bites humans, and is the vector of several pathogens including those responsible for Lyme disease, Tick-Borne Encephalitis, anaplasmosis, babesiosis and bartonellosis. These tick-borne pathogens are transmitted to vertebrate hosts via tick saliva during blood feeding, and tick salivary gland (SG) factors are likely implicated in transmission. In order to identify such tick factors, we characterized the transcriptome of female I. ricinus SGs using next generation sequencing techniques, and compared transcriptomes between Bartonella henselae-infected and non-infected ticks. High-throughput sequencing of I. ricinus SG transcriptomes led to the generation of 24,539 isotigs. Among them, 829 and 517 transcripts were either significantly up- or down-regulated respectively, in response to bacterial infection. Searches based on sequence identity showed that among the differentially expressed transcripts, 161 transcripts corresponded to nine groups of previously annotated tick SG gene families, while the others corresponded to genes of unknown function. Expression patterns of five selected genes belonging to the BPTI/Kunitz family of serine protease inhibitors, the tick salivary peptide group 1 protein, the salp15 super-family, and the arthropod defensin family, were validated by qRT-PCR. IrSPI, a member of the BPTI/Kunitz family of serine protease inhibitors, showed the highest up-regulation in SGs in response to Bartonella infection. IrSPI silencing impaired tick feeding, as well as resulted in reduced bacterial load in tick SGs. This study provides a comprehensive analysis of I. ricinus SG transcriptome and contributes significant genomic information about this important disease vector. This in-depth knowledge will enable a better understanding of the molecular interactions between ticks and tick-borne pathogens, and identifies IrSPI, a candidate to study now in detail to estimate its potentialities as vaccine against the ticks and the pathogens they transmit. Output:
I. ricinus is the most common tick species in Europe and the vector for several pathogens, including bacteria from the Bartonella genus. The mechanisms by which ticks modulate their gene expression in response to pathogen infection are poorly understood. In this report, we compared the differential expression of genes expressed in tick salivary glands during B. henselae infection using next generation sequencing techniques. This approach identified 829 and 517 transcripts either significantly up- or down-regulated respectively, in response to bacterial infection. Among them, 161 transcripts corresponded to nine gene family groups previously described in ticks. By silencing the most up-regulated transcript (IrSPI), we demonstrated its implication in both tick feeding and bacterial infection of tick salivary glands. This study demonstrates that a molecular dialogue exists between pathogens and their arthropod vectors and provides, with IrSPI, a candidate to study now in detail to estimate its potentialities as vaccine against the ticks and the pathogens they transmit.
PLOS345
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Since 2003, the tropical arthritogenic chikungunya (CHIK) virus has become an increasingly medical and economic burden in affected areas as it can often result in long-term disabilities. The clinical spectrum of post-CHIK (pCHIK) rheumatic disorders is wide. Evidence-based recommendations are needed to help physicians manage the treatment of afflicted patients. We conducted a 6-year case series retrospective study in Reunion Island of patients referred to a rheumatologist due to continuous rheumatic or musculoskeletal pains that persisted following CHIK infection. These various disorders were documented in terms of their clinical and therapeutic courses. Post-CHIK de novo chronic inflammatory rheumatisms (CIRs) were identified according to validated criteria. We reviewed 159 patient medical files. Ninety-four patients (59%) who were free of any articular disorder prior to CHIK met the CIR criteria: rheumatoid arthritis (n=40), spondyloarthritis (n=33), undifferentiated polyarthritis (n=21). Bone lesions detectable by radiography occurred in half of the patients (median time: 3.5 years pCHIK). A positive therapeutic response was achieved in 54 out of the 72 patients (75%) who were treated with methotrexate (MTX). Twelve out of the 92 patients (13%) received immunomodulatory biologic agents due to failure of contra-indication of MTX treatment. Other patients mainly presented with mechanical shoulder or knee disorders, bilateral distal polyarthralgia that was frequently associated with oedema at the extremities and tunnel syndromes. These pCHIK musculoskeletal disorders (MSDs) were managed with pain-killers, local and/or general anti-inflammatory drugs, and physiotherapy. Rheumatologists in Reunion Island managed CHIK rheumatic disorders in a pragmatic manner following the outbreak in 2006. This retrospective study describes the common mechanical and inflammatory pCHIK disorders. We provide a diagnostic and therapeutic algorithm to help physicians deal with chronic patients, and to limit both functional and economic impacts. The therapeutic indication of MTX in pCHIK CIR could be approved in future efficacy trials. Output:
With a 6-year insight, we extensively and retrospectively describe clinical profiles and specific treatments of mechanical and inflammatory post-chikungunya rheumatic disorders. In the current context of chikungunya’s global spread, we provide the first diagnostic and therapeutic algorithm to guide physicians according to the amount of time that has elapsed since the acute CHIK infection.
PLOS346
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Several protein structure classification schemes exist that partition the protein universe into structural units called folds. Yet these schemes do not discuss how these units sit relative to each other in a global structure space. In this paper we construct networks that describe such global relationships between folds in the form of structural bridges. We generate these networks using four different structural alignment methods across multiple score thresholds. The networks constructed using the different methods remain a similar distance apart regardless of the probability threshold defining a structural bridge. This suggests that at least some structural bridges are method specific and that any attempt to build a picture of structural space should not be reliant on a single structural superposition method. Despite these differences all representations agree on an organisation of fold space into five principal community structures: all-α, all-β sandwiches, all-β barrels, α/β and α + β. We project estimated fold ages onto the networks and find that not only are the pairings of unconnected folds associated with higher age differences than bridged folds, but this difference increases with the number of networks displaying an edge. We also examine different centrality measures for folds within the networks and how these relate to fold age. While these measures interpret the central core of fold space in varied ways they all identify the disposition of ancestral folds to fall within this core and that of the more recently evolved structures to provide the peripheral landscape. These findings suggest that evolutionary information is encoded along these structural bridges. Finally, we identify four highly central pivotal folds representing dominant topological features which act as key attractors within our landscapes. Output:
Folds are considered to be the structural units which make up the protein universe. Structural classification schemes focus on the assignment and organisation of protein domains into folds. However, they do not suggest how different folds might relate to one another in a global way. We introduce the concept of bridges through fold space: significant similarities between these units. We consider four alignment methods and a dynamic approach to placing these bridges. A greater consensus between these methods cannot be achieved by simply increasing the stringency with which edges are assigned. Instead, we emphasise the importance of considering consensus maps and only report results where there is agreement across all networks. It is possible that a study of the bridges may reveal evolutionary relationships. Based on a phylogenetic analysis of structures, we find that bridges consistently fall between folds which evolved at similar times. Moreover, the landscapes all consist of a core of older folds, with younger structures more often seen at the periphery. Finally we identify four pivotal folds in the landscapes. They contain topological motifs which unite disparate regions of fold space.
PLOS347
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: To colonize phagocytes, Leishmania subverts microbicidal processes through components of its surface coat that include lipophosphoglycan and the GP63 metalloprotease. How these virulence glycoconjugates are shed, exit the parasitophorous vacuole (PV), and traffic within host cells is poorly understood. Here, we show that lipophosphoglycan and GP63 are released from the parasite surface following phagocytosis and redistribute to the endoplasmic reticulum (ER) of macrophages. Pharmacological disruption of the trafficking between the ER and the Golgi hindered the exit of these molecules from the PV and dampened the cleavage of host proteins by GP63. Silencing by RNA interference of the soluble N-ethylmaleimide-sensitive-factor attachment protein receptors Sec22b and syntaxin-5, which regulate ER-Golgi trafficking, identified these host proteins as components of the machinery that mediates the spreading of Leishmania effectors within host cells. Our findings unveil a mechanism whereby a vacuolar pathogen takes advantage of the host cell's secretory pathway to promote egress of virulence factors beyond the PV. Output:
Leishmania promastigotes are internalized by phagocytes into a highly modified phagosome that promotes parasite growth and differentiation into the amastigote form. To survive in the phagosome, Leishmania employs surface-bound glycoconjugates such as the GP63 metalloprotease and lipophosphoglycan to subvert the phagosome’s microbicidal potential. In particular, GP63 cleaves host cell vesicle fusion molecules that regulate phagosomal processes ranging from antigen cross-presentation to cytokine secretion. Unlike apicomplexan parasites and bacteria, Leishmania does not inject its virulence-associated glycoconjugates across the phagosome membrane. We found that post-phagocytosis, Leishmania co-opts the host cell secretory pathway to promote the egress of its virulence factors out of the phagosome. Importantly, chemical and genetic inhibition of endoplasmic reticulum (ER) to Golgi transport hindered the redistribution of GP63 and lipophosphoglycan, thereby impeding the cleavage of GP63 target Synaptotagmin XI. Notably, knockdown ER/ERGIC-resident membrane fusion regulators Sec22b and syntaxin-5 revealed that these host molecules were essential to the phagosomal egress of Leishmania virulence factors. These findings provide new insight into how Leishmania sabotages the host cell endomembrane system for its own benefit.
PLOS348
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The Greatwall kinase/Mastl is an essential gene that indirectly inhibits the phosphatase activity toward mitotic Cdk1 substrates. Here we show that although Mastl knockout (MastlNULL) MEFs enter mitosis, they progress through mitosis without completing cytokinesis despite the presence of misaligned chromosomes, which causes chromosome segregation defects. Furthermore, we uncover the requirement of Mastl for robust spindle assembly checkpoint (SAC) maintenance since the duration of mitotic arrest caused by microtubule poisons in MastlNULL MEFs is shortened, which correlates with premature disappearance of the essential SAC protein Mad1 at the kinetochores. Notably, MastlNULL MEFs display reduced phosphorylation of a number of proteins in mitosis, which include the essential SAC kinase MPS1. We further demonstrate that Mastl is required for multi-site phosphorylation of MPS1 as well as robust MPS1 kinase activity in mitosis. In contrast, treatment of MastlNULL cells with the phosphatase inhibitor okadaic acid (OKA) rescues the defects in MPS1 kinase activity, mislocalization of phospho-MPS1 as well as Mad1 at the kinetochore, and premature SAC silencing. Moreover, using in vitro dephosphorylation assays, we demonstrate that Mastl promotes persistent MPS1 phosphorylation by inhibiting PP2A/B55-mediated MPS1 dephosphorylation rather than affecting Cdk1 kinase activity. Our findings establish a key regulatory function of the Greatwall kinase/Mastl->PP2A/B55 pathway in preventing premature SAC silencing. Output:
Cdk1 phosphorylates many substrates in mitosis and simultaneoulsy reduces the activity of the corresponding phosphatase PP2A through the Greatwall kinase/Mastl. When Mastl is deleted, cells progress through mitosis with missegregated chromosomes, which become unraveled. However, the molecular mechansims by which Mastl promotes proper chromosome segregation and mitotic progression remain elusive. In this study, we show that the Cdk1->Greatwall kinase/Mastl->PP2A pathway plays a central role in regulating the spindle assembly checkpoint (SAC) by preventing premature SAC silencing. We further demonstrate that Mastl is required for multi-site phosphorylation of the essntial SAC protein MPS1 as well as robust MPS1 kinase activity in mitosis by inhibiting PP2A/B55-mediated MPS1 dephosphorylation. Our findings establish the requirement of Mastl for robust SAC maintenance.
PLOS349
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Integrated development of diverse tissues gives rise to a functional, mobile vertebrate musculoskeletal system. However, the genetics and cellular interactions that drive the integration of muscle, tendon, and skeleton are poorly understood. In the vertebrate head, neural crest cells, from which cranial tendons derive, pattern developing muscles just as tendons have been shown to in limb and trunk tissue, yet the mechanisms of this patterning are unknown. From a forward genetic screen, we determined that cyp26b1 is critical for musculoskeletal integration in the ventral pharyngeal arches, particularly in the mandibulohyoid junction where first and second arch muscles interconnect. Using time-lapse confocal analyses, we detail musculoskeletal integration in wild-type and cyp26b1 mutant zebrafish. In wild-type fish, tenoblasts are present in apposition to elongating muscles and condense in discrete muscle attachment sites. In the absence of cyp26b1, tenoblasts are generated in normal numbers but fail to condense into nascent tendons within the ventral arches and, subsequently, muscles project into ectopic locales. These ectopic muscle fibers eventually associate with ectopic tendon marker expression. Genetic mosaic analysis demonstrates that neural crest cells require Cyp26b1 function for proper musculoskeletal development. Using an inhibitor, we find that Cyp26 function is required in a short time window that overlaps the dynamic window of tenoblast condensation. However, cyp26b1 expression is largely restricted to regions between tenoblast condensations during this time. Our results suggest that degradation of RA by this previously undescribed population of neural crest cells is critical to promote condensation of adjacent scxa-expressing tenoblasts and that these condensations are subsequently required for proper musculoskeletal integration. Output:
Mobility requires that muscles form appropriate attachments via tendon. The genes regulating this attachment are poorly understood. This is especially true in the head where mesoderm and neural crest cells generate muscle and tendon, respectively. We show that the gene cyp26b1 is critical for muscle tendon attachment in a specific region of the developing head. The movement of tendon generating cells into mature tendons requires cyp26b1. Loss of cyp26b1 disrupts these movements and muscles subsequently extend into inappropriate areas. Cyp26b1 appears to be required in neural crest cells but not the tendon generating cells. Collectively, our work provides insight into the genetic and cellular mechanisms that attach muscle and tendon.
PLOS350
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The World Health Organization, the World Organization for Animal Health, and the Food and Agriculture Organization have resolved to eliminate human rabies deaths due to dog bites by 2030, and the Vaccine Alliance (Gavi) has added human rabies vaccines to their investments for 2021–2025. Implementing these goals cost-effectively and sustainably requires understanding the complex connections between dog rabies vaccination and human risk and response. The objective of this paper is to estimate how dog rabies vaccinations affect human rabies deaths, mediated through dog rabies cases, dog bite reporting, and post-exposure human rabies vaccination. To approach this objective, we apply multivariate regression analysis over five rabies-related outcomes: (a) dog vaccinations, (b) dog rabies cases, (c) reported human exposures, (d) human post-exposure prophylaxis (PEP) use, and (e) human rabies cases. Analysis uses aggregate annual data over 1995–2005 for seven Latin American countries that experienced dramatic declines in canine and human rabies. Among other results, we estimate the following. (i) A 10% increase in dog vaccinations decreases dog rabies cases by 2.3%. (ii) Reported exposures decline as concurrent dog rabies cases decline, but these declines are more than offset by increases in reported exposures per dog rabies case, which may result from higher rabies awareness due to anti-rabies campaigns. (iii) A 10% increase in PEP use decreases human deaths by 7%, but a 10% increase in dog vaccination induces a 2.8% decrease in PEP use. The net effect is that a 10% increase in dog vaccination reduces human deaths by 12.4% overall, although marginal effectiveness declines as dog rabies incidence declines. (iv) Increases in income and public health expenditures increase PEP demand. The findings highlight the importance of mass dog vaccination, heightened awareness, treatment access, and clinical algorithms to reduce both false negatives leading to death and false positives leading to costly unnecessary PEP prescriptions. Output:
Several global health organizations have prioritized investment for global elimination of human death from canine rabies. Cost-effective deployment requires understanding complex connections between rabies risk and healthcare seeking behavior. During 1995–2005, there was a rapid decline in dog and human rabies cases in several Latin American countries following concerted investment in mass dog vaccinations and human post-exposure vaccination. Using data from this period, we econometrically estimate relationships between dog vaccinations, dog rabies cases, human exposure reports, human post-exposure prophylaxis (PEP) use, and human rabies deaths. We estimate quantitatively how dog vaccinations indirectly reduce human rabies deaths, mediated through dog rabies cases, dog bite reporting, and PEP use. We find that reported human exposures decline as dog rabies cases decline, but these declines are offset by increases in reported exposures per dog rabies case, which may be driven by increased rabies awareness through anti-rabies campaigns. Furthermore, while PEP demand declines as dog rabies cases decline, increases in income and public health expenditures concurrently increase demand for PEP. These findings provide better understanding of the underlying factors driving PEP demand and exposure (under)reporting to inform cost-effective policy design to reduce unnecessary PEP prescription and false negatives leading to human death.
