id
stringlengths
5
7
query
stringlengths
4.64k
8.32k
answer
stringlengths
392
2.53k
PLOS600
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The highly pathogenic Old World arenavirus Lassa virus (LASV) and the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) use α-dystroglycan as a cellular receptor and enter the host cell by an unusual endocytotic pathway independent of clathrin, caveolin, dynamin, and actin. Upon internalization, the viruses are delivered to acidified endosomes in a Rab5-independent manner bypassing classical routes of incoming vesicular trafficking. Here we sought to identify cellular factors involved in the unusual and largely unknown entry pathway of LASV and LCMV. Cell entry of LASV and LCMV required microtubular transport to late endosomes, consistent with the low fusion pH of the viral envelope glycoproteins. Productive infection with recombinant LCMV expressing LASV envelope glycoprotein (rLCMV-LASVGP) and LCMV depended on phosphatidyl inositol 3-kinase (PI3K) as well as lysobisphosphatidic acid (LBPA), an unusual phospholipid that is involved in the formation of intraluminal vesicles (ILV) of the multivesicular body (MVB) of the late endosome. We provide evidence for a role of the endosomal sorting complex required for transport (ESCRT) in LASV and LCMV cell entry, in particular the ESCRT components Hrs, Tsg101, Vps22, and Vps24, as well as the ESCRT-associated ATPase Vps4 involved in fission of ILV. Productive infection with rLCMV-LASVGP and LCMV also critically depended on the ESCRT-associated protein Alix, which is implicated in membrane dynamics of the MVB/late endosomes. Our study identifies crucial cellular factors implicated in Old World arenavirus cell entry and indicates that LASV and LCMV invade the host cell passing via the MVB/late endosome. Our data further suggest that the virus-receptor complexes undergo sorting into ILV of the MVB mediated by the ESCRT, possibly using a pathway that may be linked to the cellular trafficking and degradation of the cellular receptor. Output:
Old World arenaviruses include the prototypic lymphocytic choriomeningitis virus (LCMV) and the highly pathogenic Lassa virus (LASV) that causes a severe hemorrhagic fever in humans and infects several thousand individuals per year in Western Africa. Cell entry of a virus is the first step of every virus infection and represents a promising target for therapeutic intervention. We and others had shown that LCMV and LASV attach to a cellular receptor, α-dystroglycan, followed by internalization by endocytosis via a novel and unusual pathway. Here we investigated the largely unknown molecular mechanisms of cell entry of LASV and LCMV with the goal to identify host cell factors involved. We discovered that during cell entry LASV and LCMV pass through a particular intracellular compartment, the multivesicular body (MVB)/late endosome, which is implicated in the internalization and degradation of cellular membrane receptors. Productive infection of LASV and LCMV critically depended on cellular factors involved in the membrane dynamics and sorting processes in the MVB. Based on our studies, we propose a model for Old World arenavirus entry in which the viruses hijack a pathway that may be linked to the cellular trafficking and degradation of their cellular receptor.
PLOS601
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Low socioeconomic position (SEP) is recognized as a risk factor for worse health outcomes. How socioeconomic factors influence end-of-life care, and the magnitude of their effect, is not understood. This review aimed to synthesise and quantify the associations between measures of SEP and use of healthcare in the last year of life. MEDLINE, EMBASE, PsycINFO, CINAHL, and ASSIA databases were searched without language restrictions from inception to 1 February 2019. We included empirical observational studies from high-income countries reporting an association between SEP (e.g., income, education, occupation, private medical insurance status, housing tenure, housing quality, or area-based deprivation) and place of death, plus use of acute care, specialist and nonspecialist end-of-life care, advance care planning, and quality of care in the last year of life. Methodological quality was evaluated using the Newcastle-Ottawa Quality Assessment Scale (NOS). The overall strength and direction of associations was summarised, and where sufficient comparable data were available, adjusted odds ratios (ORs) were pooled and dose-response meta-regression performed. A total of 209 studies were included (mean NOS quality score of 4.8); 112 high- to medium-quality observational studies were used in the meta-synthesis and meta-analysis (53.5% from North America, 31.0% from Europe, 8.5% from Australia, and 7.0% from Asia). Compared to people living in the least deprived neighbourhoods, people living in the most deprived neighbourhoods were more likely to die in hospital versus home (OR 1.30, 95% CI 1.23–1.38, p < 0.001), to receive acute hospital-based care in the last 3 months of life (OR 1.16, 95% CI 1.08–1.25, p < 0.001), and to not receive specialist palliative care (OR 1.13, 95% CI 1.07–1.19, p < 0.001). For every quintile increase in area deprivation, hospital versus home death was more likely (OR 1.07, 95% CI 1.05–1.08, p < 0.001), and not receiving specialist palliative care was more likely (OR 1.03, 95% CI 1.02–1.05, p < 0.001). Compared to the most educated (qualifications or years of education completed), the least educated people were more likely to not receive specialist palliative care (OR 1.26, 95% CI 1.07–1.49, p = 0.005). The observational nature of the studies included and the focus on high-income countries limit the conclusions of this review. In high-income countries, low SEP is a risk factor for hospital death as well as other indicators of potentially poor-quality end-of-life care, with evidence of a dose response indicating that inequality persists across the social stratum. These findings should stimulate widespread efforts to reduce socioeconomic inequality towards the end of life. Output:
Social inequality in health is a global phenomenon; people with lower socioeconomic position (SEP) experience earlier onset of disease and have reduced life expectancy. Studies have identified low SEP as a risk factor for worse care at the end of life, and several socioeconomic factors have been identified as determinants of care towards the end of life. Despite growing recognition, no empirical synthesis of evidence exists to support efforts to reduce socioeconomic inequality at the end of life. We carried out a systematic review of studies that reported an association between a measure of SEP (including income, education, occupation, private medical insurance status, housing tenure, housing quality, or area-based deprivation) and healthcare received by adults in their last year of life (including place of death, use of acute care, use of specialist palliative care, use of nonspecialist end-of-life care, use of advance care planning, or quality of care) in high-income countries. A total of 209 studies were included in the review; we found consistent evidence that low SEP increases the odds of hospital versus home death and of using acute care services in the last 3 months of life and reduces the odds of using specialist palliative care in the last year of life. We also found that measurement of SEP in this field is dominated by measures of area deprivation and education, and justification for choice of SEP measure(s) is often inadequately described. We have found consistent evidence of socioeconomic inequality in the care received by people towards the end of life, in that people with lower SEP are more likely to experience worse care. We must now make further efforts to reduce this inequality. We recommend the following: that all research on care received towards the end of life should attempt to account for SEP, end-of-life care interventions should be analysed for their different effects across the social strata, and the planning and provision of end-of-life care services should consider SEP in local populations.
PLOS602
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Trypanosoma brucei, the agents of African trypanosomiasis, undergo density-dependent differentiation in the mammalian bloodstream to prepare for transmission by tsetse flies. This involves the generation of cell-cycle arrested, quiescent, stumpy forms from proliferative slender forms. The signalling pathway responsible for the quorum sensing response has been catalogued using a genome-wide selective screen, providing a compendium of signalling protein kinases phosphatases, RNA binding proteins and hypothetical proteins. However, the ordering of these components is unknown. To piece together these components to provide a description of how stumpy formation arises we have used an extragenic suppression approach. This exploited a combinatorial gene knockout and overexpression strategy to assess whether the loss of developmental competence in null mutants of pathway components could be compensated by ectopic expression of other components. We have created null mutants for three genes in the stumpy induction factor signalling pathway (RBP7, YAK, MEKK1) and evaluated complementation by expression of RBP7, NEK17, PP1-6, or inducible gene silencing of the proposed differentiation inhibitor TbTOR4. This indicated that the signalling pathway is non-linear. Phosphoproteomic analysis focused on one pathway component, a putative MEKK, identified molecules with altered expression and phosphorylation profiles in MEKK1 null mutants, including another component in the pathway, NEK17. Our data provide a first molecular dissection of multiple components in a signal transduction cascade in trypanosomes. Output:
African trypanosome parasites respond to density sensing information in the bloodstream of their mammalian hosts to generate their transmission stage, the stumpy form. Components of this ‘quorum sensing’ signalling cascade are known but their interactions and ordering are not. Here we have dissected the dependency relationships between molecules in the pathway by combinatorial gene knockout and ectopic expression, as well as by detailed phosphoproteomic analysis of one component. Our results provide a first analysis of the signal pathway architecture, revealing that it is non-linear. Moreover, phosphoproteome analysis reveals pathway hierarchy through identifying that the phosphorylation of a NEK kinase component of the pathway is reduced when a predicted upstream kinase is absent. This provides a framework for the coherent dissection of a signal transduction cascade in these parasites that use quorum sensing to control disease spread.
PLOS603
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Understanding the mechanisms of protein–protein interaction is a fundamental problem with many practical applications. The fact that different proteins can bind similar partners suggests that convergently evolved binding interfaces are reused in different complexes. A set of protein complexes composed of non-homologous domains interacting with homologous partners at equivalent binding sites was collected in 2006, offering an opportunity to investigate this point. We considered 433 pairs of protein–protein complexes from the ABAC database (AB and AC binary protein complexes sharing a homologous partner A) and analyzed the extent of physico-chemical similarity at the atomic and residue level at the protein–protein interface. Homologous partners of the complexes were superimposed using Multiprot, and similar atoms at the interface were quantified using a five class grouping scheme and a distance cut-off. We found that the number of interfacial atoms with similar properties is systematically lower in the non-homologous proteins than in the homologous ones. We assessed the significance of the similarity by bootstrapping the atomic properties at the interfaces. We found that the similarity of binding sites is very significant between homologous proteins, as expected, but generally insignificant between the non-homologous proteins that bind to homologous partners. Furthermore, evolutionarily conserved residues are not colocalized within the binding sites of non-homologous proteins. We could only identify a limited number of cases of structural mimicry at the interface, suggesting that this property is less generic than previously thought. Our results support the hypothesis that different proteins can interact with similar partners using alternate strategies, but do not support convergent evolution. Output:
Interaction between proteins is a fundamental process, generic to most biological pathways. The increasing number of protein–protein complexes with atomic data should help us to understand the major factors that guide protein interactions. In particular, a number of examples are available of similar proteins that interact with proteins that are very different in terms of structure and function. An intuitive hypothesis to explain the ability of these different proteins to recognize the same partner is that they display the same local region for interaction, in other words, they imitate the same binding site. Here, we quantify the similarity between these putatively mimicking binding sites. We show that it is not statistically significant. We confirm this observation on the small sets of evolutionarily conserved residues. Our results suggest that different proteins that bind the same protein do not imitate binding sites, but probably target specific locations or residues at the binding site.
PLOS604
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Detection of congenital T. cruzi transmission is considered one of the pillars of control programs of Chagas disease. Congenital transmission accounts for 25% of new infections with an estimated 15,000 infected infants per year. Current programs to detect congenital Chagas disease in Latin America utilize microscopy early in life and serology after 6 months. These programs suffer from low sensitivity by microscopy and high loss to follow-up later in infancy. We developed a Chagas urine nanoparticle test (Chunap) to concentrate, preserve and detect T. cruzi antigens in urine for early, non-invasive diagnosis of congenital Chagas disease. This is a proof-of-concept study of Chunap for the early diagnosis of congenital Chagas disease. Poly N-isopropylacrylamide nano-particles functionalized with trypan blue were synthesized by precipitation polymerization and characterized with photon correlation spectroscopy. We evaluated the ability of the nanoparticles to capture, concentrate and preserve T. cruzi antigens. Urine samples from congenitally infected and uninfected infants were then concentrated using these nanoparticles. The antigens were eluted and detected by Western Blot using a monoclonal antibody against T. cruzi lipophosphoglycan. The nanoparticles concentrate T. cruzi antigens by 100 fold (western blot detection limit decreased from 50 ng/ml to 0.5 ng/ml). The sensitivity of Chunap in a single specimen at one month of age was 91.3% (21/23, 95% CI: 71.92%–98.68%), comparable to PCR in two specimens at 0 and 1 month (91.3%) and significantly higher than microscopy in two specimens (34.8%, 95% CI: 16.42%–57.26%). Chunap specificity was 96.5% (71/74 endemic, 12/12 non-endemic specimens). Particle-sequestered T. cruzi antigens were protected from trypsin digestion. Chunap has the potential to be developed into a simple and sensitive test for the early diagnosis of congenital Chagas disease. Output:
Congenital Chagas disease is one of the main pillars for the control of Chagas disease because 25% of new infections occur by this route. Conventional diagnosis of congenital Chagas disease is based on microscopy at birth and serology at 9 months. However microscopy misses many infections and many at-risk infants fail to complete serology at six to nine months. We have developed a Chagas urine nanoparticle test (Chunap) for concentration and detection of T. cruzi antigens. Chunap was evaluated in urine samples of 1-month old children. At this age children have the highest levels of parasitemia and therefore also excrete the highest levels of antigen. Parents prefer a urine test to having their baby's blood drawn. Chunap diagnosed congenital infection in a single urine sample as well as PCR in two blood samples. This study also shows that hydrogel/trypan blue particles used in our test efficiently capture, concentrate and protect urinary T. cruzi antigens from enzymatic degradation. Chunap allows for the early diagnosis of congenital Chagas disease, and with appropriate adaptation, may allow early point-of-care intervention.
PLOS605
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: To gain insight into the molecular genetic basis of standing variation in fitness related traits, we identify a novel factor that regulates the molecular and physiological basis of natural variation in female Drosophila melanogaster fecundity. Genetic variation in female fecundity in flies derived from a wild orchard population is heritable and largely independent of other measured life history traits. We map a portion of this variation to a single QTL and then use deficiency mapping to further refine this QTL to 5 candidate genes. Ubiquitous expression of RNAi against only one of these genes, an aquaporin encoded by Drip, reduces fecundity. Within our mapping population Drip mRNA level in the head, but not other tissues, is positively correlated with fecundity. We localize Drip expression to a small population of corazonin producing neurons located in the dorsolateral posterior compartments of the protocerebrum. Expression of Drip–RNAi using both the pan-neuronal ELAV-Gal4 and the Crz-Gal4 drivers reduces fecundity. Low-fecundity RILs have decreased Crz expression and increased expression of pale, the enzyme encoding the rate-limiting step in the production of dopamine, a modulator of insect life histories. Taken together these data suggest that natural variation in Drip expression in the corazonin producing neurons contributes to standing variation in fitness by altering the concentration of two neurohormones. Output:
A major goal of modern evolutionary biology is to elucidate the genetic basis of standing genetic variation underlying fitness traits. This goal is important for a comprehensive picture of the evolutionary process, because it allows us to understand the mode of natural selection on fitness traits and identify the molecular and physiological processes that affect fitness traits. Here, we describe our work to identify the molecular genetic and physiological basis for natural variation in a core life history trait, fecundity, of Drosophila melanogaster. Using a variety of mapping techniques, we show that differential expression of the aquaporin Drip in nervous tissue affects natural variation in female fecundity. We further go on to describe a novel domain of expression of Drip in neurons that produce the insect stress hormone corazonin and demonstrate that differential expression of Drip in these neurons affects female fecundity putatively through modulating the concentration of corazonin and dopamine. This surprising and novel observation highlights the benefit of exploiting natural genetic variation to identify the molecular processes underlying phenotypic traits.
PLOS606
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Abortive infection, during which an infected bacterial cell commits altruistic suicide to destroy the replicating bacteriophage and protect the clonal population, can be mediated by toxin-antitoxin systems such as the Type III protein–RNA toxin-antitoxin system, ToxIN. A flagellum-dependent bacteriophage of the Myoviridae, ΦTE, evolved rare mutants that “escaped” ToxIN-mediated abortive infection within Pectobacterium atrosepticum. Wild-type ΦTE encoded a short sequence similar to the repetitive nucleotide sequence of the RNA antitoxin, ToxI, from ToxIN. The ΦTE escape mutants had expanded the number of these “pseudo-ToxI” genetic repeats and, in one case, an escape phage had “hijacked” ToxI from the plasmid-borne toxIN locus, through recombination. Expression of the pseudo-ToxI repeats during ΦTE infection allowed the phage to replicate, unaffected by ToxIN, through RNA–based molecular mimicry. This is the first example of a non-coding RNA encoded by a phage that evolves by selective expansion and recombination to enable viral suppression of a defensive bacterial suicide system. Furthermore, the ΦTE escape phages had evolved enhanced capacity to transduce replicons expressing ToxIN, demonstrating virus-mediated horizontal transfer of genetic altruism. Output:
Bacteria are under constant attack by their viral parasites, bacteriophages, which outnumber bacteria by an estimated ten-to-one. The constant selection pressure from this predation promotes the evolution and dissemination of bacterial bacteriophage-resistance mechanisms. One family of protective systems causes the infected cell to undergo premature suicide, in an altruistic move that protects the clonal population of bacteria by blocking virus replication. We identified a means by which a bacteriophage counter-evolved to avoid one such system. This system relies on two components: a toxic part to kill the cell and an antidote that holds the toxin in check until required. The bacteriophage evolved sequences encoding mimics of the cellular antidote and expressed these mimics so that it could continue replicating without becoming a victim of the host's defensive system. Furthermore, this evolved bacteriophage was able to transfer the DNA encoding the defence system to a new bacterial host. In so doing, the evolved bacteriophage may have indirectly created populations of host cells inside which it could productively replicate, while also providing the host better protection from competing predators.