PLOS351
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The etiology of ovarian epithelial cancer is poorly understood, mainly due to the lack of an appropriate experimental model for studying the onset and progression of this disease. We have created a mutant mouse model in which aberrant estrogen receptor alpha (ERα) signaling in the hypothalamic-pituitary-ovarian axis leads to ovarian epithelial tumorigenesis. In these mice, termed ERαd/d, the ERα gene was conditionally deleted in the anterior pituitary, but remained intact in the hypothalamus and the ovary. The loss of negative-feedback regulation by estrogen (E) at the level of the pituitary led to increased production of luteinizing hormone (LH) by this tissue. Hyperstimulation of the ovarian cells by LH resulted in elevated steroidogenesis, producing high circulating levels of steroid hormones, including E. The ERαd/d mice exhibited formation of palpable ovarian epithelial tumors starting at 5 months of age with 100% penetrance. By 15 months of age, 80% of ERαd/d mice die. Besides proliferating epithelial cells, these tumors also contained an expanded population of luteinized stromal cells, which acquire the ability to express P450 aromatase and synthesize E locally. In response to the elevated levels of E, the ERα signaling was accentuated in the ovarian epithelial cells of ERαd/d mice, triggering increased ERα-dependent gene expression, abnormal cell proliferation, and tumorigenesis. Consistent with these findings, treatment of ERαd/d mice with letrozole, an aromatase inhibitor, markedly reduced circulating E and ovarian tumor volume. We have, therefore, developed a unique animal model, which serves as a useful tool for exploring the involvement of E-dependent signaling pathways in ovarian epithelial tumorigenesis. Output:
Ovarian cancer is currently the most lethal gynecological cancer in the United States. Multiple epidemiological studies indicate that women who take hormone replacement therapy, estrogen or estrogen with progesterone, peri- or postmenopause will have an increased chance of developing ovarian cancer. Unfortunately, the five-year survival rate after diagnosis is very low indicating that better tools are needed to diagnose and treat ovarian cancer. The models that would allow investigation of this disease are severely limited. In this article we introduce a mouse model that develops epithelial ovarian tumors, and by employing inhibitors of estrogen synthesis, we show that ovarian tumorigenesis in this model is dependent on estrogen production within the ovarian tumor. These studies suggest that estrogen may play a role in promoting ovarian tumor growth.
PLOS352
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: In mammals, mothers are the primary caregiver, programmed, in part, by hormones produced during pregnancy. High-quality maternal care is essential for the survival and lifelong health of offspring. We previously showed that the paternally silenced imprinted gene pleckstrin homology-like domain family A member 2 (Phlda2) functions to negatively regulate a single lineage in the mouse placenta called the spongiotrophoblast, a major source of hormones in pregnancy. Consequently, the offspring’s Phlda2 gene dosage may influence the quality of care provided by the mother. Here, we show that wild-type (WT) female mice exposed to offspring with three different doses of the maternally expressed Phlda2 gene—two active alleles, one active allele (the extant state), and loss of function—show changes in the maternal hypothalamus and hippocampus during pregnancy, regions important for maternal-care behaviour. After birth, WT dams exposed in utero to offspring with the highest Phlda2 dose exhibit decreased nursing and grooming of pups and increased focus on nest building. Conversely, ‘paternalised’ dams, exposed to the lowest Phlda2 dose, showed increased nurturing of their pups, increased self-directed behaviour, and a decreased focus on nest building, behaviour that was robustly maintained in the absence of genetically modified pups. This work raises the intriguing possibility that imprinting of Phlda2 contributed to increased maternal care during the evolution of mammals. Output:
Female mammals are primed during pregnancy for their new role as a mother caring for their newborn. Indirect evidence suggests that this behaviour is, in part, instructed by hormones produced by the foetally derived placenta. We previously reported that the Phlda2 gene controls the size of the placental endocrine compartment that produces hormones. Phlda2 is subject to the remarkable epigenetic process called genomic imprinting, in which one parental allele is switched off. In the case of Phlda2, this is the paternal allele. This raises the intriguing possibility that the father’s genome influences the quality of care that offspring receive from their mothers. Here, we show via genetic manipulation of pup embryos that female mice pregnant with pups carrying the highest dose of Phlda2 favour nest building over caring for their young or themselves. In contrast, dams exposed to the lowest Phlda2 dose while pregnant prioritise nurturing and grooming of their young and personal grooming. These changes in maternal focus suggest the possibility that imprinting of Phlda2 contributed to enhanced maternal care in mammals. This study also presents a unique example of how the genetic makeup of offspring can influence maternal behaviour.
PLOS353
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Biomolecular recognition entails attractive forces for the functional native states and discrimination against potential nonnative interactions that favor alternate stable configurations. The challenge posed by the competition of nonnative stabilization against native-centric forces is conceptualized as frustration. Experiment indicates that frustration is often minimal in evolved biological systems although nonnative possibilities are intuitively abundant. Much of the physical basis of minimal frustration in protein folding thus remains to be elucidated. Here we make progress by studying the colicin immunity protein Im9. To assess the energetic favorability of nonnative versus native interactions, we compute free energies of association of various combinations of the four helices in Im9 (referred to as H1, H2, H3, and H4) by extensive explicit-water molecular dynamics simulations (total simulated time > 300 μs), focusing primarily on the pairs with the largest native contact surfaces, H1-H2 and H1-H4. Frustration is detected in H1-H2 packing in that a nonnative packing orientation is significantly stabilized relative to native, whereas such a prominent nonnative effect is not observed for H1-H4 packing. However, in contrast to the favored nonnative H1-H2 packing in isolation, the native H1-H2 packing orientation is stabilized by H3 and loop residues surrounding H4. Taken together, these results showcase the contextual nature of molecular recognition, and suggest further that nonnative effects in H1-H2 packing may be largely avoided by the experimentally inferred Im9 folding transition state with native packing most developed at the H1-H4 rather than the H1-H2 interface. Output:
Biomolecules need to recognize one another with high specificity: promoting “native” functional intermolecular binding events while avoiding detrimental “nonnative” bound configurations; i.e., “frustration”—the tendency for nonnative interactions—has to be minimized. Folding of globular proteins entails a similar discrimination. To gain physical insight, we computed the binding affinities of helical structures of the protein Im9 in various native or nonnative configurations by atomic simulations, discovering that partial packing of the Im9 core is frustrated. This frustration is overcome when the entire core of the protein is assembled, consistent with experiment indicating no significant kinetic trapping in Im9 folding. Our systematic analysis thus reveals a subtle, contextual aspect of biomolecular recognition and provides a general approach to characterize folding frustration.
PLOS354
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Most statistical and mechanistic models used to predict mosquito-borne disease transmission incorporate climate drivers of disease transmission by utilizing environmental data collected at geographic scales that are potentially coarser than what mosquito populations may actually experience. Temperature and relative humidity can vary greatly between indoor and outdoor environments, and can be influenced strongly by variation in landscape features. In the Aedes albopictus system, we conducted a proof-of-concept study in the vicinity of the University of Georgia to explore the effects of fine-scale microclimate variation on mosquito life history and vectorial capacity (VC). We placed Ae. albopictus larvae in artificial pots distributed across three replicate sites within three different land uses–urban, suburban, and rural, which were characterized by high, intermediate, and low proportions of impervious surfaces. Data loggers were placed into each larval environment and in nearby vegetation to record daily variation in water and ambient temperature and relative humidity. The number of adults emerging from each pot and their body size and sex were recorded daily. We found mosquito microclimate to significantly vary across the season as well as with land use. Urban sites were in general warmer and less humid than suburban and rural sites, translating into decreased larval survival, smaller body sizes, and lower per capita growth rates of mosquitoes on urban sites. Dengue transmission potential was predicted to be higher in the summer than the fall. Additionally, the effects of land use on dengue transmission potential varied by season. Warm summers resulted in a higher predicted VC on the cooler, rural sites, while warmer, urban sites had a higher predicted VC during the cooler fall season. Output:
Environmental factors influence the dynamics of mosquito-borne disease transmission. Most models used to predict mosquito-borne disease transmission incorporate climate data collected at coarser scales than mosquitoes typically experience. Climate conditions can vary greatly between indoor and outdoor environments, and are influenced by landscape features. We conducted a field experiment with the Asian tiger mosquito to explore how microclimate variation across an urban landscape affects mosquito life history and potential to transmit arboviruses, like dengue. We demonstrate that climate conditions captured by weather stations do not reflect relevant mosquito microclimate, and that subtle variation in mean and diurnal ranges of temperature and relative humidity can lead to appreciable variation in key mosquito / pathogen traits that are important for transmission. Our results have implications for statistical and mechanistic models used to predict variation in transmission across seasons, regions, and land uses, but also for building in realistic environmental variation in laboratory work on mosquito-pathogen interactions. Finally, the variation in microclimate we observed across land use was subtle; likely because our study site is a relatively small city. Nevertheless, these translated into considerable differences in mosquito traits and dengue transmission potential, suggesting these effects could be much larger in more expansive cities.
PLOS355
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that causes birth defects in newborns and life-threatening complications in immunocompromised individuals. Among all human herpesviruses, HCMV contains a much larger dsDNA genome within a similarly-sized capsid compared to the others, and it was proposed to require pp150, a tegument protein only found in cytomegaloviruses, to stabilize its genome-containing capsid. However, little is known about how pp150 interacts with the underlying capsid. Moreover, the smallest capsid protein (SCP), while dispensable in herpes simplex virus type 1, was shown to play essential, yet undefined, role in HCMV infection. Here, by cryo electron microscopy (cryoEM), we determine three-dimensional structures of HCMV capsid (no pp150) and virion (with pp150) at sub-nanometer resolution. Comparison of these two structures reveals that each pp150 tegument density is composed of two helix bundles connected by a long central helix. Correlation between the resolved helices and sequence-based secondary structure prediction maps the tegument density to the N-terminal half of pp150. The structures also show that SCP mediates interactions between the capsid and pp150 at the upper helix bundle of pp150. Consistent with this structural observation, ribozyme inhibition of SCP expression in HCMV-infected cells impairs the formation of DNA-containing viral particles and reduces viral yield by 10,000 fold. By cryoEM reconstruction of the resulting “SCP-deficient” viral particles, we further demonstrate that SCP is required for pp150 functionally binding to the capsid. Together, our structural and biochemical results point to a mechanism whereby SCP recruits pp150 to stabilize genome-containing capsid for the production of infectious HCMV virion. Output:
Human cytomegalovirus (HCMV) causes birth defects in newborns and life-threatening complications in immunocompromised individuals, such as AIDS patients and organ transplant recipients. The smallest capsid protein (SCP) – only 8 kDa molecular mass as compared to the 155 kDa major capsid protein – has been demonstrated to be essential for HCMV growth, but is dispensable in herpes simplex virus type 1. These seemingly contradictory observations have been a paradox. Here, we solve this paradox by high resolution cryo electron microscopy (cryoEM), in conjunction with functional studies using ribozyme inhibition. Our structural comparisons of HCMV virion and capsid reveal molecular interactions at the secondary structure level and suggest that SCP might contribute to capsid binding of pp150, an essential, cytomegalovirus-specific tegument protein. SCP-deficient particles generated by ribozyme inhibition of SCP-expression in HCMV-infected cells show no pp150 tegument density, demonstrating that SCP is required for the functional binding of pp150 to the capsid. Our results suggest that SCP recruits pp150 to stabilize the HCMV nucleocapsid to enable encapsidation of the genome, which is more densely packaged in HCMV than in other herpesviruses. Overall, this study not only resolves the above paradox, but also illustrates the passive acquisition of a new, essential function by SCP in the production of infectious HCMV virions.
PLOS356
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Mammalian embryogenesis is a dynamic process involving gene expression and mechanical forces between proliferating cells. The exact nature of these interactions, which determine the lineage patterning of the trophectoderm and endoderm tissues occurring in a highly regulated manner at precise periods during the embryonic development, is an area of debate. We have developed a computational modeling framework for studying this process, by which the combined effects of mechanical and genetic interactions are analyzed within the context of proliferating cells. At a purely mechanical level, we demonstrate that the perpendicular alignment of the animal-vegetal (a-v) and embryonic-abembryonic (eb-ab) axes is a result of minimizing the total elastic conformational energy of the entire collection of cells, which are constrained by the zona pellucida. The coupling of gene expression with the mechanics of cell movement is important for formation of both the trophectoderm and the endoderm. In studying the formation of the trophectoderm, we contrast and compare quantitatively two hypotheses: (1) The position determines gene expression, and (2) the gene expression determines the position. Our model, which couples gene expression with mechanics, suggests that differential adhesion between different cell types is a critical determinant in the robust endoderm formation. In addition to differential adhesion, two different testable hypotheses emerge when considering endoderm formation: (1) A directional force acts on certain cells and moves them into forming the endoderm layer, which separates the blastocoel and the cells of the inner cell mass (ICM). In this case the blastocoel simply acts as a static boundary. (2) The blastocoel dynamically applies pressure upon the cells in contact with it, such that cell segregation in the presence of differential adhesion leads to the endoderm formation. To our knowledge, this is the first attempt to combine cell-based spatial mechanical simulations with genetic networks to explain mammalian embryogenesis. Such a framework provides the means to test hypotheses in a controlled in silico environment. Output:
We elucidate by computational means the processes by which the development of the mammalian embryo during its first four to five days occurs, as it is transformed from a single stem cell into hundreds of cells of different tissue types. We are interested in understanding the fundamental processes of how gene expression dynamics within each cell is coupled to the mechanical forces between cells, such that cells move to take up their positions as part of different tissues depending on the genes they express. Recent experiments which track single cell movement and division in conjunction with their gene expression dynamics suggest various hypotheses as to how this coupling functions to pattern the embryo. We have developed a computational model which can test these hypotheses. The model consists of dividing cells, interacting with each other through mechanical forces, within a confinement of embryo boundary. Each cell contains a genetic network of specific genes which influence cell adhesion properties and cell division plane directions. We explicitly simulate the formation of the trophectoderm and endoderm layers of cells which illuminates the principles by which the embryo is robustly patterned.
PLOS357
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: To determine the spatial and temporal dynamics of influenza A virus during a single epidemic, we examined whole-genome sequences of 284 A/H1N1 and 69 A/H3N2 viruses collected across the continental United States during the 2006–2007 influenza season, representing the largest study of its kind undertaken to date. A phylogenetic analysis revealed that multiple clades of both A/H1N1 and A/H3N2 entered and co-circulated in the United States during this season, even in localities that are distant from major metropolitan areas, and with no clear pattern of spatial spread. In addition, co-circulating clades of the same subtype exchanged genome segments through reassortment, producing both a minor clade of A/H3N2 viruses that appears to have re-acquired sensitivity to the adamantane class of antiviral drugs, as well as a likely antigenically distinct A/H1N1 clade that became globally dominant following this season. Overall, the co-circulation of multiple viral clades during the 2006–2007 epidemic season revealed patterns of spatial spread that are far more complex than observed previously, and suggests a major role for both migration and reassortment in shaping the epidemiological dynamics of human influenza A virus. Output:
This study is the first of its kind to reconstruct the spread of an epidemic of influenza A virus across a single country, in this case the United States. In contrast to a single viral lineage spreading across this country, a phylogenetic analysis of the whole-genome sequences of more than 300 influenza A viruses of the A/H1N1 and A/H3N2 subtypes sampled from the 2006–2007 epidemic season reveals that multiple phenotypically and antigenically distinct viral lineages of entered and co-circulated in the US during this time. Furthermore, the widespread co-circulation of multiple lineages, even in geographically remote localities, allowed for frequent reassortment between influenza A viruses of the same subtype. Through reassortment, a minor lineage of A/H3N2 viruses surprisingly re-acquired sensitivity to the adamantane class of antiviral drugs, and a new A/H1N1 antigenic variant emerged that later became globally dominant. In sum, these results highlight the complexity of the spread of influenza A virus in time and space, and highlight the need for intensified global surveillance involving whole-genome sequence data.