PLOS607
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: We have developed an efficient method to quantify cell-to-cell infection with single-cycle, replication dependent reporter vectors. This system was used to examine the mechanisms of infection with HTLV-1 and HIV-1 vectors in lymphocyte cell lines. Effector cells transfected with reporter vector, packaging vector, and Env expression plasmid produced virus-like particles that transduced reporter gene activity into cocultured target cells with zero background. Reporter gene expression was detected exclusively in target cells and required an Env-expression plasmid and a viral packaging vector, which provided essential structural and enzymatic proteins for virus replication. Cell-cell fusion did not contribute to infection, as reporter protein was rarely detected in syncytia. Coculture of transfected Jurkat T cells and target Raji/CD4 B cells enhanced HIV-1 infection two fold and HTLV-1 infection ten thousand fold in comparison with cell-free infection of Raji/CD4 cells. Agents that interfere with actin and tubulin polymerization strongly inhibited HTLV-1 and modestly decreased HIV-1 cell-to-cell infection, an indication that cytoskeletal remodeling was more important for HTLV-1 transmission. Time course studies showed that HTLV-1 transmission occurred very rapidly after cell mixing, whereas slower kinetics of HIV-1 coculture infection implies a different mechanism of infectious transmission. HTLV-1 Tax was demonstrated to play an important role in altering cell-cell interactions that enhance virus infection and replication. Interestingly, superantigen-induced synapses between Jurkat cells and Raji/CD4 cells did not enhance infection for either HTLV-1 or HIV-1. In general, the dependence on cell-to-cell infection was determined by the virus, the effector and target cell types, and by the nature of the cell-cell interaction. Output:
Cell-free virus particles released from infected cells can be transmitted to target cells by diffusion or may be conveyed directly to target cells via specific intercellular contacts; the latter is referred to as cell-to-cell infection. Microscopic imaging has shown how viral proteins and virus particles move within and between cells, accumulating at sites of cell-cell contact. While we suspect that these images represent virus infection, it has been difficult to accurately quantify virus replication and provirus formation in most cell-to-cell infection experiments. Retroviral vectors that encode reporter proteins have been invaluable tools for analyzing retrovirus replication and restriction, but they have had limited utility in cell-to-cell infection studies due to high background noise resulting from reporter expression in the producer cells. We report the construction and characterization of retroviral vectors that express reporter protein exclusively in target cells and only after completing a full replication cycle. We have validated this approach and have begun to analyze cell and virus determinants for cell-to-cell infection with vectors for two human retroviruses that infect T cells. We show that the mechanism of transmission and ensuing virus replication depend on the particular virus, the effector and target cell types, and on the specific type of cell-cell interaction.
PLOS608
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Multipotent neural crest (NC) progenitors generate an astonishing array of derivatives, including neuronal, skeletal components and pigment cells (chromatophores), but the molecular mechanisms allowing balanced selection of each fate remain unknown. In zebrafish, melanocytes, iridophores and xanthophores, the three chromatophore lineages, are thought to share progenitors and so lend themselves to investigating the complex gene regulatory networks (GRNs) underlying fate segregation of NC progenitors. Although the core GRN governing melanocyte specification has been previously established, those guiding iridophore and xanthophore development remain elusive. Here we focus on the iridophore GRN, where mutant phenotypes identify the transcription factors Sox10, Tfec and Mitfa and the receptor tyrosine kinase, Ltk, as key players. Here we present expression data, as well as loss and gain of function results, guiding the derivation of an initial iridophore specification GRN. Moreover, we use an iterative process of mathematical modelling, supplemented with a Monte Carlo screening algorithm suited to the qualitative nature of the experimental data, to allow for rigorous predictive exploration of the GRN dynamics. Predictions were experimentally evaluated and testable hypotheses were derived to construct an improved version of the GRN, which we showed produced outputs consistent with experimentally observed gene expression dynamics. Our study reveals multiple important regulatory features, notably a sox10-dependent positive feedback loop between tfec and ltk driving iridophore specification; the molecular basis of sox10 maintenance throughout iridophore development; and the cooperation between sox10 and tfec in driving expression of pnp4a, a key differentiation gene. We also assess a candidate repressor of mitfa, a melanocyte-specific target of sox10. Surprisingly, our data challenge the reported role of Foxd3, an established mitfa repressor, in iridophore regulation. Our study builds upon our previous systems biology approach, by incorporating physiologically-relevant parameter values and rigorous evaluation of parameter values within a qualitative data framework, to establish for the first time the core GRN guiding specification of the iridophore lineage. Output:
Multipotent neural crest (NC) progenitors generate an astonishing array of derivatives, including neuronal, skeletal components and pigment cells, but the molecular mechanisms allowing balanced selection of each fate remain unknown. In zebrafish, melanocytes, iridophores and xanthophores, the three chromatophore lineages, are thought to share progenitors and so lend themselves to investigating the complex gene regulatory networks (GRNs) underlying fate segregation of NC progenitors. Although the core GRN governing melanocyte specification has been previously established, those guiding iridophore and xanthophore development remain elusive. Here we present expression data, as well as loss and gain of function results, guiding the derivation of a core iridophore specification GRN. Moreover, we use a process of mathematical modelling and rigorous computational exploration of the GRN to predict gene expression dynamics, assessing them by criteria suited to the qualitative nature of our current understanding of iridophore development. Predictions were experimentally evaluated and testable hypotheses were derived to construct an improved version of the GRN, which we showed produced outputs consistent with experimentally observed gene expression dynamics. The core iridophore GRN defined here is a key stepping stone towards exploring how chromatophore fate decisions are made in multipotent NC progenitors.
PLOS609
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Despite intensive breeding efforts, potato late blight, caused by the oomycete pathogen Phytophthora infestans, remains a threat to potato production worldwide because newly evolved pathogen strains have consistently overcome major resistance genes. The potato RB gene, derived from the wild species Solanum bulbocastanum, confers resistance to most P. infestans strains through recognition of members of the pathogen effector family IPI-O. While the majority of IPI-O proteins are recognized by RB to elicit resistance (e.g. IPI-O1, IPI-O2), some family members are able to elude detection (e.g. IPI-O4). In addition, IPI-O4 blocks recognition of IPI-O1, leading to inactivation of RB-mediated programmed cell death. Here, we report results that elucidate molecular mechanisms governing resistance elicitation or suppression of RB by IPI-O. Our data indicate self-association of the RB coiled coil (CC) domain as well as a physical interaction between this domain and the effectors IPI-O4 and IPI-O1. We identified four amino acids within IPI-O that are critical for interaction with the RB CC domain and one of these amino acids, at position 129, determines hypersensitive response (HR) elicitation in planta. IPI-O1 mutant L129P fails to induce HR in presence of RB while IPI-O4 P129L gains the ability to induce an HR. Like IPI-O4, IPI-O1 L129P is also able to suppress the HR mediated by RB, indicating a critical step in the evolution of this gene family. Our results point to a model in which IPI-O effectors can affect RB function through interaction with the RB CC domain. Output:
The potato late blight pathogen, Phytophthora infestans, is able to rapidly evolve to overcome resistance genes. The pathogen accomplishes this by secreting an arsenal of proteins, termed effectors, that function to modify host cells. Although hundreds of candidate effectors have been identified in P. infestans, their roles in pathogenicity or virulence remains basically unknown. Our results showed that one of these effectors functions to turn off resistance mediated by the potato gene RB. This effector accomplishes this by directly interacting with RB, which likely modifies its ability to turn on host resistance. Further molecular analysis identified two amino acids within the effector that determine interaction, which can assist in developing appropriate disease control strategies.
PLOS610
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type) and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition and the enhanced stabilization of the active kinase form. The results of this study reconcile current experimental data with insights from theoretical approaches, pointing to general mechanistic aspects of activating transitions in protein kinases. Output:
Mutations in protein kinases are implicated in many cancers, and an important goal of cancer research is to elucidate molecular effects of mutated kinase genes that contribute to tumorigenesis. We present a comprehensive computational study of molecular mechanisms of kinase activation by cancer-causing mutations. Using a battery of computational approaches, we have systematically investigated the effects of clinically important cancer mutants on dynamics of the ABL and EGFR kinase domains and regulatory multi-protein complexes. The results of this study have illuminated common and specific features of the activation mechanism in the normal and oncogenic forms of ABL and EGFR. We have found that mutants with the higher oncogenic activity may cause a partial destabilization of the inactive structure, while simultaneously facilitating activating transitions and the enhanced stabilization of the active conformation. Our results provided useful insights into thermodynamic and mechanistic aspects of the activation mechanism and highlighted the role of structurally distinct conformational states in kinase regulation. Ultimately, molecular signatures of activation mechanisms in the normal and oncogenic states may aid in the correlation of mutational effects with clinical outcomes and facilitate the development of therapeutic strategies to combat kinase mutation-dependent tumorigenesis.
PLOS611
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Human African trypanosomiasis is fatal without treatment. The long post-treatment follow-up (24 months) required to assess cure complicates patient management and is a major obstacle in the development of new therapies. We analyzed individual patient data from 12 programs conducted by Médecins Sans Frontières in Uganda, Sudan, Angola, Central African Republic, Republic of Congo and Democratic Republic of Congo searching for early efficacy indicators. Patients analyzed had confirmed second-stage disease with complete follow-up and confirmed outcome (cure or relapse), and had CSF leucocytes counts (CSFLC) performed at 6 months post-treatment. We excluded patients with uncertain efficacy outcome: incomplete follow-up, death, relapse diagnosed with CSFLC below 50/µL and no trypanosomes. We analyzed the 6-month CSFLC via receiver-operator-characteristic curves. For each cut-off value we calculated sensitivity, specificity and likelihood ratios (LR+ and LR−). We assessed the association of the optimal cut-off with the probability of relapsing via random-intercept logistic regression. We also explored two-step (6 and 12 months) composite algorithms using the CSFLC. The most accurate cut-off to predict outcome was 10 leucocytes/µL (n = 1822, 76.2% sensitivity, 80.4% specificity, 3.89 LR+, 0.29 LR−). Multivariate analysis confirmed its association with outcome (odds ratio = 17.2). The best algorithm established cure at 6 months with < = 5 leucocytes/µL and relapse with > = 50 leucocytes/µL; patients between these values were discriminated at 12 months by a 20 leucocytes/µL cut-off (n = 2190, 87.4% sensitivity, 97.7% specificity, 37.84 LR+, 0.13 LR−). The 6-month CSFLC can predict outcome with some limitations. Two-step algorithms enhance the accuracy but impose 12-month follow-up for some patients. For early estimation of efficacy in clinical trials and for individual patients in the field, several options exist that can be used according to priorities. Output:
Because Human African trypanosomiasis is fatal, it is crucial for the patient to determine if curative treatment has been effective. Unfortunately this is not possible without a 24-month laboratory follow-up, which is problematic and largely unaccomplished in the field reality. Studies that assessed early indicators have used small cohorts, yielding limited statistical power plus potential bias because of including patients with equivocal outcome. We tackled this problem by pooling a large dataset which allowed for selecting cases providing strictly unequivocal information, still numerous enough to produce sound statistical evidence. We studied predictors based on the CSF leucocytes count, a laboratory technique already available in the field, evaluating their predictive power at 6 and 12 months post-treatment. We found a predictor at 6 months (10 leucocytes/µL of CSF) that has sub-optimal accuracy but may be valuable in some particular situations, plus two-step algorithms at 6 and 12 months that offer sufficient confidence to shorten the patients' follow-up. Until better biomarkers are identified, these findings represent a significant advance for this neglected disease. Benefits are foreseen both for patients and for overburdened treatment facilities. In addition, research for new treatments can be accelerated by using early predictors.
PLOS612
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: When confronted with poor oxygenation, cells adapt by activating survival signaling pathways, including the oxygen-sensitive transcriptional regulators called hypoxia-inducible factor alphas (HIF-αs). We report here that HIF-1α also regulates the life cycle of Epstein-Barr virus (EBV). Incubation of EBV-positive gastric carcinoma AGS-Akata and SNU-719 and Burkitt lymphoma Sal and KemIII cell lines with a prolyl hydroxylase inhibitor, L-mimosine or deferoxamine, or the NEDDylation inhibitor MLN4924 promoted rapid and sustained accumulation of both HIF-1α and lytic EBV antigens. ShRNA knockdown of HIF-1α significantly reduced deferoxamine-mediated lytic reactivation. HIF-1α directly bound the promoter of the EBV primary latent-lytic switch BZLF1 gene, Zp, activating transcription via a consensus hypoxia-response element (HRE) located at nt -83 through -76 relative to the transcription initiation site. HIF-1α did not activate transcription from the other EBV immediate-early gene, BRLF1. Importantly, expression of HIF-1α induced EBV lytic-gene expression in cells harboring wild-type EBV, but not in cells infected with variants containing base-pair substitution mutations within this HRE. Human oral keratinocyte (NOK) and gingival epithelial (hGET) cells induced to differentiate by incubation with either methyl cellulose or growth in organotypic culture accumulated both HIF-1α and Blimp-1α, another cellular factor implicated in lytic reactivation. HIF-1α activity also accumulated along with Blimp-1α during B-cell differentiation into plasma cells. Furthermore, most BZLF1-expressing cells observed in lymphomas induced by EBV in NSG mice with a humanized immune system were located distal to blood vessels in hypoxic regions of the tumors. Thus, we conclude that HIF-1α plays central roles in both EBV’s natural life cycle and EBV-associated tumorigenesis. We propose that drugs that induce HIF-1α protein accumulation are good candidates for development of a lytic-induction therapy for treating some EBV-associated malignancies. Output:
Most adults throughout the world are infected with Epstein-Barr virus (EBV), a human herpesvirus frequently associated in a latent state with some cancers of epithelial and B-cell origin such as nasopharyngeal carcinoma and Burkitt lymphoma, respectively. To develop an oncolytic therapy for treating patients with EBV-associated cancers, we need a method to efficiently induce synthesis of lytic EBV proteins. The EBV protein encoded by its immediate-early BZLF1 gene usually mediates the switch into lytic viral infection. We show here that HIF-1α, a cellular transcription factor that accumulates in cells when deprived of normal levels of oxygen, can induce lytic EBV infection. HIF-1α mediates this switch by directly binding to a specific sequence located within the BZLF1 gene promoter, activating its expression. Importantly, we also show that deferoxamine, an FDA-approved drug that inhibits degradation of HIF-1α, can induce synthesis of lytic EBV proteins in some EBV-positive epithelial and lymphocytic cell lines. These findings indicate that HIF-1α-stabilizing drugs, administered in combination with nucleoside analogues such as ganciclovir, may be helpful as part of a lytic-induction therapy for treating some patients with EBV-positive malignancies.
PLOS613
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Integration of synaptic currents across an extensive dendritic tree is a prerequisite for computation in the brain. Dendritic tapering away from the soma has been suggested to both equalise contributions from synapses at different locations and maximise the current transfer to the soma. To find out how this is achieved precisely, an analytical solution for the current transfer in dendrites with arbitrary taper is required. We derive here an asymptotic approximation that accurately matches results from numerical simulations. From this we then determine the diameter profile that maximises the current transfer to the soma. We find a simple quadratic form that matches diameters obtained experimentally, indicating a fundamental architectural principle of the brain that links dendritic diameters to signal transmission. Output:
Neurons take a great variety of shapes that allow them to perform their different computational roles across the brain. The most distinctive visible feature of many neurons is the extensively branched network of cable-like projections that make up their dendritic tree. A neuron receives current-inducing synaptic contacts from other cells across its dendritic tree. As in the case of botanical trees, dendritic trees are strongly tapered towards their tips. This tapering has previously been shown to offer a number of advantages over a constant width, both in terms of reduced energy requirements and the robust integration of inputs at different locations. However, in order to predict the computations that neurons perform, analytical solutions for the flow of input currents tend to assume constant dendritic diameters. Here we introduce an asymptotic approximation that accurately models the current transfer in dendritic trees with arbitrary, continuously changing, diameters. When we then determine the diameter profiles that maximise current transfer towards the cell body we find diameters similar to those observed in real neurons. We conclude that the tapering in dendritic trees to optimise signal transmission is a fundamental architectural principle of the brain.