PLOS358
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: MIP-T3 is a human protein found previously to associate with microtubules and the kinesin-interacting neuronal protein DISC1 (Disrupted-in-Schizophrenia 1), but whose cellular function(s) remains unknown. Here we demonstrate that the C. elegans MIP-T3 ortholog DYF-11 is an intraflagellar transport (IFT) protein that plays a critical role in assembling functional kinesin motor-IFT particle complexes. We have cloned a loss of function dyf-11 mutant in which several key components of the IFT machinery, including Kinesin-II, as well as IFT subcomplex A and B proteins, fail to enter ciliary axonemes and/or mislocalize, resulting in compromised ciliary structures and sensory functions, and abnormal lipid accumulation. Analyses in different mutant backgrounds further suggest that DYF-11 functions as a novel component of IFT subcomplex B. Consistent with an evolutionarily conserved cilia-associated role, mammalian MIP-T3 localizes to basal bodies and cilia, and zebrafish mipt3 functions synergistically with the Bardet-Biedl syndrome protein Bbs4 to ensure proper gastrulation, a key cilium- and basal body-dependent developmental process. Our findings therefore implicate MIP-T3 in a previously unknown but critical role in cilium biogenesis and further highlight the emerging role of this organelle in vertebrate development. Output:
The transport of protein complexes and associated cargo along microtubule tracks represents an essential eukaryotic process responsible for a multitude of cellular functions, including cell division, vesicle movement to membranes, and trafficking along dendrites, axons, and cilia. The latter organelles are hair-like cellular appendages implicated in cell and fluid motility, sensing and transducing information from their environment, and development. Their biogenesis and maintenance depends on a kinesin- and dynein-mediated motility process termed intraflagellar transport (IFT). In addition to comprising these specialized molecular motors, the IFT machinery consists of large multisubunit complexes whose exact composition and organization has not been fully defined. Here we identify a protein, DYF-11/MIP-T3, that is conserved in all ciliated organisms and is associated with IFT in C. elegans. Disruption of C. elegans DYF-11 results in structurally compromised cilia, likely as a result of IFT motor and subunit misassembly. Animals lacking DYF-11 display chemosensory anomalies, consistent with a role for the protein in cilia-associated sensory processes. In zebrafish, MIP-T3 is essential for gastrulation movements during development, similar to that observed for other ciliary components, including Bardet-Biedl syndrome proteins. In conclusion, we have identified a novel IFT machinery component that is also essential for development in vertebrates.
PLOS359
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Facioscapulohumeral dystrophy (FSHD) is a progressive muscular dystrophy caused by decreased epigenetic repression of the D4Z4 macrosatellite repeats and ectopic expression of DUX4, a retrogene encoding a germline transcription factor encoded in each repeat. Unaffected individuals generally have more than 10 repeats arrayed in the subtelomeric region of chromosome 4, whereas the most common form of FSHD (FSHD1) is caused by a contraction of the array to fewer than 10 repeats, associated with decreased epigenetic repression and variegated expression of DUX4 in skeletal muscle. We have generated transgenic mice carrying D4Z4 arrays from an FSHD1 allele and from a control allele. These mice recapitulate important epigenetic and DUX4 expression attributes seen in patients and controls, respectively, including high DUX4 expression levels in the germline, (incomplete) epigenetic repression in somatic tissue, and FSHD–specific variegated DUX4 expression in sporadic muscle nuclei associated with D4Z4 chromatin relaxation. In addition we show that DUX4 is able to activate similar functional gene groups in mouse muscle cells as it does in human muscle cells. These transgenic mice therefore represent a valuable animal model for FSHD and will be a useful resource to study the molecular mechanisms underlying FSHD and to test new therapeutic intervention strategies. Output:
Facioscapulohumeral dystrophy (FSHD) is a progressive muscle disorder that is associated with contraction and chromatin relaxation of the D4Z4 macrosatellite repeat on chromosome 4q. Each unit of the repeat contains a copy of the primate-specific DUX4 retrogene, encoding a germline transcription factor that is repressed in somatic tissue. In FSHD, somatic repression of the DUX4 gene is compromised, leading to a variegated expression pattern of DUX4 in muscle cells. The complex (epi)genetic etiology of FSHD has long hampered the generation of a faithful animal model, and thus far the role of FSHD candidate genes has only been studied in model organisms by overexpression approaches. Here we present two transgenic mouse models containing either patient- or control-sized D4Z4 repeats. In our mice, the regulation of the FSHD locus is preserved in both lines, and only in the disease model somatic derepression and variegated expression of DUX4 is observed. These mice thus reflect many aspects of the complex regulation of DUX4 expression in humans. These models may therefore become valuable tools in understanding the in vivo regulation and function of DUX4, its role in FSHD, and the evaluation of therapeutic strategies.
PLOS360
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Computational biology is an interdisciplinary field, and many computational biology research projects involve distributed teams of scientists. To accomplish their work, these teams must overcome both disciplinary and geographic barriers. Introducing new training paradigms is one way to facilitate research progress in computational biology. Here, we describe a new undergraduate program in biomolecular structure prediction and design in which students conduct research at labs located at geographically-distributed institutions while remaining connected through an online community. This 10-week summer program begins with one week of training on computational biology methods development, transitions to eight weeks of research, and culminates in one week at the Rosetta annual conference. To date, two cohorts of students have participated, tackling research topics including vaccine design, enzyme design, protein-based materials, glycoprotein modeling, crowd-sourced science, RNA processing, hydrogen bond networks, and amyloid formation. Students in the program report outcomes comparable to students who participate in similar in-person programs. These outcomes include the development of a sense of community and increases in their scientific self-efficacy, scientific identity, and science values, all predictors of continuing in a science research career. Furthermore, the program attracted students from diverse backgrounds, which demonstrates the potential of this approach to broaden the participation of young scientists from backgrounds traditionally underrepresented in computational biology. Output:
Computational biology research is frequently conducted by virtual teams: groups of scientists in different locations that use shared resources and online communication tools to collaborate on a problem. It is imperative that the next generation of computational biologists can easily work in these interdisciplinary, distributed settings. However, most undergraduate research training programs are hosted by a single institution. In this report, we describe a new summer undergraduate research program in which students conduct biomolecular modeling research with the Rosetta software in research groups around the world. The students each conducted their own research project in a university-based group while collaborating with other students and members of the Rosetta Commons at a distance using everyday tools such as Slack, Skype, GitHub, and Google Hangouts. When compared with in-person summer research training programs, students report similar or even improved outcomes, including the development of a sense of community and increases in their scientific self-efficacy, scientific identity, and science values. Furthermore, our program attracts a diverse group of students and thus has the potential to help broaden participation in computational biology.
PLOS361
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Human β-defensin 3 (hBD3) is a cationic host defence peptide and is part of the innate immune response. HBD3 is present on a highly copy number variable block of six β-defensin genes, and increased copy number is associated with the autoimmune disease psoriasis. It is not known how this increase influences disease development, but psoriasis is a T cell-mediated disease and activation of the innate immune system is required for the initial trigger that leads to the amplification stage. We investigated the effect of hBD3 on the response of primary macrophages to various TLR agonists. HBD3 exacerbated the production of type I Interferon-β in response to the viral ligand mimic polyinosinic:polycytidylic acid (polyI:C) in both human and mouse primary cells, although production of the chemokine CXCL10 was suppressed. Compared to polyI:C alone, mice injected with both hBD3 peptide and polyI:C also showed an enhanced increase in Interferon-β. Mice expressing a transgene encoding hBD3 had elevated basal levels of Interferon-β, and challenge with polyI:C further increased this response. HBD3 peptide increased uptake of polyI:C by macrophages, however the cellular response and localisation of polyI:C in cells treated contemporaneously with hBD3 or cationic liposome differed. Immunohistochemistry showed that hBD3 and polyI:C do not co-localise, but in the presence of hBD3 less polyI:C localises to the early endosome. Using bone marrow derived macrophages from knockout mice we demonstrate that hBD3 suppresses the polyI:C-induced TLR3 response mediated by TICAM1 (TRIF), while exacerbating the cytoplasmic response through MDA5 (IFIH1) and MAVS (IPS1/CARDIF). Thus, hBD3, a highly copy number variable gene in human, influences cellular responses to the viral mimic polyI:C implying that copy number may have a significant phenotypic effect on the response to viral infection and development of autoimmunity in humans. Output:
Defensins are classically known as antimicrobial peptides due to their ability to rapidly kill pathogens including bacteria, viruses and fungi. They are produced in the presence of infectious agents at body surfaces exposed to the environment. Increasingly, their functional repertoire is expanding, and they have been shown to modulate the immune system. In humans, there is a block of six β-defensin genes that varies in copy number in the population. Individuals with an increased number of β-defensin genes have an increased likelihood of developing the skin autoimmune disease psoriasis. It is not known how this increase in gene copy number influences development of the disease, and psoriasis is a complex interplay of genomic and environmental factors that trigger disease progression and include exposure to viruses. We examined whether a molecular pattern characteristic of viruses produces an altered immune response in the presence of the defensin human β-defensin 3 (hBD3). We find that hBD3 triggers a larger interferon defence response to this viral mimic by increasing accessibility to a cellular receptor that recognises viral patterns. Interferon is known to be important in autoimmunity and our work may explain why individuals with increased β-defensin number are predisposed to develop psoriasis.
PLOS362
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Mycobacterium tuberculosis (Mtb) is thought to preferentially rely on fatty acid metabolism to both establish and maintain chronic infections. Its metabolic network, however, allows efficient co-catabolism of multiple carbon substrates. To gain insight into the importance of carbohydrate substrates for Mtb pathogenesis we evaluated the role of glucose phosphorylation, the first reaction in glycolysis. We discovered that Mtb expresses two functional glucokinases. Mtb required the polyphosphate glucokinase PPGK for normal growth on glucose, while its second glucokinase GLKA was dispensable. 13C-based metabolomic profiling revealed that both enzymes are capable of incorporating glucose into Mtb's central carbon metabolism, with PPGK serving as dominant glucokinase in wild type (wt) Mtb. When both glucokinase genes, ppgK and glkA, were deleted from its genome, Mtb was unable to use external glucose as substrate for growth or metabolism. Characterization of the glucokinase mutants in mouse infections demonstrated that glucose phosphorylation is dispensable for establishing infection in mice. Surprisingly, however, the glucokinase double mutant failed to persist normally in lungs, which suggests that Mtb has access to glucose in vivo and relies on glucose phosphorylation to survive during chronic mouse infections. Output:
The development of new drugs targeting Mycobacterium tuberculosis (Mtb) will benefit from a better understanding of the mechanisms by which this pathogen establishes and maintains chronic infections. Mtb has to adapt its metabolic needs to the nutritional environment in the host. We investigated the role of glucose phosphorylation and discovered that Mtb expresses two functional glucokinases. Using 13C-tracing experiments we demonstrated that both enzymes are competent to incorporate glucose into central carbon metabolism. In agreement with the view that Mtb metabolizes fatty acids to grow in vivo, both enzymes were dispensable for Mtb replication in mouse lungs and spleens. Surprisingly, however, the glucokinase double mutant was attenuated during the chronic phase of mouse infections. These studies suggest that Mtb metabolizes glucose in vivo and that its survival in chronically infected mice depends on glucose phosphorylation.
PLOS363
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Wild birds have been implicated in the emergence of human and livestock influenza. The successful prediction of viral spread and disease emergence, as well as formulation of preparedness plans have been hampered by a critical lack of knowledge of viral movements between different host populations. The patterns of viral spread and subsequent risk posed by wild bird viruses therefore remain unpredictable. Here we analyze genomic data, including 287 newly sequenced avian influenza A virus (AIV) samples isolated over a 34-year period of continuous systematic surveillance of North American migratory birds. We use a Bayesian statistical framework to test hypotheses of viral migration, population structure and patterns of genetic reassortment. Our results reveal that despite the high prevalence of Charadriiformes infected in Delaware Bay this host population does not appear to significantly contribute to the North American AIV diversity sampled in Anseriformes. In contrast, influenza viruses sampled from Anseriformes in Alberta are representative of the AIV diversity circulating in North American Anseriformes. While AIV may be restricted to specific migratory flyways over short time frames, our large-scale analysis showed that the long-term persistence of AIV was independent of bird flyways with migration between populations throughout North America. Analysis of long-term surveillance data provides vital insights to develop appropriately informed predictive models critical for pandemic preparedness and livestock protection. Output:
Despite continuous virological surveillance (1976–2009) in wild waterfowl (Anseriformes) and shorebirds (Charadriiformes), the ecological and evolutionary dynamics of avian influenza A virus (AIV) in these hosts is poorly understood. Comparative genomic analysis of AIV data revealed that the high prevalence of Charadriiformes infected in Delaware Bay is a reservoir of AIV that is phylogenetically distinct from AIV sampled from most North American Anseriformes. In contrast, influenza viruses sampled from Anseriformes in Alberta are representative of the remaining AIV diversity sampled across North America. While AIV may be restricted to specific migratory flyways over short time frames, our large-scale analysis showed that this population genetic structure was transient and the long-term persistence of AIV was independent of bird flyways. These results suggest an introduced virus lineage may initially be restricted to one flyway, but migration to a major congregation site such as Alberta could occur followed by subsequent spread across flyways. These generalized predictions for virus movement will be critical to assess the associated risk for widespread diffusion and inform surveillance for pandemic preparedness.
PLOS364
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Statistical imputation of classical HLA alleles in case-control studies has become established as a valuable tool for identifying and fine-mapping signals of disease association in the MHC. Imputation into diverse populations has, however, remained challenging, mainly because of the additional haplotypic heterogeneity introduced by combining reference panels of different sources. We present an HLA type imputation model, HLA*IMP:02, designed to operate on a multi-population reference panel. HLA*IMP:02 is based on a graphical representation of haplotype structure. We present a probabilistic algorithm to build such models for the HLA region, accommodating genotyping error, haplotypic heterogeneity and the need for maximum accuracy at the HLA loci, generalizing the work of Browning and Browning (2007) and Ron et al. (1998). HLA*IMP:02 achieves an average 4-digit imputation accuracy on diverse European panels of 97% (call rate 97%). On non-European samples, 2-digit performance is over 90% for most loci and ethnicities where data available. HLA*IMP:02 supports imputation of HLA-DPB1 and HLA-DRB3-5, is highly tolerant of missing data in the imputation panel and works on standard genotype data from popular genotyping chips. It is publicly available in source code and as a user-friendly web service framework. Output:
The human leukocyte antigen (HLA) proteins influence how pathogens and components of body cells are presented to immune cells. It has long been known that they are highly variable and that this variation is associated with differential risk for autoimmune and infectious diseases. Variant frequencies differ substantially between and even within continents. Determining HLA genotypes is thus an important part of many studies to understand the genetic basis of disease risk. However, conventional methods for HLA typing (e.g. targeted sequencing, hybridisation, amplification) are typically laborious and expensive. We have developed a method for inferring an individual's HLA genotype based on evaluating genetic information from nearby variable sites that are more easily assayed, which aims to integrate heterogeneous data. We introduce two key innovations: we allow for single HLA types to appear on heterogeneous backgrounds of genetic information and we take into account the possibility of genotyping error, which is common within the HLA region. We show that the method is well-suited to deal with multi-population datasets: it enables integrated HLA type inference for individuals of differing ancestry and ethnicity. It will therefore prove useful particularly in international collaborations to better understand disease risks, where samples are drawn from multiple countries.
PLOS365
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The regulation of mucosal immune function is critical to host protection from enteric pathogens but is incompletely understood. The nervous system and the neurotransmitter acetylcholine play an integral part in host defense against enteric bacterial pathogens. Here we report that acetylcholine producing-T-cells, as a non-neuronal source of ACh, were recruited to the colon during infection with the mouse pathogen Citrobacter rodentium. These ChAT+ T-cells did not exclusively belong to one Th subset and were able to produce IFNγ, IL-17A and IL-22. To interrogate the possible protective effect of acetylcholine released from these cells during enteric infection, T-cells were rendered deficient in their ability to produce acetylcholine through a conditional gene knockout approach. Significantly increased C. rodentium burden was observed in the colon from conditional KO (cKO) compared to WT mice at 10 days post-infection. This increased bacterial burden in cKO mice was associated with increased expression of the cytokines IL-1β, IL-6, and TNFα, but without significant changes in T-cell and ILC associated IL-17A, IL-22, and IFNγ, or epithelial expression of antimicrobial peptides, compared to WT mice. Despite the increased expression of pro-inflammatory cytokines during C. rodentium infection, inducible nitric oxide synthase (Nos2) expression was significantly reduced in intestinal epithelial cells of ChAT T-cell cKO mice 10 days post-infection. Additionally, a cholinergic agonist enhanced IFNγ-induced Nos2 expression in intestinal epithelial cell in vitro. These findings demonstrated that acetylcholine, produced by specialized T-cells that are recruited during C. rodentium infection, are a key mediator in host-microbe interactions and mucosal defenses. Output:
The nervous system is an active contributor to the regulation of immune responses. Prior studies have identified a unique CD4+ T-cell population that can relay signals from the sympathetic nervous system. These specialized T-cells express the enzyme choline acetyltransferase (ChAT) and produce acetylcholine (ACh). Release of ACh in response to neurotransmitters from the sympathetic innervation was previously shown to aberrant immune cell activation, reducing mortality during septic shock. Also, these CD4+ ChAT+ T-cells were previously found to control host-commensal interactions in naïve mice, but their role during enteric bacterial infection was unknown. Here we demonstrate that infection with C. rodentium induces ChAT+ T-cell recruitment and that expression of ChAT by this T-cell population significantly augments host defenses. These data support a diverse and expanding role of ACh in host immune responses.
PLOS366
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Signals created by local perturbations are known to propagate long distances through proteins via backbone connectivity and nonbonded interactions. In the current study, signal propagation from the flexible ligand binding loop to the rest of Protein Tyrosine Phosphatase 1B (PTP1B) was investigated using frequency response techniques. Using restrained Targeted Molecular Dynamics (TMD) potential on WPD and R loops, PTP1B was driven between its crystal structure conformations at different frequencies. Propagation of the local perturbation signal was manifested via peaks at the fundamental frequency and upper harmonics of 1/f distributed spectral density of atomic variables, such as Cα atoms, dihedral angles, or polar interaction distances. Frequency of perturbation was adjusted high enough (simulation length >∼10×period of a perturbation cycle) not to be clouded by random diffusional fluctuations, and low enough (<∼0.8 ns−1) not to attenuate the propagating signal and enhance the contribution of the side-chains to the dissipation of the signals. Employing Discrete Fourier Transform (DFT) to TMD simulation trajectories of 16 cycles of conformational transitions at periods of 1.2 to 5 ns yielded Cα displacements consistent with those obtained from crystal structures. Identification of the perturbed atomic variables by statistical t-tests on log-log scale spectral densities revealed the extent of signal propagation in PTP1B, while phase angles of the filtered trajectories at the fundamental frequency were used to cluster collectively fluctuating elements. Hydrophobic interactions were found to have a higher contribution to signal transduction between side-chains compared to the role of polar interactions. Most of in-phase fluctuating residues on the signaling pathway were found to have high identity among PTP domains, and located over a wide region of PTP1B including the allosteric site. Due to its simplicity and efficiency, the suggested technique may find wide applications in identification of signaling pathways of different proteins. Output:
Similar to a machine in which interactions between different parts determine its function, signaling between the residues of a protein may play an important role in determining its function. External perturbations, such as ligand binding to a local region, may trigger a global response of the protein, manifested as perturbations in positions or mobility of atoms. Here we introduce a frequency response technique, in which a local periodic perturbation is employed on a flexible loop of a protein, and atomic responses are analyzed. Protein response characteristics are found to be closely related to perturbation frequency, so frequency analysis tools such as power spectral densities and magnitude Bode plots are utilized. Conformational change of the protein estimated by this method is found to be consistent with that determined from crystal structures. We cluster the phase angles of side-chains dihedral angles to identify collectively fluctuating residues, and determine a large number of hydrophobic interactions, which help intraprotein signal propagation. We believe that the suggested frequency response technique will be a fine contribution to the existing repertoire of perturbation methods.
PLOS367
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: LncRNA-protein interactions play important roles in post-transcriptional gene regulation, poly-adenylation, splicing and translation. Identification of lncRNA-protein interactions helps to understand lncRNA-related activities. Existing computational methods utilize multiple lncRNA features or multiple protein features to predict lncRNA-protein interactions, but features are not available for all lncRNAs or proteins; most of existing methods are not capable of predicting interacting proteins (or lncRNAs) for new lncRNAs (or proteins), which don’t have known interactions. In this paper, we propose the sequence-based feature projection ensemble learning method, “SFPEL-LPI”, to predict lncRNA-protein interactions. First, SFPEL-LPI extracts lncRNA sequence-based features and protein sequence-based features. Second, SFPEL-LPI calculates multiple lncRNA-lncRNA similarities and protein-protein similarities by using lncRNA sequences, protein sequences and known lncRNA-protein interactions. Then, SFPEL-LPI combines multiple similarities and multiple features with a feature projection ensemble learning frame. In computational experiments, SFPEL-LPI accurately predicts lncRNA-protein associations and outperforms other state-of-the-art methods. More importantly, SFPEL-LPI can be applied to new lncRNAs (or proteins). The case studies demonstrate that our method can find out novel lncRNA-protein interactions, which are confirmed by literature. Finally, we construct a user-friendly web server, available at http://www.bioinfotech.cn/SFPEL-LPI/. Output:
LncRNA-protein interactions play important roles in post-transcriptional gene regulation, poly-adenylation, splicing and translation. Identification of lncRNA-protein interactions helps to understand lncRNA-related activities. In this paper, we propose a novel computational method “SFPEL-LPI” to predict lncRNA-protein interactions. SFPEL-LPI makes use of lncRNA sequences, protein sequences and known lncRNA-protein associations to extract features and calculate similarities for lncRNAs and proteins, and then combines them with a feature projection ensemble learning frame. SFPEL-LPI can predict unobserved interactions between lncRNAs and proteins, and also can make predictions for new lncRNAs (or proteins), which have no interactions with any proteins (or lncRNAs). SFPEL-LPI produces high-accuracy performances on the benchmark dataset when evaluated by five-fold cross validation, and outperforms state-of-the-art methods. The case studies demonstrate that SFPEL-LPI can find out novel associations, which are confirmed by literature. To facilitate the lncRNA-protein interaction prediction, we develop a user-friendly web server, available at http://www.bioinfotech.cn/SFPEL-LPI/.
PLOS368
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Empiric evidence shows that Aedes aegypti abundance is spatially heterogeneous and that some areas and larval habitats produce more mosquitoes than others. There is a knowledge gap, however, with regards to the temporal persistence of such Ae. aegypti abundance hotspots. In this study, we used a longitudinal entomologic dataset from the city of Iquitos, Peru, to (1) quantify the spatial clustering patterns of adult Ae. aegypti and pupae counts per house, (2) determine overlap between clusters, (3) quantify the temporal stability of clusters over nine entomologic surveys spaced four months apart, and (4) quantify the extent of clustering at the household and neighborhood levels. Data from 13,662 household entomological visits performed in two Iquitos neighborhoods differing in Ae. aegypti abundance and dengue virus transmission was analyzed using global and local spatial statistics. The location and extent of Ae. aegypti pupae and adult hotspots (i.e., small groups of houses with significantly [p<0.05] high mosquito abundance) were calculated for each of the 9 entomologic surveys. The extent of clustering was used to quantify the probability of finding spatially correlated populations. Our analyses indicate that Ae. aegypti distribution was highly focal (most clusters do not extend beyond 30 meters) and that hotspots of high vector abundance were common on every survey date, but they were temporally unstable over the period of study. Our findings have implications for understanding Ae. aegypti distribution and for the design of surveillance and control activities relying on household-level data. In settings like Iquitos, where there is a relatively low percentage of Ae. aegypti in permanent water-holding containers, identifying and targeting key premises will be significantly challenged by shifting hotspots of Ae. aegypti infestation. Focusing efforts in large geographic areas with historically high levels of transmission may be more effective than targeting Ae. aegypti hotspots. Output:
We carried out a comprehensive study of the long-term trends in household-level Aedes aegypti spatial distribution within a well-defined urban area endemic for dengue virus. By using a dataset consisting of 13,662 household entomological visits performed in two neighborhoods in Iquitos, Peru, we quantified the ∼3 year spatial clustering patterns of Ae. aegypti among houses and the temporal persistence of vector abundance hotspots. Our results provide strong support for the conclusion that Ae. aegypti distribution is highly focal and that hotspots of high vector abundance at the level of small groups of houses are common, but temporally unstable. Results from our study have implications for understanding the spatio-temporal patterns of Ae. aegypti abundance and for the design of surveillance and control activities that are based on household-level entomological data.
PLOS369
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: We exploit flow propagation on the directed neuronal network of the nematode C. elegans to reveal dynamically relevant features of its connectome. We find flow-based groupings of neurons at different levels of granularity, which we relate to functional and anatomical constituents of its nervous system. A systematic in silico evaluation of the full set of single and double neuron ablations is used to identify deletions that induce the most severe disruptions of the multi-resolution flow structure. Such ablations are linked to functionally relevant neurons, and suggest potential candidates for further in vivo investigation. In addition, we use the directional patterns of incoming and outgoing network flows at all scales to identify flow profiles for the neurons in the connectome, without pre-imposing a priori categories. The four flow roles identified are linked to signal propagation motivated by biological input-response scenarios. Output:
One of the goals of systems neuroscience is to elucidate the relationship between the structure of neuronal networks and the functional dynamics that they implement. An ideal model organism to study such interactions is the roundworm C. elegans, which not only has a fully mapped connectome, but has also been the object of extensive behavioural, genetic and neurophysiological experiments. Here we present an analysis of the neuronal network of C. elegans from a dynamical flow perspective. Our analysis reveals a multi-scale organisation of the signal flow in the network linked to anatomical and functional features of neurons, as well as identifying different neuronal roles in relation to signal propagation. We use our computational framework to explore biological input-response scenarios as well as exhaustive in silico ablations, which we relate to experimental findings reported in the literature.
PLOS370
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Magnetic resonance imaging (MRI) of the knee is the preferred method for diagnosing knee injuries. However, interpretation of knee MRI is time-intensive and subject to diagnostic error and variability. An automated system for interpreting knee MRI could prioritize high-risk patients and assist clinicians in making diagnoses. Deep learning methods, in being able to automatically learn layers of features, are well suited for modeling the complex relationships between medical images and their interpretations. In this study we developed a deep learning model for detecting general abnormalities and specific diagnoses (anterior cruciate ligament [ACL] tears and meniscal tears) on knee MRI exams. We then measured the effect of providing the model’s predictions to clinical experts during interpretation. Our dataset consisted of 1,370 knee MRI exams performed at Stanford University Medical Center between January 1, 2001, and December 31, 2012 (mean age 38.0 years; 569 [41.5%] female patients). The majority vote of 3 musculoskeletal radiologists established reference standard labels on an internal validation set of 120 exams. We developed MRNet, a convolutional neural network for classifying MRI series and combined predictions from 3 series per exam using logistic regression. In detecting abnormalities, ACL tears, and meniscal tears, this model achieved area under the receiver operating characteristic curve (AUC) values of 0.937 (95% CI 0.895, 0.980), 0.965 (95% CI 0.938, 0.993), and 0.847 (95% CI 0.780, 0.914), respectively, on the internal validation set. We also obtained a public dataset of 917 exams with sagittal T1-weighted series and labels for ACL injury from Clinical Hospital Centre Rijeka, Croatia. On the external validation set of 183 exams, the MRNet trained on Stanford sagittal T2-weighted series achieved an AUC of 0.824 (95% CI 0.757, 0.892) in the detection of ACL injuries with no additional training, while an MRNet trained on the rest of the external data achieved an AUC of 0.911 (95% CI 0.864, 0.958). We additionally measured the specificity, sensitivity, and accuracy of 9 clinical experts (7 board-certified general radiologists and 2 orthopedic surgeons) on the internal validation set both with and without model assistance. Using a 2-sided Pearson’s chi-squared test with adjustment for multiple comparisons, we found no significant differences between the performance of the model and that of unassisted general radiologists in detecting abnormalities. General radiologists achieved significantly higher sensitivity in detecting ACL tears (p-value = 0.002; q-value = 0.019) and significantly higher specificity in detecting meniscal tears (p-value = 0.003; q-value = 0.019). Using a 1-tailed t test on the change in performance metrics, we found that providing model predictions significantly increased clinical experts’ specificity in identifying ACL tears (p-value < 0.001; q-value = 0.006). The primary limitations of our study include lack of surgical ground truth and the small size of the panel of clinical experts. Our deep learning model can rapidly generate accurate clinical pathology classifications of knee MRI exams from both internal and external datasets. Moreover, our results support the assertion that deep learning models can improve the performance of clinical experts during medical imaging interpretation. Further research is needed to validate the model prospectively and to determine its utility in the clinical setting. Output:
We wanted to see if a deep learning model could succeed in the clinically important task of detecting disorders in knee magnetic resonance imaging (MRI) scans. We wanted to determine whether a deep learning model could improve the diagnostic accuracy, specificity, or sensitivity of clinical experts, including general radiologists and orthopedic surgeons. Our deep learning model predicted 3 outcomes for knee MRI exams (anterior cruciate ligament [ACL] tears, meniscal tears, and general abnormalities) in a matter of seconds and with similar performance to that of general radiologists. We experimented with providing model outputs to general radiologists and orthopedic surgeons during interpretation and observed statistically significant improvement in diagnosis of ACL tears with model assistance. When externally validated on a dataset from a different institution, the model picked up ACL tears with high discriminative ability. Deep learning has the potential to provide rapid preliminary results following MRI exams and improve access to quality MRI diagnoses in the absence of specialist radiologists. Providing clinical experts with predictions from a deep learning model could improve the quality and consistency of MRI interpretation.
PLOS371
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Noroviruses, an important cause of acute gastroenteritis in humans, recognize the histo-blood group antigens (HBGAs) as host susceptible factors in a strain-specific manner. The crystal structures of the HBGA-binding interfaces of two A/B/H-binding noroviruses, the prototype Norwalk virus (GI.1) and a predominant GII.4 strain (VA387), have been elucidated. In this study we determined the crystal structures of the P domain protein of the first Lewis-binding norovirus (VA207, GII.9) that has a distinct binding property from those of Norwalk virus and VA387. Co-crystallization of the VA207 P dimer with Ley or sialyl Lex tetrasaccharides showed that VA207 interacts with these antigens through a common site found on the VA387 P protein which is highly conserved among most GII noroviruses. However, the HBGA-binding site of VA207 targeted at the Lewis antigens through the α-1, 3 fucose (the Lewis epitope) as major and the β-N-acetyl glucosamine of the precursor as minor interacting sites. This completely differs from the binding mode of VA387 and Norwalk virus that target at the secretor epitopes. Binding pocket of VA207 is formed by seven amino acids, of which five residues build up the core structure that is essential for the basic binding function, while the other two are involved in strain-specificity. Our results elucidate for the first time the genetic and structural basis of strain-specificity by a direct comparison of two genetically related noroviruses in their interaction with different HBGAs. The results provide insight into the complex interaction between the diverse noroviruses and the polymorphic HBGAs and highlight the role of human HBGA as a critical factor in norovirus evolution. Output:
The interactions of noroviruses with histo-blood group antigens (HBGAs) are diverse, in which strains in both genogroups I and II (GI and GII) recognizing either the secretor or the non-secretor (Lewis) HBGAs have been reported. The crystal structures of the HBGA binding interfaces of two secretor binders (Norwalk virus, GI.1 and VA387, GII.4) have been elucidated. In this study we determined the crystal structure of the HBGA-binding interface of the first Lewis-binder (VA207, GII.9) and compared it with those of the two secretor binders. VA207 binds to the Lewis antigens via the Lewis epitope (α-1, 3 fucose) as the major interacting residue, which is distinct from the two secretor binders that interact with the secretor antigens through the A or H epitope as a major interacting residue. In addition, precursor saccharide was involved in binding and has a role in strain-specificity of VA207. VA207 shares a conserved HBGA binding interfaces with VA387, suggesting a strong selection of human HBGAs in norovirus evolution. The distinct binding modes between these two GII strains suggest a potential host-driving force on the diversity of noroviruses by the polymorphic HBGAs. The crystal structures resolved in this study also would facilitate the antiviral drug design against noroviruses.