PLOS614
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Typhoid persists as a major cause of global morbidity. While several licensed vaccines to prevent typhoid are available, they are of only moderate efficacy and unsuitable for use in children less than two years of age. Development of new efficacious vaccines is complicated by the human host-restriction of Salmonella enterica serovar Typhi (S. Typhi) and lack of clear correlates of protection. In this study, we aimed to evaluate the protective efficacy of a single dose of the oral vaccine candidate, M01ZH09, in susceptible volunteers by direct typhoid challenge. We performed a randomised, double-blind, placebo-controlled trial in healthy adult participants at a single centre in Oxford (UK). Participants were allocated to receive one dose of double-blinded M01ZH09 or placebo or 3-doses of open-label Ty21a. Twenty-eight days after vaccination, participants were challenged with 104CFU S. Typhi Quailes strain. The efficacy of M01ZH09 compared with placebo (primary outcome) was assessed as the percentage of participants reaching pre-defined endpoints constituting typhoid diagnosis (fever and/or bacteraemia) during the 14 days after challenge. Ninety-nine participants were randomised to receive M01ZH09 (n = 33), placebo (n = 33) or 3-doses of Ty21a (n = 33). After challenge, typhoid was diagnosed in 18/31 (58.1% [95% CI 39.1 to 75.5]) M01ZH09, 20/30 (66.7% [47.2 to 87.2]) placebo, and 13/30 (43.3% [25.5 to 62.6]) Ty21a vaccine recipients. Vaccine efficacy (VE) for one dose of M01ZH09 was 13% [95% CI -29 to 41] and 35% [-5 to 60] for 3-doses of Ty21a. Retrospective multivariable analyses demonstrated that pre-existing anti-Vi antibody significantly reduced susceptibility to infection after challenge; a 1 log increase in anti-Vi IgG resulting in a 71% decrease in the hazard ratio of typhoid diagnosis ([95% CI 30 to 88%], p = 0.006) during the 14 day challenge period. Limitations to the study included the requirement to limit the challenge period prior to treatment to 2 weeks, the intensity of the study procedures and the high challenge dose used resulting in a stringent model. Despite successfully demonstrating the use of a human challenge study to directly evaluate vaccine efficacy, a single-dose M01ZH09 failed to demonstrate significant protection after challenge with virulent Salmonella Typhi in this model. Anti-Vi antibody detected prior to vaccination played a major role in outcome after challenge. ClinicalTrials.gov (NCT01405521) and EudraCT (number 2011-000381-35). Output:
Typhoid fever is a common cause of febrile illness in tropical countries. Although currently available typhoid vaccines are moderately effective, they are not suitable for use in young children. Development of new vaccines is complicated as Salmonella Typhi, the causative bacteria, only infect humans. In this study, we used a recently developed human typhoid challenge model to directly assess the efficacy of a new oral vaccine candidate, M01ZH09, compared to placebo. A parallel group of participants were given 3-doses of licensed oral Ty21a vaccine as a positive comparator. We found that a single dose of M01ZH09 was not effective in preventing typhoid infection in our model, although significant effects were seen in delaying onset of infection and reducing bacterial numbers. Ty21a also failed to significantly protect against infection suggesting our model was particularly stringent. We discovered that anti-Vi antibodies, present in some individuals prior to vaccination, contributed significantly to preventing infection in some individuals, and when this effect was taken into account, M01ZH09 halved the risk of developing typhoid after being challenged. These results demonstrate the utility of human challenge models in assessing the efficacy of new typhoid vaccine candidates, and suggest that further development of M01ZH09 dosing or delivery strategies may produce better results. These results also support further development of Vi-based vaccines as a potentially preventive intervention.
PLOS615
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Intermittent preventive treatment of malaria in pregnancy (IPTp) with dihydroartemisinin-piperaquine (IPTp-DP) has been shown to reduce the burden of malaria during pregnancy compared to sulfadoxine-pyrimethamine (IPTp-SP). However, limited data exist on how IPTp regimens impact malaria risk during infancy. We conducted a double-blinded randomized controlled trial (RCT) to test the hypothesis that children born to mothers given IPTp-DP would have a lower incidence of malaria during infancy compared to children born to mothers who received IPTp-SP. We compared malaria metrics among children in Tororo, Uganda, born to women randomized to IPTp-SP given every 8 weeks (SP8w, n = 100), IPTp-DP every 8 weeks (DP8w, n = 44), or IPTp-DP every 4 weeks (DP4w, n = 47). After birth, children were given chemoprevention with DP every 12 weeks from 8 weeks to 2 years of age. The primary outcome was incidence of malaria during the first 2 years of life. Secondary outcomes included time to malaria from birth and time to parasitemia following each dose of DP given during infancy. Results are reported after adjustment for clustering (twin gestation) and potential confounders (maternal age, gravidity, and maternal parasitemia status at enrolment).The study took place between June 2014 and May 2017. Compared to children whose mothers were randomized to IPTp-SP8w (0.24 episodes per person year [PPY]), the incidence of malaria was higher in children born to mothers who received IPTp-DP4w (0.42 episodes PPY, adjusted incidence rate ratio [aIRR] 1.92; 95% CI 1.00–3.65, p = 0.049) and nonsignificantly higher in children born to mothers who received IPT-DP8w (0.30 episodes PPY, aIRR 1.44; 95% CI 0.68–3.05, p = 0.34). However, these associations were modified by infant sex. Female children whose mothers were randomized to IPTp-DP4w had an apparently 4-fold higher incidence of malaria compared to female children whose mothers were randomized to IPTp-SP8w (0.65 versus 0.20 episodes PPY, aIRR 4.39, 95% CI 1.87–10.3, p = 0.001), but no significant association was observed in male children (0.20 versus 0.28 episodes PPY, aIRR 0.66, 95% CI 0.25–1.75, p = 0.42). Nonsignificant increases in malaria incidence were observed among female, but not male, children born to mothers who received DP8w versus SP8w. In exploratory analyses, levels of malaria-specific antibodies in cord blood were similar between IPTp groups and sex. However, female children whose mothers were randomized to IPTp-DP4w had lower mean piperaquine (PQ) levels during infancy compared to female children whose mothers received IPTp-SP8w (coef 0.81, 95% CI 0.65–1.00, p = 0.048) and male children whose mothers received IPTp-DP4w (coef 0.72, 95% CI 0.57–0.91, p = 0.006). There were no significant sex-specific differences in PQ levels among children whose mothers were randomized to IPTp-SP8w or IPTp-DP8w. The main limitations were small sample size and childhood provision of DP every 12 weeks in infancy. Contrary to our hypothesis, preventing malaria in pregnancy with IPTp-DP in the context of chemoprevention with DP during infancy does not lead to a reduced incidence of malaria in childhood; in this setting, it may be associated with an increased incidence of malaria in females. Future studies are needed to better understand the biological mechanisms of in utero drug exposure on drug metabolism and how this may affect the dosing of antimalarial drugs for treatment and prevention during infancy. ClinicalTrials.gov number NCT02163447. Output:
Intermittent preventive treatment of malaria in pregnancy (IPTp) with dihydroartemisinin-piperaquine (DP) has been shown to reduce the burden of malaria during pregnancy compared to the current standard of care, sulfadoxine-pyrimethamine (SP). However, although there is some evidence that malaria in pregnancy may alter malaria susceptibility in infants, limited data exist on the impact of different IPTp regimens on malaria during early childhood. We hypothesized that children born to mothers who received IPTp with DP would have a lower incidence of malaria during the first 2 years of life compared to children born to mothers who received IPTp with SP. We conducted a double-blinded randomized controlled trial between June 2014 and May 2017 comparing malaria metrics among 191 infants born to mothers randomized to receive IPTp with SP or IPTp with DP; children born to these mothers were given chemoprevention with DP every 12 weeks starting at 8 weeks of age and followed to 2 years of age. We found that children born to mothers given IPTp with DP did not have a lower incidence of malaria in infancy; in fact, children born to mothers who received IPTp with DP every 4 weeks in pregnancy had a significantly higher incidence of malaria and Plasmodium falciparum infection in infancy. We found that this increased incidence of malaria was only observed in female infants; furthermore, female children born to mothers who received IPTp with DP every 4 weeks in pregnancy had significantly lower piperaquine drug levels during infancy compared to male children. Although IPTp with DP is more effective in preventing malaria in pregnancy compared to IPTp with SP, in this setting it was not associated with a lower risk of malaria in infancy. Although the results show an increased risk of malaria in female infants, these results should be interpreted with caution given the small sample size, especially when considering sex-stratified results. Future studies are needed both to confirm the impact of different IPTp regimens on malaria risk in infants, including those in settings where children are not given intermittent chemoprevention in infancy, as well as to understand the biologic mechanisms by which in utero drug exposure may lead to sex-specific changes in drug metabolism.
PLOS616
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: A previous analysis of the impact of drought in Africa on HIV demonstrated an 11% greater prevalence in HIV-endemic rural areas attributable to local rainfall shocks. The Lesotho Population-Based HIV Impact Assessment (LePHIA) was conducted after the severe drought of 2014–2016, allowing for reevaluation of this relationship in a setting of expanded antiretroviral coverage. LePHIA selected a nationally representative sample between November 2016 and May 2017. All adults aged 15–59 years in randomly selected households were invited to complete an interview and HIV testing, with one woman per household eligible to answer questions on their experience of sexual violence. Deviations in rainfall for May 2014–June 2016 were estimated using precipitation data from Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS), with drought defined as <15% of the average rainfall from 1981 to 2016. The association between drought and risk behaviors as well as HIV-related outcomes was assessed using logistic regression, incorporating complex survey weights. Analyses were stratified by age, sex, and geography (urban versus rural). All of Lesotho suffered from reduced rainfall, with regions receiving 1%–36% of their historical rainfall. Of the 12,887 interviewed participants, 93.5% (12,052) lived in areas that experienced drought, with the majority in rural areas (7,281 versus 4,771 in urban areas). Of the 835 adults living in areas without drought, 520 were in rural areas and 315 in urban. Among females 15–19 years old, living in a rural drought area was associated with early sexual debut (odds ratio [OR] 3.11, 95% confidence interval [CI] 1.43–6.74, p = 0.004), and higher HIV prevalence (OR 2.77, 95% CI 1.19–6.47, p = 0.02). It was also associated with lower educational attainment in rural females ages 15–24 years (OR 0.44, 95% CI 0.25–0.78, p = 0.005). Multivariable analysis adjusting for household wealth and sexual behavior showed that experiencing drought increased the odds of HIV infection among females 15–24 years old (adjusted OR [aOR] 1.80, 95% CI 0.96–3.39, p = 0.07), although this was not statistically significant. Migration was associated with 2-fold higher odds of HIV infection in young people (aOR 2.06, 95% CI 1.25–3.40, p = 0.006). The study was limited by the extensiveness of the drought and the small number of participants in the comparison group. Drought in Lesotho was associated with higher HIV prevalence in girls 15–19 years old in rural areas and with lower educational attainment and riskier sexual behavior in rural females 15–24 years old. Policy-makers may consider adopting potential mechanisms to mitigate the impact of income shock from natural disasters on populations vulnerable to HIV transmission. Output:
Periods of climate extremes have been shown to lead to increases in high-risk behaviors, particularly in agricultural communities dependent on rainfall for their livelihoods. Prior studies have linked these increases in riskier sexual behaviors, such as extramarital partnerships and transactional sex, to increases in HIV acquisition. The Lesotho Population-Based HIV Impact Assessment, a national HIV survey conducted from November 2016 to May 2017 following a 2-year severe drought in southern Africa, allowed us to reevaluate this relationship in the setting of expanded antiretroviral use. We paired geospatial data on accumulated rainfall from 2014 to 2016 with data from the survey to determine if there were any associations between drought and HIV outcomes. A total of 12,887 adults ages 15–59 years completed a detailed questionnaire, and 11,682 underwent an HIV test. Adolescent girls and young women ages 15–24 years in rural areas of drought had higher rates of high-risk behaviors, such as early sexual debut and transactional sex, and had lower educational attainment. Living in a drought area appeared to be associated with greater HIV prevalence in young females and was associated with a lower HIV prevalence in young males. However, external migration, commonly seen during these periods, was associated with a greater prevalence of HIV in men and women. Future policy on mitigation of climate change in southern Africa may consider including HIV prevention interventions in populations at high risk. This could include preexposure prophylaxis (PrEP) for migrants and young women in areas of severe food insecurity. Likewise, HIV programs that provide social and economic support to young women as part of an HIV prevention strategy should consider targeting areas affected by drought. Further studies should be done in other settings to investigate the external validity of these findings, particularly in terms of the impact on HIV in young women.
PLOS617
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: In this work we present a method for the differential analysis of gene co-expression networks and apply this method to look for large-scale transcriptional changes in aging. We derived synonymous gene co-expression networks from AGEMAP expression data for 16-month-old and 24-month-old mice. We identified a number of functional gene groups that change co-expression with age. Among these changing groups we found a trend towards declining correlation with age. In particular, we identified a modular (as opposed to uniform) decline in general correlation with age. We identified potential transcriptional mechanisms that may aid in modular correlation decline. We found that computationally identified targets of the NF-ΚB transcription factor decrease expression correlation with age. Finally, we found that genes that are prone to declining co-expression tend to be co-located on the chromosome. Our results conclude that there is a modular decline in co-expression with age in mice. They also indicate that factors relating to both chromosome domains and specific transcription factors may contribute to the decline. Output:
There is mounting evidence that mammalian aging is marked by increased gene transcriptional variation. This trend was shown not only by studying gene expression in single cells (Bahar et al. 2006), but at the coarse tissue resolution as well (Somel et al. 2006; Li et al. 2009). These led us to believe that looking at absolute changes in expression level alone may not tell the whole story of transcriptional changes in age. Instead the story may be in the more subtle changes in the coordination of expression among multiple genes. For this reason, we decided to look at changes in co-expression relationships with age. To this end, we developed a methodology for differential co-expression network analysis for the comparison gene co-expression on a global scale. We applied this methodology to compare co-expression between young (16-month) and old (24-month) mice. This allowed us to find both gene groups whose coordination appear to be affected by age and to propose potential mechanisms for the change. We believe our work is of broad importance because it represents a different paradigm for looking not only at aging but also at any complex condition or disease—away from changes in individual genes towards changes in gene relationships.
PLOS618
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The co-evolution of myxoma virus (MYXV) and the European rabbit occurred independently in Australia and Europe from different progenitor viruses. Although this is the canonical study of the evolution of virulence, whether the genomic and phenotypic outcomes of MYXV evolution in Europe mirror those observed in Australia is unknown. We addressed this question using viruses isolated in the United Kingdom early in the MYXV epizootic (1954–1955) and between 2008–2013. The later UK viruses fell into three distinct lineages indicative of a long period of separation and independent evolution. Although rates of evolutionary change were almost identical to those previously described for MYXV in Australia and strongly clock-like, genome evolution in the UK and Australia showed little convergence. The phenotypes of eight UK viruses from three lineages were characterized in laboratory rabbits and compared to the progenitor (release) Lausanne strain. Inferred virulence ranged from highly virulent (grade 1) to highly attenuated (grade 5). Two broad disease types were seen: cutaneous nodular myxomatosis characterized by multiple raised secondary cutaneous lesions, or an amyxomatous phenotype with few or no secondary lesions. A novel clinical outcome was acute death with pulmonary oedema and haemorrhage, often associated with bacteria in many tissues but an absence of inflammatory cells. Notably, reading frame disruptions in genes defined as essential for virulence in the progenitor Lausanne strain were compatible with the acquisition of high virulence. Combined, these data support a model of ongoing host-pathogen co-evolution in which multiple genetic pathways can produce successful outcomes in the field that involve both different virulence grades and disease phenotypes, with alterations in tissue tropism and disease mechanisms. Output:
Species jumps and subsequent pathogen evolution are of increasing importance in a globally connected world. The co-evolution of myxoma virus and the European rabbit following the introduction of the virus into Australia in 1950 is the canonical case of host jumping and host-pathogen co-evolution on a continental scale. This natural experiment was repeated with the release of a separate strain of myxoma virus in Europe. On both continents moderately attenuated strains of virus became dominant while rabbits were selected for resistance to myxomatosis. Here we examine the genotypic and phenotypic evolution of myxoma virus in Great Britain compared to Australia and show that despite ecological convergence and equivalent evolutionary rates, the virus has followed distinct evolutionary pathways on both continents with few shared mutations. Furthermore, we reveal novel mechanisms of pathogenesis and tissue tropism compared to the progenitor virus, and that the disruption of virulence genes is compatible with high virulence. This suggests that mutations have occurred that can compensate for the loss of virulence genes driven by the nexus between virulence and transmission in an ongoing host-pathogen arms race.
PLOS619
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S1 basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants’ low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S1 bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S1-bZIP signalling module as gateway to integrate information on the plant’s energy status into root meristem control, thereby balancing plant growth and cellular energy resources. Output:
Being in competition for reproductive success, plants use most of their photosynthetically produced energy resources to promote growth. However, under unfavourable environmental conditions plants also need to finance adaptive responses to ensure their survival. For this purpose a growth regulatory system is required to dynamically tune plant growth according to the plants’ prevailing energy status. Here, we characterize crucial components of this system that link plants’ energy management with root growth control. In detail, we demonstrate that a highly homologous group of energy-controlled regulators of the basic leucine zipper (bZIP) transcription factor family redundantly operate under energy deprivation to control expression of a determinant of hormonally-controlled meristematic root growth. By these means these regulators constitute a central hub to integrate detrimental environmental stress conditions, which converge on energy limitation, into plant growth. Understanding the interplay between the plants’ energy homeostasis and growth control are of major importance for future strategies to engineer efficient crop plants.
PLOS620
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The objective of this study was to assess the validity of the new dengue classification proposed by the World Health Organization (WHO) in 2009 and to develop pragmatic guidelines for case triage and management. This retrospective study involved 357 laboratory-confirmed cases of dengue infection diagnosed at King Abdulaziz University Hospital, Jeddah, Saudi Arabia over a 4-year period from 2014 to 2017. The sensitivity of the new classification for identifying severe cases was limited (65%) but higher than the old one (30%). It had a higher sensitivity for identifying patients who needed advanced healthcare compared to the old one (72% versus 32%, respectively). We propose adding decompensation of chronic diseases and thrombocytopenia-related bleeding to the category of severe dengue in the new classification. This modification improves sensitivity from 72% to 98% for identifying patients who need advanced healthcare without altering specificity (97%). It also improves sensitivity in predicting severe outcomes from 32% to 88%. In conclusion, the new classification had a low sensitivity for identifying patients needing advanced care and for predicting morbidity and mortality. We propose to include decompensation of chronic diseases and thrombocytopenia-related bleeding to the category of severe dengue in the new classification to improve the sensitivity of predicting cases requiring advanced care. Output:
Dengue fever, the most prevalent arthropod-borne viral disease in humans, has been conventionally classified into four main categories: non-classical, classical, dengue hemorrhagic fever, and dengue shock syndrome. Several studies reported lack of correlation between the categories of the conventional classification and the disease severity. As a consequence, the World Health Organization proposed in 2008 a new classification that divides dengue into two categories: non-severe and severe dengue; the non-severe dengue is further divided into two categories: dengue with warning signs and dengue without warning signs. In this retrospective study we reviewed 357 cases of dengue diagnosed in our institution over a 4-year period to assess the validity of the new dengue classification in order to develop pragmatic guidelines for case triage and management in the Emergency Departments. We found that the sensitivity of the new classification for identifying severe cases was limited even though it had a higher sensitivity for identifying patients who needed advanced healthcare compared to the old one. We propose adding decompensation of chronic diseases and low platelets-related bleeding to the category of severe dengue in the new classification. This modification dramatically improves the sensitivity for identifying patients who need advanced healthcare and the sensitivity to predict severe outcomes.
PLOS621
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: At the Drosophila NMJ, BMP signaling is critical for synapse growth and homeostasis. Signaling by the BMP7 homolog, Gbb, in motor neurons triggers a canonical pathway—which modulates transcription of BMP target genes, and a noncanonical pathway—which connects local BMP/BMP receptor complexes with the cytoskeleton. Here we describe a novel noncanonical BMP pathway characterized by the accumulation of the pathway effector, the phosphorylated Smad (pMad), at synaptic sites. Using genetic epistasis, histology, super resolution microscopy, and electrophysiology approaches we demonstrate that this novel pathway is genetically distinguishable from all other known BMP signaling cascades. This novel pathway does not require Gbb, but depends on presynaptic BMP receptors and specific postsynaptic glutamate receptor subtypes, the type-A receptors. Synaptic pMad is coordinated to BMP’s role in the transcriptional control of target genes by shared pathway components, but it has no role in the regulation of NMJ growth. Instead, selective disruption of presynaptic pMad accumulation reduces the postsynaptic levels of type-A receptors, revealing a positive feedback loop which appears to function to stabilize active type-A receptors at synaptic sites. Thus, BMP pathway may monitor synapse activity then function to adjust synapse growth and maturation during development. Output:
Synaptic activity and synapse development are intimately linked, but our understanding of the coupling mechanisms remains limited. Anterograde and retrograde signals together with trans-synaptic complexes enable intercellular communications. How synapse activity status is monitored and relayed across the synaptic cleft remains poorly understood. The Drosophila NMJ is a very powerful genetic system to study synapse development. BMP signaling modulates NMJ growth via a canonical, Smad-dependent pathway, but also synapse stability, via a noncanonical, Smad-independent pathway. Here we describe a novel, noncanonical BMP pathway, which is genetically distinguishable from all other known BMP pathways. This pathway does not contribute to NMJ growth and instead influences synapse formation and maturation in an activity-dependent manner. Specifically, phosphorylated Smad (pMad in flies) accumulates at active zone in response to active postsynaptic type-A glutamate receptors, a specific receptor subtype. In turn, synaptic pMad functions to promote the recruitment of type-A receptors at synaptic sites. This positive feedback loop provides a molecular switch controlling which flavor of glutamate receptors will be stabilized at synaptic locations as a function of synapse status. Since BMP signaling also controls NMJ growth and stability, BMP pathway offers an exquisite means to monitor the status of synapse activity and coordinate NMJ growth with synapse maturation and stabilization.
PLOS622
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Listeria monocytogenes (Lm) is a saprophyte and intracellular pathogen. Transition to the pathogenic state relies on sensing of host-derived metabolites, yet it remains unclear how these are recognized and how they mediate virulence gene regulation. We previously found that low availability of isoleucine signals Lm to activate the virulent state. This response is dependent on CodY, a global regulator and isoleucine sensor. Isoleucine-bound CodY represses metabolic pathways including branched-chain amino acids (BCAA) biosynthesis, however under BCAA depletion, as occurs during infection, BCAA biosynthesis is upregulated and isoleucine-unbound CodY activates virulence genes. While isoleucine was revealed as an important input signal, it was not identified how internal levels are controlled during infection. Here we show that Lm regulates BCAA biosynthesis via CodY and via a riboregulator located upstream to the BCAA biosynthesis genes, named Rli60. rli60 is transcribed when BCAA levels drop, forming a ribosome-mediated attenuator that cis-regulates the downstream genes according to BCAA supply. Notably, we found that Rli60 restricts BCAA production, essentially starving Lm, a mechanism that is directly linked to virulence, as it controls the internal isoleucine pool and thereby CodY activity. This controlled BCAA auxotrophy likely evolved to enable isoleucine to serve as a host signal and virulence effector. Output:
Bacterial pathogens must adapt to their host environment to carry out a successful infection. Sensing host-derived signals precedes adaptation, and triggers switching to the virulent state. Within mammalian cells L. monocytogenes responds to branched-chain amino acids (BCAA) deficiency by inducing virulence gene expression. In this study, we provide compelling evidence that fine tuning BCAA biosynthesis in L. monocytogenes allows the bacteria to sense isoleucine as a host-specific signal. Tightly controlled BCAA production depends on Rli60, a riboregulator, which is transcribed upstream to the BCAA biosynthesis genes. Rli60 functions as a ribosome mediated attenuator that cis-regulates BCAA production under limiting conditions. This study highlights the remarkable cross-regulation of metabolism and virulence in bacterial pathogens.
PLOS623
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: A synergistic combination of two next-generation sequencing platforms with a detailed comparative BAC physical contig map provided a cost-effective assembly of the genome sequence of the domestic turkey (Meleagris gallopavo). Heterozygosity of the sequenced source genome allowed discovery of more than 600,000 high quality single nucleotide variants. Despite this heterozygosity, the current genome assembly (∼1.1 Gb) includes 917 Mb of sequence assigned to specific turkey chromosomes. Annotation identified nearly 16,000 genes, with 15,093 recognized as protein coding and 611 as non-coding RNA genes. Comparative analysis of the turkey, chicken, and zebra finch genomes, and comparing avian to mammalian species, supports the characteristic stability of avian genomes and identifies genes unique to the avian lineage. Clear differences are seen in number and variety of genes of the avian immune system where expansions and novel genes are less frequent than examples of gene loss. The turkey genome sequence provides resources to further understand the evolution of vertebrate genomes and genetic variation underlying economically important quantitative traits in poultry. This integrated approach may be a model for providing both gene and chromosome level assemblies of other species with agricultural, ecological, and evolutionary interest. Output:
In contrast to the compact sequence of viruses and bacteria, determining the complete genome sequence of complex vertebrate genomes can be a daunting task. With the advent of “next-generation” sequencing platforms, it is now possible to rapidly sequence and assemble a vertebrate genome, especially for species for which genomic resources—genetic maps and markers—are currently available. We used a combination of two next-generation sequencing platforms, Roche 454 and Illumina GAII, and unique assembly tools to sequence the genome of the agriculturally important turkey, Meleagris gallopavo. Our draft assembly comprises approximately 1.1 gigabases of which 917 megabytes are assigned to specific chromosomes. Comparisons of the turkey genome sequence with those of the chicken, Gallus gallus, and the zebra finch, Taeniopygia guttata, provide insights into the evolution of the avian lineage. This genome sequence will facilitate discovery of agriculturally important genetic variants.
PLOS624
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Previous studies have reported the production of malformed virus-like-particles (VLP) in recombinant host systems. Here we computationally investigate the case of a large triple-layered rotavirus VLP (RLP). In vitro assembly, disassembly and reassembly data provides strong evidence of microscopic reversibility of RLP assembly. Light scattering experimental data also evidences a slow and reversible assembly untypical of kinetic traps, thus further strengthening the fidelity of a thermodynamically controlled assembly. In silico analysis further reveals that under favourable conditions particles distribution is dominated by structural subunits and completely built icosahedra, while other intermediates are present only at residual concentrations. Except for harshly unfavourable conditions, assembly yield is maximised when proteins are provided in the same VLP protein mass composition. The assembly yield decreases abruptly due to thermodynamic equilibrium when the VLP protein mass composition is not obeyed. The latter effect is more pronounced the higher the Gibbs free energy of subunit association is and the more complex the particle is. Overall this study shows that the correct formation of complex multi-layered VLPs is restricted to a narrow range of association energies and protein concentrations, thus the choice of the host system is critical for successful assembly. Likewise, the dynamic control of intracellular protein expression rates becomes very important to minimize wasted proteins. Output:
Virus-like particles (VLP) are multi-protein structures with potential to be used in biomedicine as therapeutic or prophylactic vaccines against many worldwide diseases. However, due to their complex process of assembly, production yields are commonly low hindering a fast transition from lab- to industrial-scale and ultimately to the patient. It is thus vital to understand the assembly mechanisms of these particles and to apply rational-oriented strategies for the manipulation of the host system and/or process conditions. In this context, mathematical models built on stability, kinetic and thermodynamic principles of protein macrostructures and respective assembly pathways are key elements. Indeed, using mathematical and thermodynamic concepts as building blocks, the model herein postulated provides valuable insights about the feasibility of VLP production systems. It demonstrates that the formation of complete and theoretically biological active VLP is restricted to a narrow range of volatile macro and micro physicochemical environments as well as intracellular protein expression rates. This study also finds direct application in the design of optimal in vitro physicochemical conditions for disassembly-reassembly experiments towards economical VLP production.
PLOS625
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Heterogeneity in the expression of various bacterial genes has been shown to result in the presence of individuals with different phenotypes within clonal bacterial populations. The genes specifying motility and flagellar functions are coordinately regulated and form a complex regulon, the flagellar regulon. Complex interplay has recently been demonstrated in the regulation of flagellar and virulence gene expression in many bacterial pathogens. We show here that FliZ, a DNA-binding protein, plays a key role in the insect pathogen, Xenorhabdus nematophila, affecting not only hemolysin production and virulence in insects, but efficient swimming motility. RNA-Seq analysis identified FliZ as a global regulatory protein controlling the expression of 278 Xenorhabdus genes either directly or indirectly. FliZ is required for the efficient expression of all flagellar genes, probably through its positive feedback loop, which controls expression of the flhDC operon, the master regulator of the flagellar circuit. FliZ also up- or downregulates the expression of numerous genes encoding non-flagellar proteins potentially involved in key steps of the Xenorhabdus lifecycle. Single-cell analysis revealed the bimodal expression of six identified markers of the FliZ regulon during exponential growth of the bacterial population. In addition, a combination of fluorescence-activated cell sorting and RT-qPCR quantification showed that this bimodality generated a mixed population of cells either expressing (“ON state”) or not expressing (“OFF state”) FliZ-dependent genes. Moreover, studies of a bacterial population exposed to a graded series of FliZ concentrations showed that FliZ functioned as a rheostat, controlling the rate of transition between the “OFF” and “ON” states in individuals. FliZ thus plays a key role in cell fate decisions, by transiently creating individuals with different potentials for motility and host interactions. Output:
Heterogeneity in the expression of bacterial genes may result in the presence of cells with different phenotypes in an isogenic population. The existence of such “non-genetic individuality” was the first described many years ago for the flagellum-driven swimming behavior of bacteria. In this study, we identified a new bimodal switch controlling the expression of genes involved in flagellum biosynthesis and host interactions in the insect pathogen Xenorhabdus nematophila. This switch is modulated by a transcriptional regulator called FliZ. In addition to identifying all the specific genes up- and downregulated by FliZ, we showed that the concentration of FliZ fine-tuned the expression of FliZ target genes, resulting in individuals with different potentials for bacterial locomotion, host colonization and virulence.
PLOS626
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The social transmission of information is critical to the emergence of animal culture. Two processes are predicted to play key roles in how socially-transmitted information spreads in animal populations: the movement of individuals across the landscape and conformist social learning. We develop a model that, for the first time, explicitly integrates these processes to investigate their impacts on the spread of behavioural preferences. Our results reveal a strong interplay between movement and conformity in determining whether locally-variable traditions establish across a landscape or whether a single preference dominates the whole population. The model is able to replicate a real-world cultural diffusion experiment in great tits Parus major, but also allows for a range of predictions for the emergence of animal culture under various initial conditions, habitat structure and strength of conformist bias to be made. Integrating social behaviour with ecological variation will be important for understanding the stability and diversity of culture in animals. Output:
In many animal species, the social transmission of information is important and can lead to the emergence of behavioural traditions. However, how ecological and social processes together influence information transmission and its consequences for animal culture, particularly across space, remains largely unknown. We developed a spatially-explicit model examining the spread of behavioural preference through a population, which integrates two key processes: the movement of individuals in the landscape, and social learning with conformity (the disproportionate likelihood of adopting the behavioural trait that is most common locally). The model can replicate a real-world cultural diffusion experiment in great tits Parus major. It is also general, and allows us to make predictions about the emergence of animal cultures in a range of different ecological and social scenarios, including habitats with different states of fragmentation, species with varying movement patterns, and different strengths of conformity in the transmission of behaviour. Our results reveal a strong interplay between ecological and social processes (in this case, movement and conformity) for determining whether or not traditions establish within a population. If traditions do emerge, then these can either be local or global, depending on the relative strength of conformity compared to movement.
PLOS627
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The isolation of neutralizing monoclonal antibodies (nmAbs) against the Zika virus (ZIKV) might lead to novel preventative strategies for infections in at-risk individuals, primarily pregnant women. Here we describe the characterization of human mAbs from the plasmablasts of an acutely infected patient. One of the 18 mAbs had the unusual feature of binding to and neutralizing ZIKV despite not appearing to have been diversified by affinity maturation. This mAb neutralized ZIKV (Neut50 ~ 2 μg/ml) but did not react with any of the four dengue virus serotypes. Except for the expected junctional diversity created by the joining of the V-(D)-J genes, there was no deviation from immunoglobulin germline genes. This is a rare example of a human mAb with neutralizing activity in the absence of detectable somatic hypermutation. Importantly, binding of this mAb to ZIKV was specifically inhibited by human plasma from ZIKV-exposed individuals, suggesting that it may be of value in a diagnostic setting. Output:
Antibody affinity maturation through somatic hypermutation (SHM) is thought to be critical for the development of antibodies with virus-neutralizing activity. Contrary to this notion, we describe novel human anti-Zika virus (ZIKV) antibodies with very low mutation levels, isolated from plasmablasts early after the onset of symptoms. Surprisingly, one IgG monoclonal antibody, P1F12, bound to ZIKV and neutralized the virus, despite having no detectable mutations. This antibody is specific for ZIKV and did not cross-react with DENV. Furthermore, plasma from ZIKV-positive individuals blocked the interaction of P1F12 with ZIKV, whereas plasma from DENV-positive patients did not have this inhibitory ability. P1F12 targets an immunodominant site, as ZIKV-positive samples blocked P1F12-ZIKV binding. Our study shows that isotype-switched virus-specific neutralizing Abs can develop in humans directly from germline sequences.
PLOS628
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Reactivation of chronic Chagas disease, which occurs in approximately 20% of patients coinfected with HIV/Trypanosoma cruzi (T. cruzi), is commonly characterized by severe meningoencephalitis and myocarditis. The use of quantitative molecular tests to monitor Chagas disease reactivation was analyzed. Polymerase chain reaction (PCR) of kDNA sequences, competitive (C-) PCR and real-time quantitative (q) PCR were compared with blood cultures and xenodiagnosis in samples from 91 patients (57 patients with chronic Chagas disease and 34 with HIV/T. cruzi coinfection), of whom 5 had reactivation of Chagas disease and 29 did not. qRT-PCR showed significant differences between groups; the highest parasitemia was observed in patients infected with HIV/T. cruzi with Chagas disease reactivation (median 1428.90 T. cruzi/mL), followed by patients with HIV/T. cruzi infection without reactivation (median 1.57 T. cruzi/mL) and patients with Chagas disease without HIV (median 0.00 T. cruzi/mL). Spearman's correlation coefficient showed that xenodiagnosis was correlated with blood culture, C-PCR and qRT-PCR. A stronger Spearman correlation index was found between C-PCR and qRT-PCR, the number of parasites and the HIV viral load, expressed as the number of CD4+ cells or the CD4+/CD8+ ratio. qRT-PCR distinguished the groups of HIV/T. cruzi coinfected patients with and without reactivation. Therefore, this new method of qRT-PCR is proposed as a tool for prospective studies to analyze the importance of parasitemia (persistent and/or increased) as a criterion for recommending pre-emptive therapy in patients with chronic Chagas disease with HIV infection or immunosuppression. As seen in this study, an increase in HIV viral load and decreases in the number of CD4+ cells/mm3 and the CD4+/CD8+ ratio were identified as cofactors for increased parasitemia that can be used to target the introduction of early, pre-emptive therapy. Output:
Chagas disease is endemic in Latin America and is caused by the flagellate protozoan T. cruzi. The acute phase is asymptomatic in the majority of the cases and rarely causes inflammation of the heart or the central nervous system. Most infected patients progress to a chronic phase, characterized by cardiac or digestive involvement when not asymptomatic. However, when patients are also exposed to an immunosuppressant (such as chemotherapy), neoplasia, or other infections such as HIV, T. cruzi infection may develop into a severe disease (Chagas disease reactivation) involving the heart and central nervous system. The current microscopic methods for diagnosing Chagas disease reactivation are not sensitive enough to prevent the high rate of death observed in these cases. Therefore, we propose a quantitative method to monitor blood levels of the parasite, which will allow therapy to be administered as early as possible, even if the patient has not yet presented symptoms.