PLOS372
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The control and prevention of communicable disease is directly impacted by the genetic mutability of the underlying etiological agents. In the case of RNA viruses, genetic recombination may impact public health by facilitating the generation of new viral strains with altered phenotypes and by compromising the genetic stability of live attenuated vaccines. The landscape of homologous recombination within a given RNA viral genome is thought to be influenced by several factors; however, a complete understanding of the genetic determinants of recombination is lacking. Here, we utilize gene synthesis and deep sequencing to create a detailed recombination map of the poliovirus 1 coding region. We identified over 50 thousand breakpoints throughout the genome, and we show the majority of breakpoints to be concentrated in a small number of specific “hotspots,” including those associated with known or predicted RNA secondary structures. Nucleotide base composition was also found to be associated with recombination frequency, suggesting that recombination is modulated across the genome by predictable and alterable motifs. We tested the predictive utility of the nucleotide base composition association by generating an artificial hotspot in the poliovirus genome. Our results imply that modification of these motifs could be extended to whole genome re-designs for the development of recombination-deficient, genetically stable live vaccine strains. Output:
Viral recombination is critical to understanding the evolution of viral groups and impacts vaccine design, but is poorly understood. In the poliovirus vaccine, recombination is one potential mode of failure where vaccine strains recombine to produce a pathogenic product. We combine gene synthesis and deep sequencing to generate a high-resolution recombination map of poliovirus, both as a model RNA virus and a continuing threat that has yet to be eradicated. This map shows that recombination is concentrated into hotspots and suggests that predictable and alterable motifs in the RNA sequence are associated with recombination frequency. We demonstrate the utility of these observations by re-designing a poliovirus strain to recombine more frequently than normal, facilitating future studies on the role of viral recombination during infection. This result suggests that a large-scale redesign of the entire poliovirus genome to dampen recombination may be feasible, with implications for producing safer and more stable live vaccines.
PLOS373
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed ‘cassettes’ that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections. Output:
The hypothesis that natural selection shapes the ability of a population to evolve is highly controversial due primarily to a paucity of empirical evidence. However, the ability to constantly and rapidly evolve may be selectively adaptive in pathogens due to the constantly changing environment created by the vertebrate immune response. The Lyme disease bacterium, Borrelia burgdorferi, evades immune detection through a system consisting of numerous unexpressed ‘cassette’ sequences that alter the expressed protein via recombination. Importantly, the potential for evolutionary change in the expressed protein, and thus its ability to repeatedly escape a directed immune response, is correlated with the diversity among the cassettes. We analyzed genetic data from diverse B. burgdorferi strains to test the hypothesis that natural selection favors diversity among the unexpressed cassettes in order to promote evolvability. The data provide significant evidence of natural selection acting to increase among-cassette diversity, but only in regions that are targeted by immune antibodies when expressed. Further, these antigenically-important regions contain mutation-prone DNA sequence structures that are conserved despite high levels of sequence divergence among strains. The empirical evidence of selection favoring mutation-prone sequences and favoring among-cassette diversity supports the hypothesis that natural selection can shape the evolvability of populations.
PLOS374
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Phagocytosis and inflammation within the lungs is crucial for host defense during bacterial pneumonia. Triggering receptor expressed on myeloid cells (TREM)-2 was proposed to negatively regulate TLR-mediated responses and enhance phagocytosis by macrophages, but the role of TREM-2 in respiratory tract infections is unknown. Here, we established the presence of TREM-2 on alveolar macrophages (AM) and explored the function of TREM-2 in the innate immune response to pneumococcal infection in vivo. Unexpectedly, we found Trem-2−/− AM to display augmented bacterial phagocytosis in vitro and in vivo compared to WT AM. Mechanistically, we detected that in the absence of TREM-2, pulmonary macrophages selectively produced elevated complement component 1q (C1q) levels. We found that these increased C1q levels depended on peroxisome proliferator-activated receptor-δ (PPAR-δ) activity and were responsible for the enhanced phagocytosis of bacteria. Upon infection with S. pneumoniae, Trem-2−/− mice exhibited an augmented bacterial clearance from lungs, decreased bacteremia and improved survival compared to their WT counterparts. This work is the first to disclose a role for TREM-2 in clinically relevant respiratory tract infections and demonstrates a previously unknown link between TREM-2 and opsonin production within the lungs. Output:
Bacterial respiratory tract infections are a major cause of morbidity and mortality, and Streptococcus pneumoniae (S. pneumoniae) remains the main cause of community acquired pneumonia worldwide. The continued rise in antibiotic resistance stresses the need for better insights into the host defense mechanisms associated with pneumococcal pneumonia. The early innate immune response that constitutes bacterial phagocytosis, complement activation and inflammation is critical for the outcome during pneumonia. The triggering receptor expressed on myeloid cells 2 (TREM-2) has recently been shown to be both a negative regulator of the inflammatory response and a promoter of phagocytosis, but its contribution to pneumonia remains unknown. In our study, we unexpectedly found that alveolar macrophage expressed TREM-2 is detrimental in bacterial phagocytosis and clearance during pneumococcal pneumonia. This occurred via the suppressive effects of TREM-2 on complement component 1q (C1q), an important regulator of bacterial phagocytosis that is crucial for the host response during pneumonia. Thus, targeting the TREM-2 pathway could be used as a novel strategy for modulating C1q production and pulmonary innate immune responses, which could be of clinical relevance during pneumonia and other respiratory tract infections.
PLOS375
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The current knowledge of immunological responses to schistosomiasis, a major tropical helminthic disease, is insufficient, and a better understanding of these responses would support vaccine development or therapies to control granuloma-associated immunopathology. CD4+ T cells play critical roles in both host immune responses against parasitic infection and immunopathology in schistosomiasis. The induction of T helper (Th)1, Th2 and T regulatory (Treg) cells and their roles in schistosome infections are well-illustrated. However, little in vivo data are available on the dynamics of Th17 cells, another important CD4+ T cell subset, after Schistosoma japonicum infection or whether these cells and their defining IL-17 cytokine mediate host protective responses early in infection. Levels of Th17 and the other three CD4+ T cell subpopulations and the cytokines related to induction or repression of Th17 cell generation in different stages of S. japonicum infection were observed. Contrary to reported in vitro studies, our results showed that the Th17 cells were induced along with the Th1, Th2, Treg cells and the IFN-γ and IL-4 cytokines in S. japonicum infected mice. The results also suggested that S. japonicum egg antigens but not adult worm antigens preferentially induced Th17 cell generation. Furthermore, decreasing IL-17 with a neutralizing anti-IL-17 monoclonal antibody (mAb) increased schistosome-specific antibody levels and partial protection against S. japonicum infection in mice. Our study is the first to report the dynamics of Th17 cells during S. japonicum infection and indicate that Th17 cell differentiation results from the integrated impact of inducing and suppressive factors promoted by the parasite. Importantly, our findings suggest that lower IL-17 levels may result in favorable host protective responses. This study significantly contributes to the understanding of immunity to schistosomiasis and may aid in developing interventions to protect hosts from infection or restrain immunopathology. Output:
Th17 immune cells secrete the IL-17 cytokine and contribute to host defenses against certain infections. Recent studies linked IL-17 with the severity of liver inflammation and suggested that Th17 cells contribute to the pathology in schistosomiasis, a serious disease caused by parasitic worms such as Schistosoma japonicum widespread in vertebrates including humans. However, the role of Th17 cells in protection against S. japonicum infection is still unclear. For the first time, we describe here the changes in Th17 cell levels during S. japonicum infection and suggest that the schistosome egg antigens are primarily responsible for stimulating the generation of host Th17 cells after S. japonicum infection. We further show that the level of Th17 cells in the host is determined by a combination of factors, namely exposure to complex parasitic antigens that either induce or suppress their generation. We also suggest that lowering IL-17 levels may favor the host's protective responses against S. japonicum infection. Our findings help to better understand the relationship between the host and parasite in terms of immune protection and pathology in schistosomiasis and may contribute to the future development of vaccination and therapeutic strategies.
PLOS376
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Blastomyces dermatitidis belongs to a group of human pathogenic fungi that exhibit thermal dimorphism. At 22°C, these fungi grow as mold that produce conidia or infectious particles, whereas at 37°C they convert to budding yeast. The ability to switch between these forms is essential for virulence in mammals and may enable these organisms to survive in the soil. To identify genes that regulate this phase transition, we used Agrobacterium tumefaciens to mutagenize B. dermatitidis conidia and screened transformants for defects in morphogenesis. We found that the GATA transcription factor SREB governs multiple fates in B. dermatitidis: phase transition from yeast to mold, cell growth at 22°C, and biosynthesis of siderophores under iron-replete conditions. Insertional and null mutants fail to convert to mold, do not accumulate significant biomass at 22°C, and are unable to suppress siderophore biosynthesis under iron-replete conditions. The defect in morphogenesis in the SREB mutant was independent of exogenous iron concentration, suggesting that SREB promotes the phase transition by altering the expression of genes that are unrelated to siderophore biosynthesis. Using bioinformatic and gene expression analyses, we identified candidate genes with upstream GATA sites whose expression is altered in the null mutant that may be direct or indirect targets of SREB and promote the phase transition. We conclude that SREB functions as a transcription factor that promotes morphogenesis and regulates siderophore biosynthesis. To our knowledge, this is the first gene identified that promotes the conversion from yeast to mold in the dimorphic fungi, and may shed light on environmental persistence of these pathogens. Output:
The dimorphic fungi are the most common cause of invasive fungal disease worldwide. In the soil, these fungi grow as mold that produce infectious spores; when inhaled into the warmer lungs of a mammalian host, the spores convert into yeast, which cause infection. The change in shape between mold and yeast is a crucial event in the lifecycle of these fungi. The molecular regulation of this morphologic switch, or phase transition, is poorly understood. The goal of our research was to identify and characterize novel gene(s) that govern the phase transition in dimorphic fungi using Blastomyces dermatitidis as a model organism. Using insertional mutagenesis, we identified a gene, SREB, which encodes a transcription factor that affects phase transition and regulates the production of iron-gathering molecules or siderophores. When SREB is deleted, B. dermatitidis fails to complete the conversion from yeast to mold, grows poorly at environmental temperature, has yellow-orange colony pigmentation, and cannot properly repress the biosynthesis of siderophores. We also identified two types of siderophores produced by B. dermatitidis. To our knowledge, SREB is the first gene identified that promotes the conversion from yeast to mold, a process important for survival in the environment and generation of infectious spores.
PLOS377
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Protein modifications regulate both DNA repair levels and pathway choice. How each modification achieves regulatory effects and how different modifications collaborate with each other are important questions to be answered. Here, we show that sumoylation regulates double-strand break repair partly by modifying the end resection factor Sae2. This modification is conserved from yeast to humans, and is induced by DNA damage. We mapped the sumoylation site of Sae2 to a single lysine in its self-association domain. Abolishing Sae2 sumoylation by mutating this lysine to arginine impaired Sae2 function in the processing and repair of multiple types of DNA breaks. We found that Sae2 sumoylation occurs independently of its phosphorylation, and the two modifications act in synergy to increase soluble forms of Sae2. We also provide evidence that sumoylation of the Sae2-binding nuclease, the Mre11-Rad50-Xrs2 complex, further increases end resection. These findings reveal a novel role for sumoylation in DNA repair by regulating the solubility of an end resection factor. They also show that collaboration between different modifications and among multiple substrates leads to a stronger biological effect. Output:
Proper repair of DNA lesions is crucial for cell growth and organism development. Both the choice and capacity of DNA repair pathways are tightly regulated in response to environmental cues and cell cycle phase. Recent work has uncovered the importance of protein modifications, such as phosphorylation and sumoylation, in this regulation. Sumoylation is known to be critical for the efficient repair of highly toxic DNA double-strand breaks in both yeast and humans, and this is partly mediated by influencing DNA end resection. However, it has been unclear for which resection factor sumoylation is important, how sumoylation influences specific attributes of the relevant targets, and how this modification is coordinated with phosphorylation-based regulation. Here, we provide exciting new insights into these issues by revealing that 1) a conserved end resection factor is a SUMO target relevant to this process, 2) this regulation favors a specific repair pathway, 3) sumoylation collaborates with phosphorylation to promote protein solubility, and 4) sumoylation influences DNA repair via an “ensemble effect” that entails simultaneous small alterations of multiple substrates. Our work reveals both a novel mechanism and a general principle for SUMO-mediated regulation of DNA repair.
PLOS378
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Chronic infections are an increasing problem due to the aging population and the increase in antibiotic resistant organisms. Therefore, understanding the host-pathogen interactions that result in chronic infection is of great importance. Here, we investigate the molecular basis of chronic bacterial cystitis. We establish that introduction of uropathogenic E. coli (UPEC) into the bladders of C3H mice results in two distinct disease outcomes: resolution of acute infection or development of chronic cystitis lasting months. The incidence of chronic cystitis is both host strain and infectious dose-dependent. Further, development of chronic cystitis is preceded by biomarkers of local and systemic acute inflammation at 24 hours post-infection, including severe pyuria and bladder inflammation with mucosal injury, and a distinct serum cytokine signature consisting of elevated IL-5, IL-6, G-CSF, and the IL-8 analog KC. Mice deficient in TLR4 signaling or lymphocytes lack these innate responses and are resistant, to varying degrees, to developing chronic cystitis. Treatment of C3H mice with the glucocorticoid anti-inflammatory drug dexamethasone prior to UPEC infection also suppresses the development of chronic cystitis. Finally, individuals with a history of chronic cystitis, lasting at least 14 days, are significantly more susceptible to redeveloping severe, chronic cystitis upon bacterial challenge. Thus, we have discovered that the development of chronic cystitis in C3H mice by UPEC is facilitated by severe acute inflammatory responses early in infection, which subsequently are predisposing to recurrent cystitis, an insidious problem in women. Overall, these results have significant implications for our understanding of how early host-pathogen interactions at the mucosal surface determines the fate of disease. Output:
The natural history of urinary tract infection (UTI) with uropathogenic E. coli in humans frequently includes persistent bacterial shedding in the urine for weeks after the initial infection, despite varying degrees of improvement of symptoms. Although antibiotic treatment has been very successful in treating UTI, antibiotic resistance is rising and recurrent infections are a common and costly problem affecting millions of women. Here, we examine an experimental mouse model of chronic bladder infection with uropathogenic E. coli, the most common cause of UTI. We found that the development of chronic bladder infection was preceded by severe bladder tissue inflammation that results in injury to the lining of the bladder. Furthermore, immunodeficient mice that lacked these acute inflammatory responses were protected from chronic bladder infection, suggesting that the development of chronic bladder infection requires immune-mediated tissue damage during acute infection. Finally, we demonstrate that mice with a history of chronic bladder infection that was subsequently cleared with antibiotic treatment are highly susceptible to further UTI. Thus, this study has discovered possible overlap in the mechanisms underlying the development of chronic and recurrent UTI.
PLOS379
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Macroscopic oscillations of different brain regions show multiple phase relationships that are persistent across time and have been implicated in routing information. While multiple cellular mechanisms influence the network oscillatory dynamics and structure the macroscopic firing motifs, one of the key questions is to identify the biophysical neuronal and synaptic properties that permit such motifs to arise. A second important issue is how the different neural activity coherence states determine the communication between the neural circuits. Here we analyse the emergence of phase-locking within bidirectionally delayed-coupled spiking circuits in which global gamma band oscillations arise from synaptic coupling among largely excitable neurons. We consider both the interneuronal (ING) and the pyramidal-interneuronal (PING) population gamma rhythms and the inter coupling targeting the pyramidal or the inhibitory neurons. Using a mean-field approach together with an exact reduction method, we reduce each spiking network to a low dimensional nonlinear system and derive the macroscopic phase resetting-curves (mPRCs) that determine how the phase of the global oscillation responds to incoming perturbations. This is made possible by the use of the quadratic integrate-and-fire model together with a Lorentzian distribution of the bias current. Depending on the type of gamma (PING vs. ING), we show that incoming excitatory inputs can either speed up the macroscopic oscillation (phase advance; type I PRC) or induce both a phase advance and a delay (type II PRC). From there we determine the structure of macroscopic coherence states (phase-locking) of two weakly synaptically-coupled networks. To do so we derive a phase equation for the coupled system which links the synaptic mechanisms to the coherence states of the system. We show that a synaptic transmission delay is a necessary condition for symmetry breaking, i.e. a non-symmetric phase lag between the macroscopic oscillations. This potentially provides an explanation to the experimentally observed variety of gamma phase-locking modes. Our analysis further shows that symmetry-broken coherence states can lead to a preferred direction of signal transfer between the oscillatory networks where this directionality also depends on the timing of the signal. Hence we suggest a causal theory for oscillatory modulation of functional connectivity between cortical circuits. Output:
Large scale brain oscillations emerge from synaptic interactions within neuronal circuits. Over the past years, such macroscopic rhythms have been suggested to play a crucial role in routing the flow of information across cortical regions, resulting in a functional connectome. The underlying mechanism is cortical oscillations that bind together following a well-known motif called phase-locking. While there is significant experimental support for multiple phase-locking modes in the brain, it is still unclear what is the underlying mechanism that permits macroscopic rhythms to phase lock. In the present paper we take up with this issue, and to show that, one can study the emergent macroscopic phase-locking within the mathematical framework of weakly coupled oscillators. We find that under synaptic delays, fully symmetrically coupled networks can display symmetry-broken states of activity, where one network starts to lead in phase the second (also sometimes known as stuttering states). When we analyse how incoming transient signals affect the coupled system, we find that in the symmetry-broken state, the effect depends strongly on which network is targeted (the leader or the follower) as well as the timing of the input. Hence we show how the dynamics of the emergent phase-locked activity imposes a functional directionality on how signals are processed. We thus offer clarification on the synaptic and circuit properties responsible for the emergence of multiple phase-locking patterns and provide support for its functional implication in information transfer.
PLOS380
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Acquired immunity in vertebrates maintains polymorphisms in endemic pathogens, leading to identifiable signatures of balancing selection. To comprehensively survey for genes under such selection in the human malaria parasite Plasmodium falciparum, we generated paired-end short-read sequences of parasites in clinical isolates from an endemic Gambian population, which were mapped to the 3D7 strain reference genome to yield high-quality genome-wide coding sequence data for 65 isolates. A minority of genes did not map reliably, including the hypervariable var, rifin, and stevor families, but 5,056 genes (90.9% of all in the genome) had >70% sequence coverage with minimum read depth of 5 for at least 50 isolates, of which 2,853 genes contained 3 or more single nucleotide polymorphisms (SNPs) for analysis of polymorphic site frequency spectra. Against an overall background of negatively skewed frequencies, as expected from historical population expansion combined with purifying selection, the outlying minority of genes with signatures indicating exceptionally intermediate frequencies were identified. Comparing genes with different stage-specificity, such signatures were most common in those with peak expression at the merozoite stage that invades erythrocytes. Members of clag, PfMC-2TM, surfin, and msp3-like gene families were highly represented, the strongest signature being in the msp3-like gene PF10_0355. Analysis of msp3-like transcripts in 45 clinical and 11 laboratory adapted isolates grown to merozoite-containing schizont stages revealed surprisingly low expression of PF10_0355. In diverse clonal parasite lines the protein product was expressed in a minority of mature schizonts (<1% in most lines and ∼10% in clone HB3), and eight sub-clones of HB3 cultured separately had an intermediate spectrum of positive frequencies (0.9 to 7.5%), indicating phase variable expression of this polymorphic antigen. This and other identified targets of balancing selection are now prioritized for functional study. Output:
The memory component of acquired immune responses selects for distinctive patterns of polymorphism in genes encoding important target antigens of pathogens. These are detectable by surveying for evidence of balancing selection, as previously illustrated in analyses of genes encoding malaria parasite antigens that are candidate targets of naturally acquired immunity. For a comprehensive screen to discover targets of immunity in the major human malaria parasite Plasmodium falciparum, an endemic population in West Africa was sampled and genome sequence data obtained from 65 clinical isolates, allowing analysis of polymorphism in almost all protein-coding genes. Antigen genes previously studied by capillary re-sequencing in independent population samples had highly concordant indices in the genome-wide analysis here, and this has identified other genes with stronger evidence of balancing selection, now prioritized for functional study and potential vaccine candidacy. The statistical signatures consistent with such selection were particularly common in genes with peak expression at the stage that invades erythrocytes, and members of several gene families were represented. The strongest signature was in the msp3-like gene PF10_0355, so we studied the transcript and protein product in parasites, revealing an unexpected pattern of phase variable expression. Variation in expression of polymorphic antigens under balancing selection may be more common than previously thought, requiring further study to assess vaccine candidacy.
PLOS381
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Domains are modules within proteins that can fold and function independently and are evolutionarily conserved. Here we compared the usage and distribution of protein domain families in the free-living proteomes of Archaea, Bacteria and Eukarya and reconstructed species phylogenies while tracing the history of domain emergence and loss in proteomes. We show that both gains and losses of domains occurred frequently during proteome evolution. The rate of domain discovery increased approximately linearly in evolutionary time. Remarkably, gains generally outnumbered losses and the gain-to-loss ratios were much higher in akaryotes compared to eukaryotes. Functional annotations of domain families revealed that both Archaea and Bacteria gained and lost metabolic capabilities during the course of evolution while Eukarya acquired a number of diverse molecular functions including those involved in extracellular processes, immunological mechanisms, and cell regulation. Results also highlighted significant contemporary sharing of informational enzymes between Archaea and Eukarya and metabolic enzymes between Bacteria and Eukarya. Finally, the analysis provided useful insights into the evolution of species. The archaeal superkingdom appeared first in evolution by gradual loss of ancestral domains, bacterial lineages were the first to gain superkingdom-specific domains, and eukaryotes (likely) originated when an expanding proto-eukaryotic stem lineage gained organelles through endosymbiosis of already diversified bacterial lineages. The evolutionary dynamics of domain families in proteomes and the increasing number of domain gains is predicted to redefine the persistence strategies of organisms in superkingdoms, influence the make up of molecular functions, and enhance organismal complexity by the generation of new domain architectures. This dynamics highlights ongoing secondary evolutionary adaptations in akaryotic microbes, especially Archaea. Output:
Proteins are made up of well-packed structural units referred to as domains. Domain structure in proteins is responsible for protein function and is evolutionarily conserved. Here we report global patterns of protein domain gain and loss in the three superkingdoms of life. We reconstructed phylogenetic trees using domain fold families as phylogenetic characters and retraced the history of character changes along the many branches of the tree of life. Results revealed that both domain gains and losses were frequent events in the evolution of cells. However, domain gains generally overshadowed the number of losses. This trend was consistent in the three superkingdoms. However, the rate of domain discovery was highest in akaryotic microbes. Domain gains occurred throughout the evolutionary timeline albeit at a non-uniform rate. Our study sheds light into the evolutionary history of living organisms and highlights important ongoing mechanisms that are responsible for secondary evolutionary adaptations in the three superkingdoms of life.
PLOS382
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Lymphedema of the leg and its advanced form, known as elephantiasis, are significant causes of disability and morbidity in areas endemic for lymphatic filariasis (LF), with an estimated 14 million persons affected worldwide. The twin goals of the World Health Organization’s Global Program to Eliminate Lymphatic Filariasis include interrupting transmission of the parasitic worms that cause LF and providing care to persons who suffer from its clinical manifestations, including lymphedema—so-called morbidity management and disability prevention (MMDP). Scaling up of MMDP has been slow, in part because of a lack of consensus about the effectiveness of recommended hygiene-based interventions for clinical lymphedema. We conducted a systemic review and meta-analyses to estimate the effectiveness of hygiene-based interventions on LF-related lymphedema. We systematically searched PubMed, Embase, ISI Web of Knowledge, MedCarib, Lilacs, REPIDISCA, DESASTRES, and African Index Medicus databases through March 23, 2015 with no restriction on year of publication. Studies were eligible for inclusion if they (1) were conducted in an area endemic for LF, (2) involved hygiene-based interventions to manage lymphedema, and (3) assessed lymphedema-related morbidity. For clinical outcomes for which three or more studies assessed comparable interventions for lymphedema, we conducted random-effects meta-analyses. Twenty-two studies met the inclusion criteria and two meta-analyses were possible. To evaluate study quality, we developed a set of criteria derived from the GRADE methodology. Publication bias was assessed using funnel plots. Participation in hygiene-based lymphedema management was associated with a lower incidence of acute dermatolymphagioadenitis (ADLA), (Odds Ratio 0.32, 95% CI 0.25–0.40), as well as with a decreased percentage of patients reporting at least one episode of ADLA during follow-up (OR 0.29, 95% CI 0.12–0.47). Limitations included high heterogeneity across studies and variation in components of lymphedema management. Available evidence strongly supports the effectiveness of hygiene-based lymphedema management in LF-endemic areas. Despite the aforementioned limitations, these findings highlight the potential to significantly reduce LF-associated morbidity and disability as well as the need to develop standardized approaches to MMDP in LF-endemic areas. Output:
The tropical disease lymphatic filariasis (LF) causes chronic swelling of the leg—lymphedema—in 14 million people worldwide. To stop the spread of LF, a program led by the World Health Organization (WHO) offers annual preventive drug treatment to affected communities. For people who already have lymphedema, WHO recommends simple hygiene-based measures that include skin care and limb movement. Yet only a small proportion of those with LF-related lymphedema have been trained in these measures. To determine the effectiveness of hygiene-based lymphedema management, we reviewed the scientific literature. Twenty-two studies were found that 1) used hygiene-based interventions to manage lymphedema; 2) measured the effect of these interventions; and 3) were done in an area where LF occurs. Overall, use of hygiene-based measures was associated with 60% lower odds of inflammatory episodes, known as “acute attacks,” in the affected limb. Acute attacks cause severe pain, fever, and disability, and they make lymphedema worse. Hygiene and sanitation are necessary for control of many tropical diseases. Hygiene is also effective for managing LF-related lymphedema and reducing suffering caused by acute attacks. Training people with lymphedema in hygiene-based interventions should be a priority for LF programs everywhere.
PLOS383
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: When both parasite species are co-endemic, Plasmodium vivax incidence peaks in younger children compared to P. falciparum. To identify differences in the number of blood stage infections of these species and its potential link to acquisition of immunity, we have estimated the molecular force of blood-stage infection of P. vivax (molFOB, i.e. the number of genetically distinct blood-stage infections over time), and compared it to previously reported values for P. falciparum. P. vivax molFOB was estimated by high resolution genotyping parasites in samples collected over 16 months in a cohort of 264 Papua New Guinean children living in an area highly endemic for P. falciparum and P. vivax. In this cohort, P. vivax episodes decreased three-fold over the age range of 1–4.5 years. On average, children acquired 14.0 new P. vivax blood-stage clones/child/year-at-risk. While the incidence of clinical P. vivax illness was strongly associated with molFOB (incidence rate ratio (IRR) = 1.99, 95% confidence interval (CI95) [1.80, 2.19]), molFOB did not change with age. The incidence of P. vivax showed a faster decrease with age in children with high (IRR = 0.49, CI95 [0.38, 0.64] p<0.001) compared to those with low exposure (IRR = 0.63, CI95[0.43, 0.93] p = 0.02). P. vivax molFOB is considerably higher than P. falciparum molFOB (5.5 clones/child/year-at-risk). The high number of P. vivax clones that infect children in early childhood contribute to the rapid acquisition of immunity against clinical P. vivax malaria. Output:
In areas where P. vivax and P. falciparum parasite species co-occur, immunity to P. vivax seems to be acquired more rapidly. This difference could be caused either by generic differences in the way immunity is acquired or by a relatively higher exposure to P. vivax blood-stage infections in early life. We found that children experienced an average of 14 new P. vivax blood-stage infections per year, and that the number of new infections acquired predicted how often children fell ill with vivax malaria by genotyping all P. vivax infections that occurred in a group of 264 children 1–4 years of age followed for 16 months. The burden of blood-stage infections caused by P. vivax was therefore at least twice as high as that caused by P. falciparum. This higher force-of-blood-stage infection (molFOB) caused by P. vivax is at least partially due to the ability of P. vivax hypnozoites to relapse from long-lasting liver stages. A high exposure to P. vivax blood-stage infection resulted in more rapid decrease in the incidence of P. vivax malaria. The high number of P. vivax clones that infect children in early childhood is thus likely to contribute substantially to the rapid acquisition of immunity against clinical P. vivax malaria.
PLOS384
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Few studies have evaluated the association between preexisting vitamin D deficiency and incident tuberculosis (TB). We assessed the impact of baseline vitamins D levels on TB disease risk. We assessed the association between baseline vitamin D and incident TB in a prospective cohort of 6,751 HIV-negative household contacts of TB patients enrolled between September 1, 2009, and August 29, 2012, in Lima, Peru. We screened for TB disease at 2, 6, and 12 months after enrollment. We defined cases as household contacts who developed TB disease at least 15 days after enrollment of the index patient. For each case, we randomly selected four controls from among contacts who did not develop TB disease, matching on gender and year of age. We also conducted a one-stage individual-participant data (IPD) meta-analysis searching PubMed and Embase to identify prospective studies of vitamin D and TB disease until June 8, 2019. We included studies that assessed vitamin D before TB diagnosis. In the primary analysis, we defined vitamin D deficiency as 25–(OH)D < 50 nmol/L, insufficiency as 50–75 nmol/L, and sufficiency as >75nmol/L. We estimated the association between baseline vitamin D status and incident TB using conditional logistic regression in the Lima cohort and generalized linear mixed models in the meta-analysis. We further defined severe vitamin D deficiency as 25–(OH)D < 25 nmol/L and performed stratified analyses by HIV status in the IPD meta-analysis. In the Lima cohort, we analyzed 180 cases and 709 matched controls. The adjusted odds ratio (aOR) for TB risk among participants with baseline vitamin D deficiency compared to sufficient vitamin D was 1.63 (95% CI 0.75–3.52; p = 0.22). We included seven published studies in the meta-analysis and analyzed 3,544 participants. In the pooled analysis, the aOR was 1.48 (95% CI 1.04–2.10; p = 0.03). The aOR for severe vitamin D deficiency was 2.05 (95% CI 0.87–4.87; p trend for decreasing 25–(OH)D levels from sufficient vitamin D to severe deficiency = 0.02). Among 1,576 HIV-positive patients, vitamin D deficiency conferred a 2-fold (aOR 2.18, 95% CI 1.22–3.90; p = 0.01) increased risk of TB, and the aOR for severe vitamin D deficiency compared to sufficient vitamin D was 4.28 (95% CI 0.85–21.45; p = 0.08). Our Lima cohort study is limited by the short duration of follow-up, and the IPD meta-analysis is limited by the number of possible confounding covariates available across all studies. Our findings suggest vitamin D predicts TB disease risk in a dose-dependent manner and that the risk of TB disease is highest among HIV-positive individuals with severe vitamin D deficiency. Randomized control trials are needed to evaluate the possible role of vitamin D supplementation on reducing TB disease risk. Output:
Although multiple lines of evidence suggest that vitamin D may play a role in host susceptibility to tuberculosis (TB) disease, the impact of low vitamin D on the risk of developing TB disease has not yet been firmly established. We conducted a study in Lima, Peru, in which we measured serum 25–(OH)D levels in individuals at high risk for TB disease and followed them for development of TB over 1 year. We pooled individual-level data from seven previously published prospective studies conducted worldwide and from our Lima cohort. We found that individuals with low levels of vitamin D were at higher risk of future progression to TB disease. These findings suggest that vitamin D deficiency is a risk factor for developing TB disease. Randomized control trials are needed to determine whether vitamin D supplementation reduces risk of TB disease.