PLOS629
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Loop-mediated isothermal amplification (LAMP) is at the forefront of the search for innovative diagnostics for human African trypanosomiasis (HAT). Several simple endpoint detection methods have been developed for LAMP and here we compare four of these: (i) visualization of turbidity; (ii) addition of hydroxynaphthol blue before incubation; (iii) addition of calcein with MnCl2 before incubation and (iv) addition of Quant-iT PicoGreen after incubation. These four methods were applied to four LAMP assays for the detection of human African trypanosomiasis, including two Trypanozoon specific and two Trypanosoma brucei rhodesiense specific reactions using DNA extracted from cryo-preserved procyclic form T. b. rhodesiense. A multi-observer study was performed to assess inter-observer reliability of two of these methods: hydroxynapthol blue and calcein with MnCl2, using DNA prepared from blood samples stored on Whatman FTA cards. Results showed that hydroxynaphthol blue was the best of the compared methods for easy, inexpensive, accurate and reliable interpretation of LAMP assays for HAT. Hydroxynapthol blue generates a violet to sky blue colour change that was easy to see and was consistently interpreted by independent observers. Visible turbidity detection is not possible for all currently available HAT LAMP reactions; Quant-iT PicoGreen is expensive and addition of calcein with MnCl2 adversely affects reaction sensitivity and was unpopular with several observers. Output:
Human African trypanosomiasis (HAT) is a disease of the rural poor in sub-Saharan Africa where diagnostic laboratories are scarce and often ill equipped. Specific LAMP (loop-mediated isothermal amplification) tests for HAT have been developed and represent a significant step forward in the search for simple, sensitive and reliable diagnosis. Easy, accurate and reliable methods to read the results of these tests are critical and several simple methods have been developed. In this study, four methods were compared including three different colour change methods, and one in which the reaction turned from clear to cloudy. The hydroxynaphthol blue method involving a colour change, from violet to sky blue, was easy to see, the test is cheap to use and the results were largely agreed upon by 33 independent observers.
PLOS630
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The mammalian neocortex has a repetitious, laminar structure and performs functions integral to higher cognitive processes, including sensory perception, memory, and coordinated motor output. What computations does this circuitry subserve that link these unique structural elements to their function? Potjans and Diesmann (2014) parameterized a four-layer, two cell type (i.e. excitatory and inhibitory) model of a cortical column with homogeneous populations and cell type dependent connection probabilities. We implement a version of their model using a displacement integro-partial differential equation (DiPDE) population density model. This approach, exact in the limit of large homogeneous populations, provides a fast numerical method to solve equations describing the full probability density distribution of neuronal membrane potentials. It lends itself to quickly analyzing the mean response properties of population-scale firing rate dynamics. We use this strategy to examine the input-output relationship of the Potjans and Diesmann cortical column model to understand its computational properties. When inputs are constrained to jointly and equally target excitatory and inhibitory neurons, we find a large linear regime where the effect of a multi-layer input signal can be reduced to a linear combination of component signals. One of these, a simple subtractive operation, can act as an error signal passed between hierarchical processing stages. Output:
What computations do existing biophysically-plausible models of cortex perform on their inputs, and how do these computations relate to theories of cortical processing? We begin with a computational model of cortical tissue and seek to understand its input/output transformations. Our approach limits confirmation bias, and differs from a more constructionist approach of starting with a computational theory and then creating a model that can implement its necessary features. We here choose a population-level modeling technique that does not sacrifice accuracy, as it well-approximates the mean firing-rate of a population of leaky integrate-and-fire neurons. We extend this approach to simulate recurrently coupled neural populations, and characterize the computational properties of the Potjans and Diesmann cortical column model. We find that this model is capable of computing linear operations and naturally generates a subtraction operation implicated in theories of predictive coding. Although our quantitative findings are restricted to this particular model, we demonstrate that these conclusions are not highly sensitive to the model parameterization.
PLOS631
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Evolutionary pressures on proteins are often quantified by the ratio of substitution rates at non-synonymous and synonymous sites. The dN/dS ratio was originally developed for application to distantly diverged sequences, the differences among which represent substitutions that have fixed along independent lineages. Nevertheless, the dN/dS measure is often applied to sequences sampled from a single population, the differences among which represent segregating polymorphisms. Here, we study the expected dN/dS ratio for samples drawn from a single population under selection, and we find that in this context, dN/dS is relatively insensitive to the selection coefficient. Moreover, the hallmark signature of positive selection over divergent lineages, dN/dS>1, is violated within a population. For population samples, the relationship between selection and dN/dS does not follow a monotonic function, and so it may be impossible to infer selection pressures from dN/dS. These results have significant implications for the interpretation of dN/dS measurements among population-genetic samples. Output:
Since the time of Darwin, biologists have worked to identify instances of evolutionary adaptation. At the molecular scale, it is understood that adaptation should induce more genetic changes at amino acid altering sites in the genome, compared to amino acid–preserving sites. The ratio of substitution rates at such sites, denoted dN/dS, is therefore commonly used to detect proteins undergoing adaptation. This test was originally developed for application to distantly diverged genetic sequences, the differences among which represent substitutions along independent evolutionary lineages. Nonetheless, the dN/dS statistics are also frequently applied to genetic sequences sampled from a single population, the differences among which represent transient polymorphisms, not substitutions. Here, we show that the behavior of the dN/dS statistic is very different in these two cases. In particular, when applied to sequences from a single population, the dN/dS ratio is relatively insensitive to the strength of natural selection, and the anticipated signature of adaptive evolution, dN/dS>1, is violated. These results have implications for the interpretation of genetic variation sampled from a population. In particular, these results suggest that microbes may experience substantially stronger selective forces than previously thought.
PLOS632
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Fungal infections have skyrocketed in immune-compromised patients lacking CD4+ T cells, underscoring the need for vaccine prevention. An understanding of the elements that promote vaccine immunity in this setting is essential. We previously demonstrated that vaccine-induced IL-17A+ CD8+ T cells (Tc17) are required for resistance against lethal fungal pneumonia in CD4+ T cell-deficient hosts, whereas the individual type I cytokines IFN-γ, TNF-α and GM-CSF, are dispensable. Here, we report that T cell-intrinsic MyD88 signals are crucial for these Tc17 cell responses and vaccine immunity against lethal fungal pneumonia in mice. In contrast, IFN-γ+ CD8+ cell (Tc1) responses are largely normal in the absence of intrinsic MyD88 signaling in CD8+ T cells. The poor accumulation of MyD88-deficient Tc17 cells was not linked to an early onset of contraction, nor to accelerated cell death or diminished expression of anti-apoptotic molecules Bcl-2 or Bcl-xL. Instead, intrinsic MyD88 was required to sustain the proliferation of Tc17 cells through the activation of mTOR via Akt1. Moreover, intrinsic IL-1R and TLR2, but not IL-18R, were required for MyD88 dependent Tc17 responses. Our data identify unappreciated targets for augmenting adaptive immunity against fungi. Our findings have implications for designing fungal vaccines and immune-based therapies in immune-compromised patients. Output:
Patients with AIDS, cancer or immune suppressive treatments are vulnerable to infection with invasive fungi. We have found that even when helper CD4 T cells are profoundly reduced in a mouse model that mimics this defect in AIDS, other remaining T cells are capable of mounting vaccine immunity against a deadly fungal infection, and they do so by producing the powerful, soluble product, IL-17. It has been widely believed that the activation and instruction of such cells, called Tc17 cells, is governed by another population of immune cells in the body, but we have found here that pathways within these Tc17 cells themselves mediate their activation and ability to produce the IL-17 needed for resistance to infection. We have also identified elements of the circuitry controlling this pathway—elements called MyD88, Akt1 and mTOR—and found that they control the production of IL-17 and not other products such as IFN-γ often produced by these cells. Further, we determined that this circuitry controls the development of Tc17 cells by regulating their ability to divide and expand. Thus, in a mouse model of vaccination against lethal fungal pneumonia caused by Blastomyces dermatitidis, we uncovered an important cellular arsenal that can be recruited to bolster resistance against a fungal infection, and identified novel ways in which the cells develop and expand into potent killers of fungi.
PLOS633
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Predicting the function of a protein from its sequence is a long-standing goal of bioinformatic research. While sequence similarity is the most popular tool used for this purpose, sequence motifs may also subserve this goal. Here we develop a motif-based method consisting of applying an unsupervised motif extraction algorithm (MEX) to all enzyme sequences, and filtering the results by the four-level classification hierarchy of the Enzyme Commission (EC). The resulting motifs serve as specific peptides (SPs), appearing on single branches of the EC. In contrast to previous motif-based methods, the new method does not require any preprocessing by multiple sequence alignment, nor does it rely on over-representation of motifs within EC branches. The SPs obtained comprise on average 8.4 ± 4.5 amino acids, and specify the functions of 93% of all enzymes, which is much higher than the coverage of 63% provided by ProSite motifs. The SP classification thus compares favorably with previous function annotation methods and successfully demonstrates an added value in extreme cases where sequence similarity fails. Interestingly, SPs cover most of the annotated active and binding site amino acids, and occur in active-site neighboring 3-D pockets in a highly statistically significant manner. The latter are assumed to have strong biological relevance to the activity of the enzyme. Further filtering of SPs by biological functional annotations results in reduced small subsets of SPs that possess very large enzyme coverage. Overall, SPs both form a very useful tool for enzyme functional classification and bear responsibility for the catalytic biological function carried out by enzymes. Output:
Sequence motifs are known to provide information about functional properties of proteins. In the past, many approaches have looked for deterministic motifs in protein sequences, by searching for functionally over-represented k-mers, with moderate levels of success. Here we revisit and renew the utility of deterministic motifs, by searching for them in a partially unsupervised and context-dependent manner. Using a novel motif extraction algorithm, MEX, deterministic sequence motifs are extracted from Swiss Prot data containing more than 50,000 enzymes. They are then filtered by the Enzyme Commission classification hierarchy to produce sets of specific peptides (SPs). The latter specify enzyme function for 93% of the data, comparing well with existing approaches for enzyme classification. Importantly, SPs are found to have biological significance. A majority of all known active and binding sites of enzymes are covered by SPs, and many SPs are found to lie within spatial pockets in the neighborhood of the active sites. Both these results have extremely high statistical significance. A user-friendly tool that displays the hits of SPs for any protein sequence that is presented as a query, together with the EC assignments due to these SPs, is available at http://adios.tau.ac.il/SPSearch.
PLOS634
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The Wnt signaling pathway plays a conserved role during animal development in transcriptional regulation of distinct targets in different developmental contexts but it remains unclear whether quantitative differences in the nuclear localization of effector proteins TCF and β-catenin contribute to context-specific regulation. We investigated this question in Caenorhabditis elegans embryos by quantifying nuclear localization of fluorescently tagged SYS-1/β-catenin and POP-1/TCF and expression of Wnt ligands at cellular resolution by time-lapse microscopy and automated lineage tracing. We identified reproducible, quantitative differences that generate a subset of Wnt-signaled cells with a significantly higher nuclear concentration of the TCF/β-catenin activating complex. Specifically, β-catenin and TCF are preferentially enriched in nuclei of daughter cells whose parents also had high nuclear levels of that protein, a pattern that could influence developmental gene expression. Consistent with this, we found that expression of synthetic reporters of POP-1-dependent activation is biased towards cells that had high nuclear SYS-1 in consecutive divisions. We identified new genes whose embryonic expression patterns depend on pop-1. Most of these require POP-1 for either transcriptional activation or repression, and targets requiring POP-1 for activation are more likely to be expressed in the cells with high nuclear SYS-1 in consecutive divisions than those requiring POP-1 for repression. Taken together, these results indicate that SYS-1 and POP-1 levels are influenced by the parent cell’s SYS-1/POP-1 levels and this may provide an additional mechanism by which POP-1 regulates distinct targets in different developmental contexts. Output:
The Wnt signaling pathway is active during the development of all multi-cellular animals and also improperly re-activated in many cancers. Here, we use time-lapse microscopy to quantify the nuclear localization of several proteins in response to Wnt signaling throughout early embryonic development in the nematode worm, C. elegans. We find that cells that received a Wnt signal in the previous division respond more strongly to a Wnt signal in the next division, in part by localizing more of the regulator β-catenin to the nucleus. This causes the relative enrichment of Wnt pathway proteins in the nuclei of repeatedly signaled cells, which we show likely impacts the activation of Wnt target genes. This represents a novel mechanism for the regulation of Wnt pathway targets in development and disease.
PLOS635
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Plasmodium vivax causes the majority of malaria outside Africa, but is poorly understood at a cellular level partly due to technical difficulties in maintaining it in in vitro culture conditions. In the past decades, drug resistant P. vivax parasites have emerged, mainly in Southeast Asia, but while some molecular markers of resistance have been identified, none have so far been confirmed experimentally, which limits interpretation of the markers, and hence our ability to monitor and control the spread of resistance. Some of these potential markers have been identified through P. vivax genome-wide population genetic analyses, which highlighted genes under recent evolutionary selection in Southeast Asia, where chloroquine resistance is most prevalent. These genes could be involved in drug resistance, but no experimental proof currently exists to support this hypothesis. In this study, we used Plasmodium knowlesi, the most closely related species to P. vivax that can be cultured in human erythrocytes, as a model system to express P. vivax genes and test for their role in drug resistance. We adopted a strategy of episomal expression, and were able to express fourteen P. vivax genes, including two allelic variants of several hypothetical resistance genes. Their expression level and localisation were assessed, confirming cellular locations conjectured from orthologous species, and suggesting locations for several previously unlocalised proteins, including an apical location for PVX_101445. These findings establish P. knowlesi as a suitable model for P. vivax protein expression. We performed chloroquine and mefloquine drug assays, finding no significant differences in drug sensitivity: these results could be due to technical issues, or could indicate that these genes are not actually involved in drug resistance, despite being under positive selection pressure in Southeast Asia. These data confirm that in vitro P. knowlesi is a useful tool for studying P. vivax biology. Its close evolutionary relationship to P. vivax, high transfection efficiency, and the availability of markers for colocalisation, all make it a powerful model system. Our study is the first of its kind using P. knowlesi to study unknown P. vivax proteins and investigate drug resistance mechanisms. Output:
Plasmodium vivax is the most prevalent human malaria pathogen worldwide, but little is known about its biology as the majority of experimental studies have focused on Plasmodium falciparum, the main cause of malaria in Africa. We therefore know little about the underlying mechanisms of drug resistance in P. vivax and have yet to develop tools to experimentally understand drug resistance, which limits the ability to adapt drug policies and reduce the spread of resistance. Here, we used a related parasite, Plasmodium knowlesi, as a model system to investigate genes that might be involved in P. vivax drug resistance. Multiple P. vivax proteins were expressed and their location in P. knowlesi was explored using organellar markers. None of the candidates induced changes in parasite response to chloroquine or mefloquine, two front-line antimalarials for which resistance is a concern in P. vivax. This could be due to technical reasons, or could indicate that these genes do not actually play a role in resistance. Despite not linking candidate gene expression to drug resistance phenotypes, we demonstrated that P. knowlesi is a promising model for P. vivax studies with rapid generation of transgenic lines and good expression of exogenous P. vivax proteins.
PLOS636
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Zoonotic disease (ZD) pose a serious threat to human health in low-income countries. In these countries the human burden of disease is often underestimated due to insufficient monitoring because of insufficient funding. Quantification of the impact of zoonoses helps in prioritizing healthcare needs. Kyrgyzstan is a poor, mountainous country with 48% of the population employed in agriculture and one third of the population living below the poverty line. We have assessed the burden of zoonoses in Kyrgyzstan by conducting a systematic review. We have used the collected data to estimate the burden of ZDs and addressed the underestimation in officially reported disease incidence. The estimated incidences of the ZDs were used to calculate incidence-based Disability Adjusted Life Years (DALYs). This standardized health gap measure enhances comparability between injuries and diseases. The combined burden for alveolar echinococcosis, cystic echinococcosis, brucellosis, campylobacteriosis, congenital toxoplasmosis, non-typhoidal salmonellosis and rabies in Kyrgyzstan in 2013 was 35,209 DALYs [95% Uncertainty interval (UI):13,413–83,777]; 576 deaths [95% UI: 279–1,168] were attributed to these infections. We estimate a combined median incidence of ZDs of 141,583 cases [95% UI: 33,912–250,924] in 2013. The highest burden was caused by non-typhoidal Salmonella and Echinococcus multilocularis, respectively 14,792 DALYs [95% UI: 3,966–41,532] and 11,915 DALYs [95% UI: 4,705–27,114] per year. The health impact of zoonoses in Kyrgyzstan is substantial, comparable to that of HIV. Community-based surveillance studies and hospital-based registration of all occurrences of zoonoses would increase the accuracy of the estimates. Output:
Zoonoses are diseases transmitted from vertebrate animals to humans. They can cause a variety of symptoms ranging from mild gastrointestinal complaints to debilitating illness and even death. Especially in low-income countries where animals play an important role for many, the burden of these diseases can be substantial. However, there is often little attention for these diseases, thus they remain under-researched and underfunded. In this review, we present estimates of the burden of the most important zoonotic diseases in Kyrgyzstan for the reference year 2013. We estimated the burden by calculating the incidence-based disability adjusted life years (DALYs), allowing comparison between diseases and injuries. Disease frequency data is scarce and hospital-based incidence data often underestimates the true incidence of the disease. By addressing the underestimation in officially reported incidence using data from our systematic review, we estimated the true incidence of the most important zoonoses in Kyrgyzstan. We quantified the substantial impact these diseases have on the wellbeing of people in Kyrgyzstan in 2013. The results underline the need for more intensive monitoring and surveillance of zoonotic diseases.