PLOS385
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Sensing extracellular changes initiates signal transduction and is the first stage of cellular decision-making. Yet relatively little is known about why one form of sensing biochemistry has been selected over another. To gain insight into this question, we studied the sensing characteristics of one of the biochemically simplest of sensors: the allosteric transcription factor. Such proteins, common in microbes, directly transduce the detection of a sensed molecule to changes in gene regulation. Using the Monod-Wyman-Changeux model, we determined six sensing characteristics – the dynamic range, the Hill number, the intrinsic noise, the information transfer capacity, the static gain, and the mean response time – as a function of the biochemical parameters of individual sensors and of the number of sensors. We found that specifying one characteristic strongly constrains others. For example, a high dynamic range implies a high Hill number and a high capacity, and vice versa. Perhaps surprisingly, these constraints are so strong that most of the space of characteristics is inaccessible given biophysically plausible ranges of parameter values. Within our approximations, we can calculate the probability distribution of the numbers of input molecules that maximizes information transfer and show that a population of one hundred allosteric transcription factors can in principle distinguish between more than four bands of input concentrations. Our results imply that allosteric sensors are unlikely to have been selected for high performance in one sensing characteristic but for a compromise in the performance of many. Output:
Sensing environmental changes is the first step in the process of cellular decision-making, but many different biochemical sensors exist and why one sensor is selected for a particular task over another is not known. Here we study the sensing properties of a simple and generic allosteric sensor to understand the effectiveness and limitations of its “design”. We begin by defining and calculating a set of six engineering-inspired characteristics of the sensor’s response and investigate how specifying a high performance in one characteristic constrains the sensor’s performance in others. We determine many such trade-offs and, perhaps surprisingly, that much of the space of characteristics is inaccessible given biophysically plausible ranges of parameters. Our results suggest that allosteric sensors are not under selection for high performance in one sensing characteristic but for a compromise in performance between many. Our approach provides both quantitative and qualitative insights about the function and robustness of allosteric sensors and as such is applicable to both the study of endogenous systems and the design of synthetic ones.
PLOS386
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: There have been several reports on the varying rates of progression among Alzheimer's Disease (AD) patients; however, there has been no quantitative study of the amount of heterogeneity in AD. Obtaining a reliable quantitative measure of AD progression rates and their variances among the patients for each stage of AD is essential for evaluating results of any clinical study. The Global Deterioration Scale (GDS) and Functional Assessment Staging procedure (FAST) characterize seven stages in the course of AD from normal aging to severe dementia. Each GDS/FAST stage has a published mean duration, but the variance is unknown. We use statistical analysis to reconstruct GDS/FAST stage durations in a cohort of 648 AD patients with an average follow-up time of 4.78 years. Calculations for GDS/FAST stages 4–6 reveal that the standard deviations for stage durations are comparable with their mean values, indicating the presence of large variations in the AD progression among patients. Such amount of heterogeneity in the course of progression of AD is consistent with the existence of several sub-groups of AD patients, which differ by their patterns of decline. Output:
In recent decades, our understanding of Alzheimer's disease (AD) has increased; however, some basic questions still remain unresolved. One of them is: how homogeneous is AD? Is the course of progression more or less the same for most patients, or are there large variations? Our paper studies a large cohort of AD patients which comes from a 23-year-long study, and performs a statistical analysis of progression speed. We quantify the amount of spread in GDS/FAST stage durations (a staging system widely used by clinicians). We arrive at an astonishing conclusion that the mean length of AD stages is comparable with their standard deviation! This means that individual courses of AD progression may differ very much from each other, and from the textbook mean values. This has implications both for clinical trials (how do we assess if a new drug is effective, if the amount of natural spread is so large in untreated patients?), and for our understanding of this disease, which appears to be comprised of sub-diseases with different patterns of decline.
PLOS387
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Long-term memories are thought to depend upon the coordinated activation of a broad network of cortical and subcortical brain regions. However, the distributed nature of this representation has made it challenging to define the neural elements of the memory trace, and lesion and electrophysiological approaches provide only a narrow window into what is appreciated a much more global network. Here we used a global mapping approach to identify networks of brain regions activated following recall of long-term fear memories in mice. Analysis of Fos expression across 84 brain regions allowed us to identify regions that were co-active following memory recall. These analyses revealed that the functional organization of long-term fear memories depends on memory age and is altered in mutant mice that exhibit premature forgetting. Most importantly, these analyses indicate that long-term memory recall engages a network that has a distinct thalamic-hippocampal-cortical signature. This network is concurrently integrated and segregated and therefore has small-world properties, and contains hub-like regions in the prefrontal cortex and thalamus that may play privileged roles in memory expression. Output:
Memory retrieval is thought to involve the coordinated activation of multiple regions of the brain, rather than localized activity in a specific region. In order to visualize networks of brain regions activated by recall of a fear memory in mice, we quantified expression of an activity-regulated gene (c-fos) that is induced by neural activity. This allowed us to identify collections of brain regions where Fos expression co-varies across mice, and presumably form components of a network that are co-active during recall of long-term fear memory. This analysis suggested that expression of a long-term fear memory is an emergent property of large scale neural network interactions. This network has a distinct thalamic-hippocampal-cortical signature and, like many real-world networks as well as other anatomical and functional brain networks, has small-world architecture with a subset of highly-connected hub nodes that may play more central roles in memory expression.
PLOS388
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Eukaryotic cells respond to genomic and environmental stresses, such as DNA damage and heat shock (HS), with the synthesis of poly-[ADP-ribose] (PAR) at specific chromatin regions, such as DNA breaks or HS genes, by PAR polymerases (PARP). Little is known about the role of this modification during cellular stress responses. We show here that the nucleosome remodeler dMi-2 is recruited to active HS genes in a PARP–dependent manner. dMi-2 binds PAR suggesting that this physical interaction is important for recruitment. Indeed, a dMi-2 mutant unable to bind PAR does not localise to active HS loci in vivo. We have identified several dMi-2 regions which bind PAR independently in vitro, including the chromodomains and regions near the N-terminus containing motifs rich in K and R residues. Moreover, upon HS gene activation, dMi-2 associates with nascent HS gene transcripts, and its catalytic activity is required for efficient transcription and co-transcriptional RNA processing. RNA and PAR compete for dMi-2 binding in vitro, suggesting a two step process for dMi-2 association with active HS genes: initial recruitment to the locus via PAR interaction, followed by binding to nascent RNA transcripts. We suggest that stress-induced chromatin PARylation serves to rapidly attract factors that are required for an efficient and timely transcriptional response. Output:
Cells respond to elevated temperatures with the rapid activation of heat shock genes to ensure cellular survival. Heat shock gene activation involves the synthesis of poly-[ADP-ribose] (PAR) at heat shock loci, the opening of chromatin structure, and the coordinated recruitment of transcription factors and chromatin regulators RNA polymerase II and components of the RNA processing machinery. The molecular roles of PAR and and ATP-dependent chromatin remodelers in heat shock gene activation are not clear. We show here that the chromatin remodeler dMi-2 is recruited to Drosophila heat shock genes in a PAR–dependent manner. We provide evidence that recruitment involves direct binding of dMi-2 to PAR polymers and identify novel PAR sensing regions in the dMi-2 protein, including the chromodomains and a series of motifs rich in K and R residues. Upon HS gene activation, dMi-2 associates with nascent transcripts. In addition, we find that dMi-2 and its catalytic activity are important for heat shock gene activation and co-transcriptional RNA processing efficiency. Our study uncovers a novel role of PAR during heat shock gene activation and establishes an unanticipated link between chromatin remodeler activity and RNA processing.
PLOS389
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The diagnosis of canine echinococcosis can be a challenge in surveillance studies because there is no perfect gold standard that can be used routinely. However, unknown test specificities and sensitivities can be overcome using latent-class analysis with appropriate data. We utilised a set of faecal and purge samples used previously to explore the epidemiology of canine echinococcosis on the Tibetan plateau. Previously only the purge results were reported and analysed in a largely deterministic way. In the present study, additional diagnostic tests of copro-PCR and copro-antigen ELISA were undertaken on the faecal samples. This enabled a Bayesian analysis in a latent-class model to examine the diagnostic performance of a genus specific copro-antigen ELISA, species-specific copro-PCR and arecoline purgation. Potential covariates including co-infection with Taenia, age and sex of the dog were also explored. The dependence structure of these diagnostic tests could also be analysed. The most parsimonious result, indicated by deviance-information criteria, suggested that co-infection with Taenia spp. was a significant covariate with the Echinococcus infection. The copro-PCRs had estimated sensitivities of 89% and 84% respectively for the diagnoses of Echinococcus multilocularis and E. granulosus. The specificities for the copro-PCR were estimated at 93 and 83% respectively. Copro-antigen ELISA had sensitivities of 55 and 57% for the diagnosis of E. multilocularis and E. granulosus and specificities of 71 and 69% respectively. Arecoline purgation with an assumed specificity of 100% had estimated sensitivities of 76% and 85% respectively. This study also shows that incorporating diagnostic uncertainty, in other words assuming no perfect gold standard, and including potential covariates like sex or Taenia co-infection into the epidemiological analysis may give different results than if the diagnosis of infection status is assumed to be deterministic and this approach should therefore be used whenever possible. Output:
Dogs are a key definitive host of Echinococcus spp; hence, accurate diagnosis in dogs is important for the surveillance and control of echinococcosis. A perfect diagnostic test would detect every infected dog (100% sensitivity) whilst never giving a false positive reaction in non-infected dogs (100% specificity). Since no such test exists, it is important to understand the performance of available diagnostic techniques. We used the results of a study that used three diagnostic tests on dogs from the Tibetan plateau, where there is co-endemicity of E. granulosus and E. multilocularis. In this study opro-antigen ELISA and copro-PCR diagnostic tests were undertaken on faecal samples from all animals. The dogs were also purged with arecoline hydrobromide to recover adult parasites as a highly specific but relatively insensitive third diagnostic test. We used a statistical approach (Bayesian latent-class models) to estimate simultaneously the sensitivities of all three tests and the specificities of the copro-antigen and copro-PCR tests. We also analysed how some determinants of infection can affect parasite prevalence. This approach provides a robust framework to increase the accuracy of surveillance and epidemiological studies of echinococcosis by overcoming the problems of poor diagnostic test performance.
PLOS390
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: DNA synthesis must be performed with extreme precision to maintain genomic integrity. In mammalian cells, different genomic regions are replicated at defined times, perhaps to preserve epigenetic information and cell differentiation status. However, the molecular principles that define this S phase program are unknown. By analyzing replication foci within discrete chromosome territories during interphase, we show that foci which are active during consecutive intervals of S phase are maintained as spatially adjacent neighbors throughout the cell cycle. Using extended DNA fibers, we demonstrate that this spatial continuity of replication foci correlates with the genetic continuity of adjacent replicon clusters along chromosomes. Finally, we used bioinformatic tools to compare the structure of DNA foci with DNA domains that are seen to replicate during discrete time intervals of S phase using genome-wide strategies. Data presented show that a major mechanism of S phase progression involves the sequential synthesis of regions of the genome because of their genetic continuity along the chromosomal fiber. Output:
Eukaryotic DNA synthesis is regulated with exquisite precision so that genomes are replicated exactly once before cell division occurs. In simple eukaryotes, chromosomal loci are preferentially replicated at specific times of S phase, in part because of their differential sensitivity to cell cycle regulators and in part as a result of random choice. Mammals, with ∼250-fold larger genomes, have more complex replication programs, within which different classes of chromatin replicate at defined times. While the basic regulatory mechanisms in higher eukaryotes are conserved, it is unclear how their much more complex timing program is maintained. We use replication precursor analogues, which can be visualized in living or fixed cells, to monitor the spatial relationship of DNA domains that are replicated at different times of S phase. Analyzing individual chromosome, we show that a major mechanism regulating transitions in the S phase timing program involves the sequential activation of replication domains based on their genetic continuity. Our analysis of the mechanism of S phase progression in single cells provides an alternative to genome-wide strategies, which define patterns of replication using cell populations. In combination, these complimentary strategies provide fundamental insight into the mechanisms of S phase timing in mammalian cells.
PLOS391
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Marijuana and its main psychotropic ingredient Δ9-tetrahydrocannabinol (THC) exert a plethora of psychoactive effects through the activation of the neuronal cannabinoid receptor type 1 (CB1), which is expressed by different neuronal subpopulations in the central nervous system. The exact neuroanatomical substrates underlying each effect of THC are, however, not known. We tested locomotor, hypothermic, analgesic, and cataleptic effects of THC in conditional knockout mouse lines, which lack the expression of CB1 in different neuronal subpopulations, including principal brain neurons, GABAergic neurons (those that release γ aminobutyric acid), cortical glutamatergic neurons, and neurons expressing the dopamine receptor D1, respectively. Surprisingly, mice lacking CB1 in GABAergic neurons responded to THC similarly as wild-type littermates did, whereas deletion of the receptor in all principal neurons abolished or strongly reduced the behavioural and autonomic responses to the drug. Moreover, locomotor and hypothermic effects of THC depend on cortical glutamatergic neurons, whereas the deletion of CB1 from the majority of striatal neurons and a subpopulation of cortical glutamatergic neurons blocked the cataleptic effect of the drug. These data show that several important pharmacological actions of THC do not depend on functional expression of CB1 on GABAergic interneurons, but on other neuronal populations, and pave the way to a refined interpretation of the pharmacological effects of cannabinoids on neuronal functions. Output:
Marijuana and its main psychoactive component, THC, exert a plethora of behavioural and autonomic effects on humans and animals. Some of these effects are the cause of the widespread illicit use of marijuana, while others might be involved in the potential therapeutic use of this drug for the treatment of several neuronal disorders. The great majority of these effects of THC are mediated by cannabinoid receptor type 1 (CB1), which is abundantly expressed in the central nervous system. The exact anatomical and neuronal substrates of each action are, however, not clearly known at the moment. We addressed this issue by using an advanced genetic approach. Control and conditional mutant mice, lacking CB1 expression in defined neuronal subpopulations but not in others, were treated with THC, and typical effects of the drug on motor behaviour, pain, and thermal sensation were scored. Our results show that different neuronal subpopulations mediate different effects of THC and could lead to a refined interpretation of the pharmacological actions of cannabinoids. Moreover, these data might provide the rationale for the development of drugs capable of selectively activating CB1 in specific neuronal subpopulations, thereby better exploiting cannabinoids' potential therapeutic properties.
PLOS392
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The rapid evolution of RNA-encoded viruses such as HIV presents a major barrier to infectious disease control using conventional pharmaceuticals and vaccines. Previously, it was proposed that defective interfering particles could be developed to indefinitely control the HIV/AIDS pandemic; in individual patients, these engineered molecular parasites were further predicted to be refractory to HIV’s mutational escape (i.e., be ‘resistance-proof’). However, an outstanding question has been whether these engineered interfering particles—termed Therapeutic Interfering Particles (TIPs)—would remain resistance-proof at the population-scale, where TIP-resistant HIV mutants may transmit more efficiently by reaching higher viral loads in the TIP-treated subpopulation. Here, we develop a multi-scale model to test whether TIPs will maintain indefinite control of HIV at the population-scale, as HIV (‘unilaterally’) evolves toward TIP resistance by limiting the production of viral proteins available for TIPs to parasitize. Model results capture the existence of two intrinsic evolutionary tradeoffs that collectively prevent the spread of TIP-resistant HIV mutants in a population. First, despite their increased transmission rates in TIP-treated sub-populations, unilateral TIP-resistant mutants are shown to have reduced transmission rates in TIP-untreated sub-populations. Second, these TIP-resistant mutants are shown to have reduced growth rates (i.e., replicative fitness) in both TIP-treated and TIP-untreated individuals. As a result of these tradeoffs, the model finds that TIP-susceptible HIV strains continually outcompete TIP-resistant HIV mutants at both patient and population scales when TIPs are engineered to express >3-fold more genomic RNA than HIV expresses. Thus, the results provide design constraints for engineering population-scale therapies that may be refractory to the acquisition of antiviral resistance. Output:
A major obstacle to effective antimicrobial therapy campaigns is the rapid evolution of drug resistance. Given the static nature of current pharmaceuticals and vaccines, natural selection inevitably drives pathogens to mutate into drug-resistant variants that can resume productive replication. Further, these drug-resistant mutants transmit across populations, resulting in untreatable epidemics. Recently, a therapeutic strategy was proposed in which viral deletion mutants—termed therapeutic interfering particles (TIPs)—are engineered to only replicate by stealing their missing proteins from full-length viruses in co-infected cells. By stealing essential viral proteins, these engineered molecular parasites have been predicted to reduce viral levels in patients and viral transmission events across populations. Yet, a critical question is whether rapidly mutating viruses like HIV can evolve around TIP control by reducing production of the proteins that TIPs must steal in order to replicate (i.e., by ‘starving’ the TIPs). Here we develop a multi-scale model that tests whether TIP-starving HIV mutants can spread across populations to undermine TIP therapy campaigns at the population-scale. Strikingly, model results show that inherent evolutionary tradeoffs prevent these TIP-resistant HIV mutants from increasing in frequency (i.e., these TIP-resistant HIV mutants are continually outcompeted by TIP-sensitive mutants in both patients and populations). Maintained by natural selection, TIPs may offer a novel therapeutic approach to indefinitely control rapidly evolving viral pandemics.