PLOS637
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Subcutaneous immunization delivers antigen (Ag) to local Ag-presenting cells that subsequently migrate into draining lymph nodes (LNs). There, they initiate the activation and expansion of lymphocytes specific for their cognate Ag. In mammals, the structural environment of secondary lymphoid tissues (SLTs) is considered essential for the initiation of adaptive immunity. Nevertheless, cold-blooded vertebrates can initiate potent systemic immune responses even though they lack conventional SLTs. The emergence of lymph nodes provided mammals with drastically improved affinity maturation of B cells. Here, we combine the use of different strains of alymphoplastic mice and T cell migration mutants with an experimental paradigm in which the site of Ag delivery is distant from the site of priming and inflammation. We demonstrate that in mammals, SLTs serve primarily B cell priming and affinity maturation, whereas the induction of T cell-driven immune responses can occur outside of SLTs. We found that mice lacking conventional SLTs generate productive systemic CD4- as well as CD8-mediated responses, even under conditions in which draining LNs are considered compulsory for the initiation of adaptive immunity. We describe an alternative pathway for the induction of cell-mediated immunity (CMI), in which Ag-presenting cells sample Ag and migrate into the liver where they induce neo-lymphoid aggregates. These structures are insufficient to support antibody affinity maturation and class switching, but provide a novel surrogate environment for the initiation of CMI. Output:
Lymph nodes (LNs) are believed to be the most important tissues initiating immune responses by facilitating the activation of T and B lymphocytes. Mice lacking such LNs (called alymphoplastic) are severely immune compromised and resistant to immunizations. We discovered that the immune-deficiency of such alymphoplastic mice is actually not caused by the loss of LNs, but rather by the underlying genetic lesion. Surprisingly, mice lacking all lymph nodes can still mount potent T cell-mediated immune responses. We also discovered that T and B cells have completely different structural requirements for their activation/maturation. Whereas B cells rely on LNs to become efficient antibody-producing cells, T cells can be activated successfully outside of such dedicated tissues. So—in the absence of LNs—antigens delivered by immunization are actively transported into the liver where cellular immunity is initiated. The mammalian fetal liver is responsible for the early formation of blood and immune cells, and we propose that the adult liver can still provide a niche for T cell–antigen encounters. During evolution, T and B cells emerged simultaneously, allowing cold-blooded vertebrates (which lack LNs) to launch adaptive immune responses. The development of LNs in mammals coincided with a drastic improvement in antibody affinity maturation, whereas T cells remain LN-independent to this day.
PLOS638
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The presence of voltage fluctuations arising from synaptic activity is a critical component in models of gain control, neuronal output gating, and spike rate coding. The degree to which individual neuronal input-output functions are modulated by voltage fluctuations, however, is not well established across different cortical areas. Additionally, the extent and mechanisms of input-output modulation through fluctuations have been explored largely in simplified models of spike generation, and with limited consideration for the role of non-linear and voltage-dependent membrane properties. To address these issues, we studied fluctuation-based modulation of input-output responses in medial entorhinal cortical (MEC) stellate cells of rats, which express strong sub-threshold non-linear membrane properties. Using in vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output responses by random voltage fluctuations in stellate cells is significantly limited. In stellate cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages mediated by Na+ conductance activation limits the ability of fluctuations to elicit spikes. Similarly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for the exponential term that matches stellate cell membrane properties, a low degree of fluctuation-based modulation of input-output responses can be attained. These results demonstrate that fluctuation-based modulation of input-output responses is not a universal feature of neurons and can be significantly limited by subthreshold voltage-gated conductances. Output:
The membrane voltage of neurons in vivo is dominated by noisy “background” fluctuations generated by network-based synaptic activity from nearby cells. It has been speculated that membrane voltage fluctuations in neurons play an important role in scaling the relationship between input amplitude and spike rate response. For this to be true, neuronal spike input-output behavior must be sensitive to physiological membrane voltage fluctuations. Using a combination of single cell recordings and modeling, we investigated the mechanisms through which voltage fluctuations modulate neuronal input-output responses. We find that neurons that express an increase in membrane input resistance with depolarization show low levels of noise-mediated modulation of input-output responses due, in part, to voltage trajectories that suppress the likelihood of generating a spike in response to random current input fluctuations. Hence, non-linear membrane properties arising from certain types of voltage-gated conductances limit noise-based modulation of neuronal input-output responses.
PLOS639
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Sinorhizobium meliloti differentiates into persisting, nitrogen-fixing bacteroids within root nodules of the legume Medicago truncatula. Nodule-specific cysteine-rich antimicrobial peptides (NCR AMPs) and the bacterial BacA protein are essential for bacteroid development. However, the bacterial factors central to the NCR AMP response and the in planta role of BacA are unknown. We investigated the hypothesis that BacA is critical for the bacterial response towards NCR AMPs. We found that BacA was not essential for NCR AMPs to induce features of S. meliloti bacteroids in vitro. Instead, BacA was critical to reduce the amount of NCR AMP-induced membrane permeabilization and bacterial killing in vitro. Within M. truncatula, both wild-type and BacA-deficient mutant bacteria were challenged with NCR AMPs, but this resulted in persistence of the wild-type bacteria and rapid cell death of the mutant bacteria. In contrast, BacA was dispensable for bacterial survival in an M. truncatula dnf1 mutant defective in NCR AMP transport to the bacterial compartment. Therefore, BacA is critical for the legume symbiosis by protecting S. meliloti against the bactericidal effects of NCR AMPs. Host AMPs are ubiquitous in nature and BacA proteins are essential for other chronic host infections by symbiotic and pathogenic bacteria. Hence, our findings suggest that BacA-mediated protection of bacteria against host AMPs is a critical stage in the establishment of different prolonged host infections. Output:
Certain bacterial species have the unique capacity to enter into eukaryotic host cells and establish prolonged infections, which can be beneficial (e.g. bacterial-legume symbiosis) or detrimental (e.g. chronic disease) for the host. However, the mechanisms by which bacteria persist in host cells are poorly understood. Legume peptides and the bacterial BacA membrane protein play essential roles in enabling bacteria to establish prolonged legume infections. However, the biological function of BacA in persistent legume infections has eluded scientists for nearly two decades. In this article, we investigated a potential relationship between legume peptides and BacA in the establishment of prolonged bacterial-legume infections. We found that BacA was critical to protect bacteria against the antimicrobial action of legume peptides, thereby allowing the peptides to induce bacterial persistence within the legume rather than rapid bacterial death. Mammalian hosts also produce peptides in response to invading microorganisms and BacA proteins are critical for medically important bacterial pathogens such as Mycobacterium tuberculosis to form prolonged mammalian infections. Therefore, our results suggest that BacA-mediated protection against host peptides might be a conserved mechanism used by both symbiotic and pathogenic bacterial species to establish long-term host infections.
PLOS640
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Helicobacter pylori causes clinical disease primarily in those individuals infected with a strain that carries the cytotoxin associated gene pathogenicity island (cagPAI). The cagPAI encodes a type IV secretion system (T4SS) that injects the CagA oncoprotein into epithelial cells and is required for induction of the pro-inflammatory cytokine, interleukin-8 (IL-8). CagY is an essential component of the H. pylori T4SS that has an unusual sequence structure, in which an extraordinary number of direct DNA repeats is predicted to cause rearrangements that invariably yield in-frame insertions or deletions. Here we demonstrate in murine and non-human primate models that immune-driven host selection of rearrangements in CagY is sufficient to cause gain or loss of function in the H. pylori T4SS. We propose that CagY functions as a sort of molecular switch or perhaps a rheostat that alters the function of the T4SS and “tunes” the host inflammatory response so as to maximize persistent infection. Output:
Helicobacter pylori is a bacterium that colonizes the stomach of about half the world's population, most of whom are asymptomatic. However, some strains of H. pylori express a bacterial secretion system, a sort of molecular syringe that injects a bacterial protein inside the gastric cells and causes inflammation that can lead to peptic ulcer disease or gastric cancer. One of the essential components of the H. pylori secretion system is CagY, which is unusual because it contains a series of repetitive amino acid motifs that are encoded by a very large number of direct DNA repeats. Here we have shown that DNA recombination in cagY changes the protein motif structure and alters the function of the secretion system—turning it on or off. Using mouse and non-human primate models, we have demonstrated that CagY is a molecular switch that “tunes” the host inflammatory response, and likely contributes to persistent infection. Determining the mechanism by which CagY functions will enhance our understanding of the effects of H. pylori on human health, and could lead to novel applications for the modulation of host cell function.
PLOS641
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The intrinsic stochasticity of gene expression leads to cell-to-cell variations, noise, in protein abundance. Several processes, including transcription, translation, and degradation of mRNA and proteins, can contribute to these variations. Recent single cell analyses of gene expression in yeast have uncovered a general trend where expression noise scales with protein abundance. This trend is consistent with a stochastic model of gene expression where mRNA copy number follows the random birth and death process. However, some deviations from this basic trend have also been observed, prompting questions about the contribution of gene-specific features to such deviations. For example, recent studies have pointed to the TATA box as a sequence feature that can influence expression noise by facilitating expression bursts. Transcription-originated noise can be potentially further amplified in translation. Therefore, we asked the question of to what extent sequence features known or postulated to accompany translation efficiency can also be associated with increase in noise strength and, on average, how such increase compares to the amplification associated with the TATA box. Untangling different components of expression noise is highly nontrivial, as they may be gene or gene-module specific. In particular, focusing on codon usage as one of the sequence features associated with efficient translation, we found that ribosomal genes display a different relationship between expression noise and codon usage as compared to other genes. Within nonribosomal genes we found that sequence high codon usage is correlated with increased noise relative to the average noise of proteins with the same abundance. Interestingly, by projecting the data on a theoretical model of gene expression, we found that the amplification of noise strength associated with codon usage is comparable to that of the TATA box, suggesting that the effect of translation on noise in eukaryotic gene expression might be more prominent than previously appreciated. Output:
The stochastic nature of gene expression leads to cell-to-cell differences in protein level referred to as noise. Expression noise can be disadvantageous, by affecting the precision of biological functions, but it may also be advantageous by enabling heterogeneous stress-response programs to environmental changes. Therefore various genes and gene groups might display various levels of expression noise. Importantly, gene expression is a multi-step process and the stochasticity of its individual steps, including transcription and translation, contributes to the resulting variability. Recent single cell analyses of gene expression in yeast have confirmed the theoretically predicted general trend where expression noise scales with protein abundance. However, some deviations from this basic trend have also been observed, prompting questions about the contribution of gene-specific features to such deviations. Accounting for noise heterogeneity in different gene groups, we revealed a clear relationship between noise and translation-related genomic features, specifically codon usage and 5′ UTR secondary structure. Our results suggest that the effect of translation on these deviations might be more prominent than previously appreciated, and provide important clues towards understanding expression stochasticity in yeast.
PLOS642
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Most fungal pathogens of humans display robust protective oxidative stress responses that contribute to their pathogenicity. The induction of enzymes that detoxify reactive oxygen species (ROS) is an essential component of these responses. We showed previously that ectopic expression of the heme-containing catalase enzyme in Candida albicans enhances resistance to oxidative stress, combinatorial oxidative plus cationic stress, and phagocytic killing. Clearly ectopic catalase expression confers fitness advantages in the presence of stress, and therefore in this study we tested whether it enhances fitness in the absence of stress. We addressed this using a set of congenic barcoded C. albicans strains that include doxycycline-conditional tetON-CAT1 expressors. We show that high basal catalase levels, rather than CAT1 induction following stress imposition, reduce ROS accumulation and cell death, thereby promoting resistance to acute peroxide or combinatorial stress. This conclusion is reinforced by our analyses of phenotypically diverse clinical isolates and the impact of stochastic variation in catalase expression upon stress resistance in genetically homogeneous C. albicans populations. Accordingly, cat1Δ cells are more sensitive to neutrophil killing. However, we find that catalase inactivation does not attenuate C. albicans virulence in mouse or invertebrate models of systemic candidiasis. Furthermore, our direct comparisons of fitness in vitro using isogenic barcoded CAT1, cat1Δ and tetON-CAT1 strains show that, while ectopic catalase expression confers a fitness advantage during peroxide stress, it confers a fitness defect in the absence of stress. This fitness defect is suppressed by iron supplementation. Also high basal catalase levels induce key iron assimilatory functions (CFL5, FET3, FRP1, FTR1). We conclude that while high basal catalase levels enhance peroxide stress resistance, they place pressure on iron homeostasis through an elevated cellular demand for iron, thereby reducing the fitness of C. albicans in iron-limiting tissues within the host. Output:
The pathogenic yeast Candida albicans faces multiple challenges within its human host. These include the need to protect itself against the toxic oxidants used by the host to kill invading microbes, and the need to scavenge iron, an essential micronutrient that is limiting in certain tissues. The iron-containing enzyme, catalase, detoxifies hydrogen peroxide, thereby playing a major role in protecting C. albicans against reactive oxygen species and neutrophil killing. Indeed, we show that high basal catalase expression increases the resistance of this yeast to oxidative and combinatorial (oxidative plus cationic) stresses. Yet, rather than enhancing the virulence of C. albicans as had been predicted, high basal catalase expression decreases fungal colonisation in certain iron-limiting tissues. Furthermore, we demonstrate that catalase inactivation does not significantly perturb the virulence of C. albicans in models of systemic infection. We also show that ectopic catalase expression increases the demand for iron in C. albicans, thereby reducing the fitness of this pathogen in the absence of stress under iron-limiting conditions. Therefore, high basal catalase expression is a double-edged sword: it enhances the fitness of C. albicans in the presence of stress, but reduces fitness in the absence of stress. This explains why catalase overexpression reduces rather than enhances virulence.
PLOS643
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Microsatellites have been found to be useful in determining genetic diversities of various medically-important parasites which can be used as basis for an effective disease management and control program. In Asia and Africa, the identification of different geographical strains of Schistosoma japonicum, S. haematobium and S. mansoni as determined through microsatellites could pave the way for a better understanding of the transmission epidemiology of the parasite. Thus, the present study aims to apply microsatellite markers in analyzing the populations of S. japonicum from different endemic areas in the Philippines for possible strain differentiation. Experimental mice were infected using the cercariae of S. japonicum collected from infected Oncomelania hupensis quadrasi snails in seven endemic municipalities. Adult worms were harvested from infected mice after 45 days of infection and their DNA analyzed against ten previously characterized microsatellite loci. High genetic diversity was observed in areas with high endemicity. The degree of genetic differentiation of the parasite population between endemic areas varies. Geographical separation was considered as one of the factors accounting for the observed difference between populations. Two subgroups have been observed in one of the study sites, suggesting that co-infection with several genotypes of the parasite might be present in the population. Clustering analysis showed no particular spatial structuring between parasite populations from different endemic areas. This result could possibly suggest varying degrees of effects of the ongoing control programs and the existing gene flow in the populations, which might be attributed to migration and active movement of infected hosts from one endemic area to another. Based on the results of the study, it is reasonable to conclude that genetic diversity could be one possible criterion to assess the infection status in highly endemic areas. Genetic surveillance using microsatellites is therefore important to predict the ongoing gene flow and degree of genetic diversity, which indirectly reflects the success of the control program in schistosomiasis-endemic areas. Output:
Schistosomiasis is one of the important neglected tropical diseases endemic in 78 countries throughout the world. The disease is caused by the parasitic worms known as schistosomes. In the Philippines, S. japonicum is the causative agent of the disease. The prevalence of the disease varies in endemic areas, suggesting that the parasite populations might differ in their genetic composition and infectivity to the human host. In this study, DNA samples of adult worms from seven endemic municipalities were analyzed. Characterization of S. japonicum samples in different endemic sites with varying prevalence provides information on the genetic diversity of the parasite. Results of this study showed that samples in high prevalence endemic areas like Irosin, Catarman and Socorro were genetically diverse as compared to other areas. Information on parasite genetic diversity is therefore important in planning disease control strategies. The results suggest ongoing parasite transmission across geographic endemic areas which should be monitored and used as reference for genetic diversity of the schistosomes attributed to geographic areas, thus a safeguarding precaution should be implemented to ensure localized elimination of the disease.
PLOS644
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: In many plant species, conflicts between divergent elements of the immune system, especially nucleotide-binding oligomerization domain-like receptors (NLR), can lead to hybrid necrosis. Here, we report deleterious allele-specific interactions between an NLR and a non-NLR gene cluster, resulting in not one, but multiple hybrid necrosis cases in Arabidopsis thaliana. The NLR cluster is RESISTANCE TO PERONOSPORA PARASITICA 7 (RPP7), which can confer strain-specific resistance to oomycetes. The non-NLR cluster is RESISTANCE TO POWDERY MILDEW 8 (RPW8) / HOMOLOG OF RPW8 (HR), which can confer broad-spectrum resistance to both fungi and oomycetes. RPW8/HR proteins contain at the N-terminus a potential transmembrane domain, followed by a specific coiled-coil (CC) domain that is similar to a domain found in pore-forming toxins MLKL and HET-S from mammals and fungi. C-terminal to the CC domain is a variable number of 21- or 14-amino acid repeats, reminiscent of regulatory 21-amino acid repeats in fungal HET-S. The number of repeats in different RPW8/HR proteins along with the sequence of a short C-terminal tail predicts their ability to activate immunity in combination with specific RPP7 partners. Whether a larger or smaller number of repeats is more dangerous depends on the specific RPW8/HR autoimmune risk variant. Output:
In many plant species, conflicts between divergent elements of the immune system can cause hybrids to express autoimmunity, a generally deleterious syndrome known as hybrid necrosis. We are investigating multiple hybrid necrosis cases in Arabidopsis thaliana that are caused by allele-specific interactions between different variants at two unlinked resistance (R) gene clusters, RESISTANCE TO PERONOSPORA PARASITICA 7 (RPP7) and RESISTANCE TO POWDERY MILDEW 8 (RPW8)/HOMOLOG OF RPW8 (HR). The RPP7 locus encodes intracellular nucleotide binding site-leucine rich repeat (NLR) immune receptors that can confer strain-specific resistance to oomycetes, while the RPW8/HR locus encodes atypical resistance proteins, of which some can confer broad-spectrum resistance to filamentous pathogens. There is extensive structural variation in the RPW8/HR cluster, both at the level of gene copy number and at the level of C-terminal, 21- or 14-amino acid long RPW8/HR repeats. We demonstrate that the number of RPW8/HR repeats and the short C-terminal tail correlate, in an allele-specific manner, with the severity of hybrid necrosis when these alleles are combined with RPP7 variants. We discuss these findings in light of sequence similarity between RPW8/HR and pore-forming toxins MLKL and HET-S from mammals and fungi.
PLOS645
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Intracellular bacterial pathogens are metabolically adapted to grow within mammalian cells. While these adaptations are fundamental to the ability to cause disease, we know little about the relationship between the pathogen's metabolism and virulence. Here we used an integrative Metabolic Analysis Tool that combines transcriptome data with genome-scale metabolic models to define the metabolic requirements of Listeria monocytogenes during infection. Twelve metabolic pathways were identified as differentially active during L. monocytogenes growth in macrophage cells. Intracellular replication requires de novo synthesis of histidine, arginine, purine, and branch chain amino acids (BCAAs), as well as catabolism of L-rhamnose and glycerol. The importance of each metabolic pathway during infection was confirmed by generation of gene knockout mutants in the respective pathways. Next, we investigated the association of these metabolic requirements in the regulation of L. monocytogenes virulence. Here we show that limiting BCAA concentrations, primarily isoleucine, results in robust induction of the master virulence activator gene, prfA, and the PrfA-regulated genes. This response was specific and required the nutrient responsive regulator CodY, which is known to bind isoleucine. Further analysis demonstrated that CodY is involved in prfA regulation, playing a role in prfA activation under limiting conditions of BCAAs. This study evidences an additional regulatory mechanism underlying L. monocytogenes virulence, placing CodY at the crossroads of metabolism and virulence. Output:
Intracellular bacterial pathogens have developed sophisticated mechanisms to invade and replicate within eukaryotic cells. For successful replication, pathogens have adapted metabolically to the intracellular niche. While this adaptation is fundamental to the ability to cause disease, we know little about pathogen's intracellular metabolism and its association with virulence. In this study we took a global approach that combines computational and experimental methods to decipher the intracellular metabolic requirements of the human bacterial pathogen Listeria monocytogenes. We identified 12 metabolic pathways to be differentially active during infection in comparison to growth in rich lab media. We validated the essentiality of the active pathways for L. monocytogenes intracellular replication. Pathways included: biosynthesis of histidine, arginine, purine, and branch chain amino acids (BCAAs), as well as the catabolism of L-rhamnose and glycerol. Next we analyzed whether the requirement for these nutrients associates with virulence. We found that limiting concentrations of BCAAs, primarily of isoleucine, results in robust induction of the bacterial virulence state, a response that is dependent on the isoleucine responsive regulator, CodY. CodY was responsible for the up-regulation of the major virulence regulator of L. monocytogenes, PrfA. This study supports the premise that pathogens metabolism and virulence are closely interlinked.
PLOS646
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Toxoplasma gondii is a zoonotic protozoan with a worldwide occurrence, but the determinants of the current pattern in the geographical distribution of T. gondii lineages and strains remain poorly understood. To test the influence of human trade on T. gondii populations, we conducted a population genetic study of 72 T. gondii animal isolates from Senegal, a West African country in which the ongoing inland progress of invasive murine hosts (introduced in port cities of Senegal since the 16th century by European sailors) is well described. Isolates were mainly collected on free-range poultry, which are considered as relevant bioindicators of T. gondii strain diversity in the domestic environment. Sampling was conducted in two port cities of Senegal (Dakar and Saint-Louis) and in one inland region (Kedougou). Population genetic analyses using 15 microsatellite markers revealed different patterns between port cities where lineages non-virulent for mice (type II, type III, and Africa 4) were predominant, and Kedougou where the mouse-virulent Africa 1 lineage was the most common. By considering the current spatial pattern in the inland progress of invasive rodents in Senegal, our results suggest that the invasive house mouse Mus musculus domesticus counter-selects the Africa 1 lineage in the invaded areas. The comparison of the microsatellite alleles of type II strains from Senegal to type II strains from other areas in Africa and Western Europe, using discriminant analysis of principal components and Network analysis, point to a mainly Western European origin of the type II lineage in Senegal. Collectively, these findings suggest that human-mediated intercontinental migrations of murine hosts are important vectors of T. gondii strains. Differential susceptibility of endemic and introduced murine hosts to various T. gondii strains probably determines the persistence of these strains in the environment, and therefore their availability for human and animal infection. Output:
Toxoplasma gondii is a zoonotic protozoan with a worldwide distribution and which can infects virtually all warm-blooded species, including human. Clinical expression of human toxoplasmosis, as well as T. gondii strains diversity, exhibit contrasting patterns across geographic regions. The determinants of this geographical structure are poorly understood, but a growing body of evidence supports an important role of human-mediated migrations of T. gondii hosts in the intercontinental dissemination of some parasite lineages. The results of our study conducted in Senegal suggest that the invasive house mouse—which was introduced in the port cities of this country through maritime trade since colonial times—has a dramatic influence on the T. gondii populations of invaded areas. This important T. gondii reservoir seems to be a vector for the intercontinental migrations of T. gondii. In addition, it may have a role in the selection (or the counter-selection) of local T. gondii populations found in invaded areas. This study provides insights into the mechanisms shaping T. gondii populations, thereby determining which strains will be available for human and animal infection.
PLOS647
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: To work towards reaching the WHO goal of eliminating soil-transmitted helminth (STH) infections as a public health problem, the total number of children receiving anthelmintic drugs has strongly increased over the past few years. However, as drug pressure levels rise, the development of anthelmintic drug resistance (AR) is more and more likely to appear. Currently, any global surveillance system to monitor drug efficacy and the emergence of possible AR is lacking. Consequently, it remains unclear to what extent the efficacy of drugs may have dropped and whether AR is already present. The overall aim of this study is to recommend the best diagnostic methods to monitor drug efficacy and molecular markers to assess the emergence of AR in STH control programs. A series of drug efficacy trials will be performed in four STH endemic countries with varying drug pressure (Ethiopia and Brazil: low drug pressure, Lao PDR: moderate drug pressure and Tanzania: high drug pressure). These trials are designed to assess the efficacy of a single oral dose of 400 mg albendazole (ALB) against STH infections in school-aged children (SAC) by microscopic (duplicate Kato-Katz thick smear, Mini-FLOTAC and FECPAKG2) and molecular stool-based diagnostic methods (quantitative PCR (qPCR)). Data will be collected on the cost of the materials used, as well as the time required to prepare and examine stool samples for the different diagnostic methods. Following qPCR, DNA samples will also be submitted for pyrosequencing to assess the presence and prevalence of single nucleotide polymorphisms (SNPs) in the β-tubulin gene. These SNPs are known to be linked to AR in animal STHs. The results obtained by these trials will provide robust evidence regarding the cost-efficiency and diagnostic performance of the different stool-based diagnostic methods for the assessment of drug efficacy in control programs. The assessment of associations between the frequency of SNPs in the β-tubulin gene and the history of drug pressure and drug efficacy will allow the validation of these SNPs as a marker for AR in human STHs. The trial was retrospectively registered the 7th of March 2018 on Clinicaltrials.gov (ID: NCT03465488). Output:
Soil-transmitted helminths (STHs) affect 1.4 billion people worldwide and cause significant morbidity when the intensity of infection is high. Currently, these infections are controlled in school-aged children by preventive chemotherapy with the benzimidazole drugs albendazole (ALB) or mebendazole (MEB). However, for the success of these control programs, it is essential to keep track of the efficacy of these drugs and to screen parasite populations for a possible rise of anthelmintic resistance (AR). In this light, a series of trials will be performed to assess the efficacy of ALB treatment against STH in four endemic countries with varying drug pressure. Both microscopic and molecular stool-based diagnostic methods will be used to evaluate drug efficacy. DNA samples will also be analysed for the presence and prevalence of mutations in a gene that was previously linked to AR in animal STHs. The results of these trials will provide evidence on the efficacy of ALB, help select the optimal diagnostic method to assess drug efficacy and provide information regarding the usefulness of genetic markers for AR detection in human STHs.
PLOS648
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Falls are a leading reason for older people presenting to the emergency department (ED), and many experience further falls. Little evidence exists to guide secondary prevention in this population. This randomised controlled trial (RCT) investigated whether a 6-month telephone-based patient-centred program—RESPOND—had an effect on falls and fall injuries in older people presenting to the ED after a fall. Community-dwelling people aged 60–90 years presenting to the ED with a fall and planned for discharge home within 72 hours were recruited from two EDs in Australia. Participants were enrolled if they could walk without hands-on assistance, use a telephone, and were free of cognitive impairment (Mini-Mental State Examination > 23). Recruitment occurred between 1 April 2014 and 29 June 2015. Participants were randomised to receive either RESPOND (intervention) or usual care (control). RESPOND comprised (1) home-based risk assessment; (2) 6 months telephone-based education, coaching, goal setting, and support for evidence-based risk factor management; and (3) linkages to existing services. Primary outcomes were falls and fall injuries in the 12-month follow-up. Secondary outcomes included ED presentations, hospital admissions, fractures, death, falls risk, falls efficacy, and quality of life. Assessors blind to group allocation collected outcome data via postal calendars, telephone follow-up, and hospital records. There were 430 people in the primary outcome analysis—217 randomised to RESPOND and 213 to control. The mean age of participants was 73 years; 55% were female. Falls per person-year were 1.15 in the RESPOND group and 1.83 in the control (incidence rate ratio [IRR] 0.65 [95% CI 0.43–0.99]; P = 0.042). There was no significant difference in fall injuries (IRR 0.81 [0.51–1.29]; P = 0.374). The rate of fractures was significantly lower in the RESPOND group compared with the control (0.05 versus 0.12; IRR 0.37 [95% CI 0.15–0.91]; P = 0.03), but there were no significant differences in other secondary outcomes between groups: ED presentations, hospitalisations or falls risk, falls efficacy, and quality of life. There were two deaths in the RESPOND group and one in the control group. No adverse events or unintended harm were reported. Limitations of this study were the high number of dropouts (n = 93); possible underreporting of falls, fall injuries, and hospitalisations across both groups; and the relatively small number of fracture events. In this study, providing a telephone-based, patient-centred falls prevention program reduced falls but not fall injuries, in older people presenting to the ED with a fall. Among secondary outcomes, only fractures reduced. Adopting patient-centred strategies into routine clinical practice for falls prevention could offer an opportunity to improve outcomes and reduce falls in patients attending the ED. Australian New Zealand Clinical Trials Registry (ACTRN12614000336684). Output:
Falls are a leading reason that older adults present to emergency departments (EDs). There is systematic review evidence for interventions to reduce falls in older people living in the community. When similar interventions are applied to those presenting to the ED with a fall, there is a lack of effectiveness. A randomised-controlled trial was undertaken to investigate whether a 6-month telephone-based patient-centred program—RESPOND—reduced falls and fall injuries in older people presenting to the ED after a fall. RESPOND is a patient-centred falls prevention program developed specifically for community-dwelling older people presenting to the ED with a fall. It consists of a home-based risk assessment; 6 months telephone-based education, coaching, goal setting, and support for evidence-based risk factor management; and linkages to existing services. RESPOND had an effect on falls and fractures but not fall injuries. Our study provides evidence for a telephone-based, patient-centred falls prevention program to reduce falls and fractures in older people presenting to the ED with a fall. This approach may empower and support older people to participate in falls prevention activities.
PLOS649
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50–100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators “spiral” to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the demographic fate of those species that rely on cooperation for their survival. Output:
The fact that rapid evolution within a species can cause dramatic ecological changes has only recently begun to be appreciated. In particular, it has often been assumed that population dynamics, controlled by ecological circumstances such as the presence of predators or disease, occur at such different timescales compared with evolutionary dynamics that they are effectively de-coupled. Recent studies, however, have found that evolution can occur over ecological timescales and thus may have important effects on ecological dynamics. Here, we demonstrate the presence of a tight coupling between population dynamics and the evolutionary dynamics of a “social” microbial gene, which allows a laboratory population of budding yeast to cooperatively break down sucrose and grow on the simpler sugars released from it. In such cooperative populations, evolution may favor non-cooperative, or “cheater” individuals that do not contribute to the public good (in this case, the products of sucrose break down), but still use that public good to grow at the expense of the individuals that do cooperate. Our study shows that a population of cooperators that is invaded by cheaters does not collapse as a result of cheater proliferation but can evolve to a viable equilibrium. However, the coexisting population is less resilient to perturbations.
PLOS650
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Host defense against the intracellular pathogen Listeria monocytogenes (Lm) requires innate and adaptive immunity. Here, we directly imaged immune cell dynamics at Lm foci established by dendritic cells in the subcapsular red pulp (scDC) using intravital microscopy. Blood borne Lm rapidly associated with scDC. Myelomonocytic cells (MMC) swarmed around non-motile scDC forming foci from which blood flow was excluded. The depletion of scDC after foci were established resulted in a 10-fold reduction in viable Lm, while graded depletion of MMC resulted in 30–1000 fold increase in viable Lm in foci with enhanced blood flow. Effector CD8+ T cells at sites of infection displayed a two-tiered reduction in motility with antigen independent and antigen dependent components, including stable interactions with infected and non-infected scDC. Thus, swarming MMC contribute to control of Lm prior to development of T cell immunity by direct killing and sequestration from blood flow, while scDC appear to promote Lm survival while preferentially interacting with CD8+ T cells in effector sites. Output:
The pathogenic bacteria Listeria monocytogenes (Lm) can access the intracellular space and establish infection in the host spleen and liver. Innate immune cells are required to detect and contain infection while specific adaptive T cells are activated and recruited to infection sites. Adaptive immunity enhances the function of innate cells and also directly kills infected cells to prevent further bacterial propagation. These cells respond to local environmental cues and often communicate via direct cell-to-cell contact. Here, we observed cellular dynamics in situ by imaging live tissue using intravital microscopy. We reconstituted the Lm infection model with bacteria and mouse strains engineered to express fluorescent proteins to label specfic cells. We find that dendritic cells (DC) in the spleen rapidly capture Lm from circulation, demonstrating a direct role of these cells in sequestering bacteria. Neutrophils converge on infected cells by directed migration to generate exanguinous foci within the otherwise blood rich red pulp. Finally, antigen specific CD8+ T cell interact extensively with infected cells and DC in the foci and are selectively retained compared to non-specific polyclonal T cells. These findings significantly advance our understanding of immune cell dynamics in the spleen in both the steady state and in response to Listeria infection. These studies could aid in development of disease therapies and vaccine strategies targeted towards enhancing DC, myelomonocytic and CD8+ T cell effector responses.
PLOS651
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs). Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas. Output:
The increasing intensity of human disturbance worldwide is triggering unprecedented biodiversity losses, which is raising concerns over whether ecosystems will work and continue delivering goods and services to humanity. In contrast to previous experimental studies, which describe saturating relationships between ecosystem functioning and biodiversity, we show that in reef fish systems, functioning (as standing biomass) accelerates with the addition of new species. This non-saturating relationship implies unique contributions of species to the functioning of this ecosystem and indicates that the consequences of losing biodiversity are significantly greater than previously anticipated. We also demonstrate a negative effect of human density on reef fish functioning such that for the same number of people the loss of standing biomass is significantly larger in more diverse ecosystems. Unfortunately, human effects can arise through multiple stressors (such as fishing, coastal development, and land use) and are widespread and likely to worsen, as some 75% of the world's coral reefs are currently nearby human settlements and because almost all countries with coral reefs are expected to double their populations within the next 50 to 100 years. Our results call for both further investigation of the impact of biodiversity on ecosystem functioning and strategies to manage and prevent the increasing intensity and expansion of anthropogenic stressors in coastal areas.