PLOS393
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Parvoviruses exploit transferrin receptor type-1 (TfR) for cellular entry in carnivores, and specific interactions are key to control of host range. We show that several key mutations acquired by TfR during the evolution of Caniforms (dogs and related species) modified the interactions with parvovirus capsids by reducing the level of binding. These data, along with signatures of positive selection in the TFRC gene, are consistent with an evolutionary arms race between the TfR of the Caniform clade and parvoviruses. As well as the modifications of amino acid sequence which modify binding, we found that a glycosylation site mutation in the TfR of dogs which provided resistance to the carnivore parvoviruses which were in circulation prior to about 1975 predates the speciation of coyotes and dogs. Because the closely-related black-backed jackal has a TfR similar to their common ancestor and lacks the glycosylation site, reconstructing this mutation into the jackal TfR shows the potency of that site in blocking binding and infection and explains the resistance of dogs until recent times. This alters our understanding of this well-known example of viral emergence by indicating that canine parvovirus emergence likely resulted from the re-adaptation of a parvovirus to the resistant receptor of a former host. Output:
Parvoviruses in cats and dogs have been studied as a model system to understand how viruses gain the ability to infect new host species. By studying the evolution of the transferrin receptor, which the virus uses to enter a cell, we discovered that the ancestors of dogs were likely infected by a parvovirus millions of years ago until they evolved and became resistant; this was caused by their transferrin receptor changing so it no longer bound the virus. When a variant virus that infects dogs emerged in the 1970s, it had adapted to overcome this block. This story suggests that diseases which were once eliminated from a species can evolve and regain the infectivity for that host, therefore having high potential to be emerging diseases. We identified features of the receptor that were important to the evolution of this host-virus interaction and confirmed their role in regulating virus binding in cell culture.
PLOS394
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Large-scale codon re-encoding (i.e. introduction of a large number of synonymous mutations) is a novel method of generating attenuated viruses. Here, it was applied to the pathogenic flavivirus, tick-borne encephalitis virus (TBEV) which causes febrile illness and encephalitis in humans in forested regions of Europe and Asia. Using an infectious clone of the Oshima 5–10 strain ("wild-type virus"), a cassette of 1.4kb located in the NS5 coding region, was modified by randomly introducing 273 synonymous mutations ("re-encoded virus"). Whilst the in cellulo replicative fitness of the re-encoded virus was only slightly reduced, the re-encoded virus displayed an attenuated phenotype in a laboratory mouse model of non-lethal encephalitis. Following intra-peritoneal inoculation of either 2.105 or 2.106 TCID50 of virus, the frequency of viraemia, neurovirulence (measured using weight loss and appearance of symptoms) and neuroinvasiveness (detection of virus in the brain) were significantly decreased when compared with the wild-type virus. Mice infected by wild-type or re-encoded viruses produced comparable amounts of neutralising antibodies and results of challenge experiments demonstrated that mice previously infected with the re-encoded virus were protected against subsequent infection by the wild-type virus. This constitutes evidence that a mammalian species can be protected against infection by a virulent wild-type positive-stranded RNA virus following immunisation with a derived randomly re-encoded strain. Our results demonstrate that random codon re-encoding is potentially a simple and effective method of generating live-attenuated vaccine candidates against pathogenic flaviviruses. Output:
The arbovirus Tick-borne encephalitis virus (TBEV; genus Flavivirus) is transmitted by ticks of the Ixodes genus. TBEV causes febrile illness and encephalitis in humans in forested regions of Europe and Asia. The incidence of TBE is increasing across Central and Eastern European countries despite the availability of several licensed inactivated vaccines and appropriate vaccination programmes. Large-scale codon re-encoding, a recently developed attenuation method that modifies viral RNA nucleotide composition of large coding regions without alteration of the encoded proteins, has been successfully applied to a variety of RNA viruses. In contrast with previous empirical methods of generating live attenuated vaccines, large-scale codon re-encoding facilitates rapid generation of vaccine candidates using reverse genetics methods, by direct control of the attenuation phenotype. Additional benefits include reduced costs and induction of long-term immunity. Here, we have applied the large-scale codon re-encoding method to the TBEV to demonstrate the principle of developing a live attenuated virus vaccine which protects mice against subsequent infection with the wild type virulent virus. This study therefore illustrates that codon re-encoding is potentially an easily derived and effective method of producing live attenuated vaccine candidates against positive-stranded RNA viruses.
PLOS395
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Leprosy is caused by Mycobacterium leprae infection and remains a major public health problem in many areas of the world. Challenges to its timely diagnosis result in delay in treatment, which is usually associated with severe disability. Although phenolic glycolipid (PGL)-I has been reported as auxiliary diagnostic tool, currently there is no serological assay routinely used in leprosy diagnosis. The aim of this study was to evaluate the effectiveness of two related reagents, LID-1 and LID-NDO, for the detection of M. leprae infection. Sera from 98 leprosy patients, 365 household contacts (HHC) and 98 endemic controls from Rio Grande do Norte, Brazil, were evaluated. A subgroup of the HHC living in a hyperendemic area was followed for 7–10 years. Antigen-specific antibody responses were highest in multibacillary (MB) at the lepromatous pole (LL/BL) and lowest in paucibacillary (PB) at the tuberculoid pole (TT/BT). A positive correlation for both anti-LID-1 and anti-LID-NDO antibodies was found with bacterial burden (LID-1, r = 0.84, p<0.001; LID-NDO, r = 0.82, p<0.001), with higher sensitivity than bacilloscopy. According to Receiver Operating Curve, LID-1 and LID-NDO performed similarly. The sensitivity for MB cases was 89% for LID-1 and 95% for LID-NDO; the specificity was 96% for LID-1 and 88% for LID-NDO. Of the 332 HHC that were followed, 12 (3.6%) were diagnosed with leprosy in a median time of 31 (3–79) months after recruitment. A linear generalized model using LID-1 or LID-NDO as a predictor estimated that 8.3% and 10.4% of the HHC would become a leprosy case, respectively. Together, our findings support a role for the LID-1 and LID-NDO antigens in diagnosing MB leprosy and identifying people at greater risk of developing clinical disease. These assays have the potential to improve the diagnostic capacity at local health centers and aid development of strategies for the eventual control and elimination of leprosy from endemic areas. Output:
Despite the substantial decrease in its prevalence, leprosy continues to be a worldwide challenge. Early diagnosis and treatment are important to interrupt transmission. Currently, there is no gold standard for the diagnosis of leprosy. Bacilloscopy and histopathology studies are complementary exams that provide high specificity but low sensitivity. It is therefore important to seek alternative tools to achieve rapid and accurate diagnosis. The state of Rio Grande do Norte, in Brazil, has municipalities’ that are considered hyperendemic for leprosy, such as Mossoró, the one included in this study. This city presented an average of new case detection rate (NCDR) of 45.4/100.000 inhabitants per year from 2001 to 2013, much higher than Brazil’s NCDR, which is currently 15.3. Here, we show that the utility of the recombinant antigens LID-1 and LID-NDO to diagnose MB patients and detect asymptomatic M. leprae infection. In addition, we showed that antibody levels were related to the clinical form of leprosy as well as to the bacillary load. Interestingly, we observed that serum levels of LID-1/LID-NDO antibodies can be used to predict leprosy development among HHC. The assays have the potential to eventually be implemented as point of care at local health centers.
PLOS396
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Prions are self-perpetuating conformational variants of particular proteins. In yeast, prions cause heritable phenotypic traits. Most known yeast prions contain a glutamine (Q)/asparagine (N)-rich region in their prion domains. [PSI+], the prion form of Sup35, appears de novo at dramatically enhanced rates following transient overproduction of Sup35 in the presence of [PIN+], the prion form of Rnq1. Here, we establish the temporal de novo appearance of Sup35 aggregates during such overexpression in relation to other cellular proteins. Fluorescently-labeled Sup35 initially forms one or a few dots when overexpressed in [PIN+] cells. One of the dots is perivacuolar, colocalizes with the aggregated Rnq1 dot and grows into peripheral rings/lines, some of which also colocalize with Rnq1. Sup35 dots that are not near the vacuole do not always colocalize with Rnq1 and disappear by the time rings start to grow. Bimolecular fluorescence complementation failed to detect any interaction between Sup35-VN and Rnq1-VC in [PSI+][PIN+] cells. In contrast, all Sup35 aggregates, whether newly induced or in established [PSI+], completely colocalize with the molecular chaperones Hsp104, Sis1, Ssa1 and eukaryotic release factor Sup45. In the absence of [PIN+], overexpressed aggregating proteins such as the Q/N-rich Pin4C or the non-Q/N-rich Mod5 can also promote the de novo appearance of [PSI+]. Similar to Rnq1, overexpressed Pin4C transiently colocalizes with newly appearing Sup35 aggregates. However, no interaction was detected between Mod5 and Sup35 during [PSI+] induction in the absence of [PIN+]. While the colocalization of Sup35 and aggregates of Rnq1 or Pin4C are consistent with the model that the heterologous aggregates cross-seed the de novo appearance of [PSI+], the lack of interaction between Mod5 and Sup35 leaves open the possibility of other mechanisms. We also show that Hsp104 is required in the de novo appearance of [PSI+] aggregates in a [PIN+]-independent pathway. Output:
Certain proteins can misfold into β-sheet-rich, self-seeding aggregates. Such proteins appear to be associated with neurodegenerative diseases such as prion, Alzheimer's and Parkinson's. Yeast prions also misfold into self-seeding aggregates and provide a good model to study how these rogue polymers first appear. De novo prion appearance can be made very frequent in yeast by transient overexpression of the prion protein in the presence of heterologous prions or prion-like aggregates. Here, we show that the aggregates of one such newly induced prion are initially formed in a dot-like structure near the vacuole. These dots then grow into rings at the periphery of the cell prior to becoming smaller rings surrounding the vacuole and maturing into the characteristic heritable prion tiny dots found throughout the cytoplasm. We found considerable colocalization of two heterologous prion/prion-like aggregates with the newly appearing prion protein aggregates, which is consistent with the prevalent model that existing prion aggregates can cross-seed the de novo aggregation of a heterologous prion protein. However, we failed to find any physical interaction between another heterologous aggregating protein and the newly appearing prion aggregates it stimulated to appear, which is inconsistent with cross-seeding.
PLOS397
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Hybrid sterility (HS) belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X) harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2Mmm allele and resolved the apparent conflict with the dominance theory of Haldane's rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes. Output:
Genomes of newly emerging species restrict their gene exchange with related taxa in order to secure integrity. Hybrid sterility is one of the reproductive isolation mechanisms restricting gene flow between closely related, sexually reproducing organisms. We showed that hybrid sterility between two closely related mouse subspecies is executed by a failure of meiotic synapsis of orthologous chromosomes in F1 hybrid males. The asynapsis of orthologous chromosomes occurred in meiosis of male and female hybrids, though only males were sterile due to trans-acting male-specific hybrid sterility genes. We located one of the two major hybrid sterility genes to a 4.7 Mb interval on Chromosome X, showed that it controls male sterility by modulating the extent of meiotic asynapsis and using the inter-subspecific chromosome substitution strains we refuted the simple interpretation of dominance theory of Haldane's rule. A new working hypothesis posits male sterility of mouse inter-subsubspecific F1 hybrids as a consequence of meiotic chromosome asynapsis caused by the cis-acting mismatch between orthologous chromosomes modulated by the trans-acting hybrid male sterility genes.
PLOS398
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Normal mode analysis (NMA) methods are widely used to study dynamic aspects of protein structures. Two critical components of NMA methods are coarse-graining in the level of simplification used to represent protein structures and the choice of potential energy functional form. There is a trade-off between speed and accuracy in different choices. In one extreme one finds accurate but slow molecular-dynamics based methods with all-atom representations and detailed atom potentials. On the other extreme, fast elastic network model (ENM) methods with Cα−only representations and simplified potentials that based on geometry alone, thus oblivious to protein sequence. Here we present ENCoM, an Elastic Network Contact Model that employs a potential energy function that includes a pairwise atom-type non-bonded interaction term and thus makes it possible to consider the effect of the specific nature of amino-acids on dynamics within the context of NMA. ENCoM is as fast as existing ENM methods and outperforms such methods in the generation of conformational ensembles. Here we introduce a new application for NMA methods with the use of ENCoM in the prediction of the effect of mutations on protein stability. While existing methods are based on machine learning or enthalpic considerations, the use of ENCoM, based on vibrational normal modes, is based on entropic considerations. This represents a novel area of application for NMA methods and a novel approach for the prediction of the effect of mutations. We compare ENCoM to a large number of methods in terms of accuracy and self-consistency. We show that the accuracy of ENCoM is comparable to that of the best existing methods. We show that existing methods are biased towards the prediction of destabilizing mutations and that ENCoM is less biased at predicting stabilizing mutations. Output:
Normal mode analysis (NMA) methods can be used to explore potential movements around an equilibrium conformation by mean of calculating the eigenvectors and eigenvalues associated to different normal modes. Each normal mode represents a global collective, correlated and complex, form of motion of the entire protein. Any conformation around equilibrium can be represented as a weighted combination of normal modes. Differences in the magnitudes of the set of eigenvalues between two structures can be used to calculate differences in entropy. We introduce ENCoM the first coarse-grained NMA method to consider atom-specific side-chain interactions and thus account for the effect of mutations on eigenvectors and eigenvalues. ENCoM performs better than existing NMA methods with respect to traditional applications of NMA methods but is the first to predict the effect of mutations on protein stability and function. Comparing ENCoM to a large set of dedicated methods for the prediction of the effect of mutations on protein stability shows that ENCoM performs better than existing methods particularly on stabilizing mutations. ENCoM is the first entropy-based method developed to predict the effect of mutations on protein stability.
PLOS399
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Essential tremor (ET), a movement disorder characterised by an uncontrollable shaking of the affected body part, is often professed to be the most common movement disorder, affecting up to one percent of adults over 40 years of age. The precise cause of ET is unknown, however pathological oscillations of a network of a number of brain regions are implicated in leading to the disorder. Deep brain stimulation (DBS) is a clinical therapy used to alleviate the symptoms of a number of movement disorders. DBS involves the surgical implantation of electrodes into specific nuclei in the brain. For ET the targeted region is the ventralis intermedius (Vim) nucleus of the thalamus. Though DBS is effective for treating ET, the mechanism through which the therapeutic effect is obtained is not understood. To elucidate the mechanism underlying the pathological network activity and the effect of DBS on such activity, we take a computational modelling approach combined with electrophysiological data. The pathological brain activity was recorded intra-operatively via implanted DBS electrodes, whilst simultaneously recording muscle activity of the affected limbs. We modelled the network hypothesised to underlie ET using the Wilson-Cowan approach. The modelled network exhibited oscillatory behaviour within the tremor frequency range, as did our electrophysiological data. By applying a DBS-like input we suppressed these oscillations. This study shows that the dynamics of the ET network support oscillations at the tremor frequency and the application of a DBS-like input disrupts this activity, which could be one mechanism underlying the therapeutic benefit. Output:
Essential tremor (ET) is acknowledged to be the most common movement disorder affecting 1% of the population. Although the underlying mechanisms remain elusive, the thalamus, cortex and cerebellum are implicated in the underlying pathology. More recently, it has been shown that ET can be successfully treated by deep brain stimulation (DBS). This clinical treatment involves the surgical implantation of electrodes into the brain, through which current is applied. However, the mechanisms of how DBS achieves clinical benefit continue to be debated. A key question is whether ET can be modeled as a pathological network behavior as has been suggested previously. If so, we can then ask how DBS would modulate this brain activity. Our study combines: (i) simultaneous electrophysiological recordings from the brain and muscle; (ii) computational modelling; (iii) mathematical analysis. We found that the network supports oscillations in the tremor range, and the application of high frequency DBS switches this to low amplitude, high-frequency activity. We propose that our model can be used to predict DBS parameter settings that suppress pathological network activity and consequently tremor. In summary, we provide the first population level model of essential tremor including the effect of DBS on network behaviour.