PLOS652
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: In Caenorhabditis elegans (C. elegans), the promotion of longevity by the transcription factor DAF-16 requires reduced insulin/IGF receptor (IIR) signaling or the ablation of the germline, although the reason for the negative impact of germ cells is unknown. FOXO/DAF-16 activity inhibits germline proliferation in both daf-2 mutants and gld-1 tumors. In contrast to its function as a germline tumor suppressor, we now provide evidence that somatic DAF-16 in the presence of IIR signaling can also result in tumorigenic activity, which counteracts robust lifespan extension. In contrast to the cell-autonomous IIR signaling, which is required for larval germline proliferation, activation of DAF-16 in the hypodermis results in hyperplasia of the germline and disruption of the surrounding basement membrane. SHC-1 adaptor protein and AKT-1 kinase antagonize, whereas AKT-2 and SGK-1 kinases promote, this cell-nonautonomous DAF-16 function. Our data suggest that a functional balance of DAF-16 activities in different tissues determines longevity and reveals a novel, cell-nonautonomous role of FOXO/DAF-16 to affect stem cells. Output:
Previous studies have shown that DAF–16/FOXO transcription factor promotes longevity and stress resistance and inhibits tumor progression in the absence of insulin signaling. Here we show that active DAF-16 in the epidermis can shorten lifespan by promoting a tumorous germline phenotype. In contrast to the known inhibitory effect of insulin signaling upon DAF-16, an active insulin and PI3K signaling are required for DAF-16–mediated signaling to the germline. In addition, AKT-1– and SHC-1–mediated JNK signaling antagonize AKT-2 and SGK-1 to affect the reproductive system. This is to our knowledge the first report about a detrimental effect of DAF-16 on lifespan. Furthermore it emphasizes that DAF-16 activity is highly dependent on the cellular context and communication between different tissues.
PLOS653
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Adaptor protein (AP) complexes sort cargo into vesicles for transport from one membrane compartment of the cell to another. Four distinct AP complexes have been identified, which are present in most eukaryotes. We report the existence of a fifth AP complex, AP-5. Tagged AP-5 localises to a late endosomal compartment in HeLa cells. AP-5 does not associate with clathrin and is insensitive to brefeldin A. Knocking down AP-5 subunits interferes with the trafficking of the cation-independent mannose 6-phosphate receptor and causes the cell to form swollen endosomal structures with emanating tubules. AP-5 subunits can be found in all five eukaryotic supergroups, but they have been co-ordinately lost in many organisms. Concatenated phylogenetic analysis provides robust resolution, for the first time, into the evolutionary order of emergence of the adaptor subunit families, showing AP-3 as the basal complex, followed by AP-5, AP-4, and AP-1 and AP-2. Thus, AP-5 is an evolutionarily ancient complex, which is involved in endosomal sorting, and which has links with hereditary spastic paraplegia. Output:
Adaptor protein (AP) complexes facilitate the trafficking of cargo from one membrane compartment of the cell to another by recruiting other proteins to particular types of vesicles. For over 10 years, it has been assumed that there are four, and only four, distinct AP complexes in eukaryotic cells. We report the existence of a fifth AP complex, AP-5. Immunolocalisation and RNAi knockdown experiments both indicate that AP-5 is involved in trafficking proteins from endosomes towards other membranous compartments. There are genetic links between AP-5 and hereditary spastic paraplegia, a group of human genetic disorders characterised by progressive spasticity in the lower limbs. Phylogenetic analyses indicate that AP-5 was already present in the last eukaryotic common ancestor over a billion years ago.
PLOS654
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The continuous integration of experimental data into coherent models of the brain is an increasing challenge of modern neuroscience. Such models provide a bridge between structure and activity, and identify the mechanisms giving rise to experimental observations. Nevertheless, structurally realistic network models of spiking neurons are necessarily underconstrained even if experimental data on brain connectivity are incorporated to the best of our knowledge. Guided by physiological observations, any model must therefore explore the parameter ranges within the uncertainty of the data. Based on simulation results alone, however, the mechanisms underlying stable and physiologically realistic activity often remain obscure. We here employ a mean-field reduction of the dynamics, which allows us to include activity constraints into the process of model construction. We shape the phase space of a multi-scale network model of the vision-related areas of macaque cortex by systematically refining its connectivity. Fundamental constraints on the activity, i.e., prohibiting quiescence and requiring global stability, prove sufficient to obtain realistic layer- and area-specific activity. Only small adaptations of the structure are required, showing that the network operates close to an instability. The procedure identifies components of the network critical to its collective dynamics and creates hypotheses for structural data and future experiments. The method can be applied to networks involving any neuron model with a known gain function. Output:
The connectome describes the wiring patterns of the neurons in the brain, which form the substrate guiding activity through the network. The influence of its constituents on the dynamics is a central topic in systems neuroscience. We here investigate the critical role of specific structural links between neuronal populations for the global stability of cortex and elucidate the relation between anatomical structure and experimentally observed activity. Our novel framework enables the evaluation of the rapidly growing body of connectivity data on the basis of fundamental constraints on brain activity and the combination of anatomical and physiological data to form a consistent picture of cortical networks.
PLOS655
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The helminth Strongyloides stercoralis, which is transmitted through soil, infects 30–100 million people worldwide. S. stercoralis reproduces sexually outside the host as well as asexually within the host, which causes a life-long infection. To understand the population structure and transmission patterns of this parasite, we re-sequenced the genomes of 33 individual S. stercoralis nematodes collected in Myanmar (prevalent region) and Japan (non-prevalent region). We utilised a method combining whole genome amplification and next-generation sequencing techniques to detect 298,202 variant positions (0.6% of the genome) compared with the reference genome. Phylogenetic analyses of SNP data revealed an unambiguous geographical separation and sub-populations that correlated with the host geographical origin, particularly for the Myanmar samples. The relatively higher heterozygosity in the genomes of the Japanese samples can possibly be explained by the independent evolution of two haplotypes of diploid genomes through asexual reproduction during the auto-infection cycle, suggesting that analysing heterozygosity is useful and necessary to infer infection history and geographical prevalence. Output:
Strongyloides stercoralis, one of the most neglected helminths causes strongyloidiasis mainly in tropical and subtropical regions worldwide. The parasite’s complex lifecycle includes sexual and asexual reproduction outside and inside the host, respectively. The parasite can also asexually complete a life cycle within the host's body, which is called autoinfection causing life-long infection. In order to investigate the population structure and transmission patterns of this parasite we sequenced individual nematodes isolated from human faeces in Japan and Myanmar, where the parasite is present at low and high frequencies, respectively. Whole genome sequencing of small parasites is generally difficult because the amount of DNA is limiting. However, we overcame this problem by combining whole genome amplification with next-generation sequencing. Sequence comparisons revealed 0.6% of the genome is variable among samples, and the variants showed clear separation by the location of their origin. We found that heterozygosity within the genomes was higher in Japan, which is likely explained by the predominance of asexual reproduction through auto-infection, suggesting that analyses of heterozygosity are required to better understand the history of a population.
PLOS656
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: We analyzed age-related changes in motor response in a visuomotor compensatory tracking task. Subjects used a manipulandum to attempt to keep a displayed cursor at the center of a screen despite random perturbations to its location. Cross-correlation analysis of the perturbation and the subject response showed no age-related increase in latency until the onset of response to the perturbation, but substantial slowing of the response itself. Results are consistent with age-related deterioration in the ratio of signal to noise in visuomotor response. The task is such that it is tractable to use Bayesian and quadratic optimality assumptions to construct a model for behavior. This model assumes that behavior resembles an optimal controller subject to noise, and parametrizes response in terms of latency, willingness to expend effort, noise intensity, and noise bandwidth. The model is consistent with the data for all young (n = 12, age 20–30) and most elderly (n = 12, age 65–92) subjects. The model reproduces the latency result from the cross-correlation method. When presented with increased noise, the computational model reproduces the experimentally observed age-related slowing and the observed lack of increased latency. The model provides a precise way to quantitatively formulate the long-standing hypothesis that age-related slowing is an adaptation to increased noise. Output:
In a hand-eye coordination task that requires continuous movement to correct for a disturbance, it turns out that signs of response to the disturbance appear no later in the elderly than in the young. The elderly motion is noisy and less efficient, however, and once movements in response to a disturbance begin, they are at a lower speed. One can model subject response by assuming that it results from combining noise and a response that is mathematically optimal given this noise, delay, and a least-squares sort of control objective. This modeling approach is appropriate for young and most elderly subjects. The model holds that increased noise should lead to no change in delay until response gets underway, but should make the response itself proceed at a slower speed. This is consistent with the data and with a causal link from the observed noise and disorder in elderly motor function to the observed age-related slowing.
PLOS657
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Dengue is a serious vector-borne disease, and incidence rates have significantly increased during the past few years, particularly in 2014 in Guangzhou. The current situation is more complicated, due to various factors such as climate warming, urbanization, population increase, and human mobility. The purpose of this study is to detect dengue transmission patterns and identify the disease dispersion dynamics in Guangzhou, China. We conducted surveys in 12 districts of Guangzhou, and collected daily data of Breteau index (BI) and reported cases between September and November 2014 from the public health authority reports. Based on the available data and the Ross-Macdonald theory, we propose a dengue transmission model that systematically integrates entomologic, demographic, and environmental information. In this model, we use (1) BI data and geographic variables to evaluate the spatial heterogeneities of Aedes mosquitoes, (2) a radiation model to simulate the daily mobility of humans, and (3) a Markov chain Monte Carlo (MCMC) method to estimate the model parameters. By implementing our proposed model, we can (1) estimate the incidence rates of dengue, and trace the infection time and locations, (2) assess risk factors and evaluate the infection threat in a city, and (3) evaluate the primary diffusion process in different districts. From the results, we can see that dengue infections exhibited a spatial and temporal variation during 2014 in Guangzhou. We find that urbanization, vector activities, and human behavior play significant roles in shaping the dengue outbreak and the patterns of its spread. This study offers useful information on dengue dynamics, which can help policy makers improve control and prevention measures. Output:
Dengue transmission is a spatio-temporal process with interactions between hosts, vectors, and viruses. Its transmission also involves multiple complex or even hidden factors, such as climate, social environment, vector ecology, and host mobility. These complexities make the underlying process of dengue transmission difficult to clarify. We address how the patterns of dengue transmission can be inferred by investigating the 2014 dengue outbreak in the city of Guangzhou, China, taking the available surveillance data and applying mathematical models and computational methods. We can then estimate the distribution of dengue infections and identify the transmission mechanisms. In our study, we systematically investigate the critical factors, enabling us to estimate the real patterns and dynamics of dengue transmission beyond the surveillance data.
PLOS658
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The pathogenesis of dengue shock syndrome (DSS, grade 3 and 4) is not yet completely understood. Several factors are reportedly associated with DSS, a more severe form of dengue infection that reportedly causes 50 times higher mortality compared to that of dengue patients without DSS. However, the results from these reports remain inconclusive. To better understand the epidemiology, clinical manifestation, and pathogenesis of DSS for development of new therapy, we systematically reviewed and performed a meta-analysis of relevant studies that reported factors in both DSS and dengue hemorrhagic fever (DHF, grade 1 and 2) patients. PubMed, EMBASE, Scopus, Google Scholar, Dengue Bulletin, Cochrane Library, Virtual Health Library, and a manual search of reference lists of articles published before September 2010 were used to retrieve relevant studies. A meta-analysis using fixed- or random-effects models was used to calculate pooled odds ratios (OR) or event rate with corresponding 95% confidence intervals. Assessment of heterogeneity and publication bias, meta-regression analysis, subgroup analysis, sensitivity analysis, and analysis of factor-specific relationships were further performed. There were 198 studies constituting 203 data sets that met our eligibility criteria. Our meta-regression analysis showed a sustained reduction of DSS/dengue hemorrhagic fever (DHF) ratio over a period of 40 years in Southeast Asia, especially in Thailand. The meta-analysis revealed that age, female sex, neurological signs, nausea/vomiting, abdominal pain, gastrointestinal bleeding, hemoconcentration, ascites, pleural effusion, hypoalbuminemia, hypoproteinemia, hepatomegaly, levels of alanine transaminase and aspartate transaminase, thrombocytopenia, prothrombin time, activated partial thromboplastin time, fibrinogen level, primary/secondary infection, and dengue virus serotype-2 were significantly associated with DSS when pooling all original relevant studies. The results improve our knowledge of the pathogenesis of DSS by identifying the association between the epidemiology, clinical signs, and biomarkers involved in DSS. Output:
Dengue is one of the most common viral diseases transmitted by infected mosquitoes. It may range from asymptomatic or self-limiting dengue fever (DF) to severe dengue characterized by plasma leakage (dengue hemorrhagic fever, DHF) and dengue shock syndrome (DSS). Death from dengue infection occurs mostly in DSS, and the mortality of DSS is reportedly 50 times higher compared to that of dengue patients without DSS. Several factors associated with DSS have been reported in individual studies; however, the associations for some factors are not observed consistently across studies. Therefore, we conducted a systematic review of the literature to clarify this issue. The study showed persons with younger age, female sex, neurological signs, nausea/vomiting, abdominal pain, gastrointestinal bleeding, increased hemoconcentration, ascites, pleural effusion, hypoalbuminemia, hypoproteinemia, hepatomegaly, increased level of ALT or AST, thrombocytopenia, coagulation dysregulation, secondary infection, and infection of dengue virus serotype 2 are more likely to have DSS. This result improves our knowledge of the clinical manifestation and pathogenesis of DSS.
PLOS659
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: In a wide range of studies, the emergence of orientation selectivity in primary visual cortex has been attributed to a complex interaction between feed-forward thalamic input and inhibitory mechanisms at the level of cortex. Although it is well known that layer 4 cortical neurons are highly sensitive to the timing of thalamic inputs, the role of the stimulus-driven timing of thalamic inputs in cortical orientation selectivity is not well understood. Here we show that the synchronization of thalamic firing contributes directly to the orientation tuned responses of primary visual cortex in a way that optimizes the stimulus information per cortical spike. From the recorded responses of geniculate X-cells in the anesthetized cat, we synthesized thalamic sub-populations that would likely serve as the synaptic input to a common layer 4 cortical neuron based on anatomical constraints. We used this synchronized input as the driving input to an integrate-and-fire model of cortical responses and demonstrated that the tuning properties match closely to those measured in primary visual cortex. By modulating the overall level of synchronization at the preferred orientation, we show that efficiency of information transmission in the cortex is maximized for levels of synchronization which match those reported in thalamic recordings in response to naturalistic stimuli, a property which is relatively invariant to the orientation tuning width. These findings indicate evidence for a more prominent role of the feed-forward thalamic input in cortical feature selectivity based on thalamic synchronization. Output:
While the visual system is selective for a wide range of different inputs, orientation selectivity has been considered the preeminent property of the mammalian visual cortex. Existing models of this selectivity rely on varying relative importance of feedforward thalamic input and intracortical influence. Recently, we have shown that pairwise timing relationships between single thalamic neurons can be predictive of a high degree of orientation selectivity. Here we have constructed a computational model that predicts cortical orientation tuning from thalamic populations. We show that this arrangement, relying on precise timing differences between thalamic responses, accurately predicts tuning properties as well as demonstrates that certain timing relationships are optimal for transmitting information about the stimulus to cortex.
PLOS660
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Leukotriene B4 (LTB4) is secreted by chemotactic neutrophils, forming a secondary gradient that amplifies the reach of primary chemoattractants. This strategy increases the recruitment range for neutrophils and is important during inflammation. Here, we show that LTB4 and its synthesizing enzymes localize to intracellular multivesicular bodies that, upon stimulation, release their content as exosomes. Purified exosomes can activate resting neutrophils and elicit chemotactic activity in a LTB4 receptor-dependent manner. Inhibition of exosome release leads to loss of directional motility with concomitant loss of LTB4 release. Our findings establish that the exosomal pool of LTB4 acts in an autocrine fashion to sensitize neutrophils towards the primary chemoattractant, and in a paracrine fashion to mediate the recruitment of neighboring neutrophils in trans. We envision that this mechanism is used by other signals to foster communication between cells in harsh extracellular environments. Output:
Neutrophils represent the first line of attack against infections and inflammatory insults. The ability of neutrophils to reach these sites, a key feature in the resolution of infections, is mediated by their capacity to sense and migrate directionally to the core of the inflammation site. Chemicals released at the site of inflammation are known as primary attractants. The binding of these attractants to receptors on the surface of neutrophils leads to the secretion of secondary attractants that amplify the reach of primary attractants. We studied the mechanism by which secondary attractants are released from neutrophils. We found that the secretion of a key secondary attractant is mediated in the form of small vesicles called exosomes. These exosomes originate inside the cells, encapsulated in larger vesicles called multivesicular bodies. We purified exosomes from activated neutrophils and show that they contain the machinery to synthesize this secondary attractant and act specifically to elicit neutrophil motility. The inhibition of exosome release leads to a loss of secretion of the secondary attractant as well as a loss in directional motility. Together, our findings provide insight into the mechanisms cells use to protect labile attractants from harsh extracellular environments and communicate directional cues during inflammatory responses.
PLOS661
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Correct segregation of meiotic chromosomes depends on DNA crossovers (COs) between homologs that culminate into visible physical linkages called chiasmata. COs emerge from a larger population of joint molecules (JM), the remainder of which are repaired as noncrossovers (NCOs) to restore genomic integrity. We present evidence that the RNF212-like C. elegans protein ZHP-4 cooperates with its paralog ZHP-3 to enforce crossover formation at distinct steps during meiotic prophase: in the formation of early JMs and in transition of late CO intermediates into chiasmata. ZHP-3/4 localize to the synaptonemal complex (SC) co-dependently followed by their restriction to sites of designated COs. RING domain mutants revealed a critical function for ZHP-4 in localization of both proteins to the SC and for CO formation. While recombination initiates in zhp-4 mutants, they fail to appropriately acquire pro-crossover factors at abundant early JMs, indicating a function for ZHP-4 in an early step of the CO/NCO decision. At late pachytene stages, hypomorphic mutants exhibit significant levels of crossing over that are accompanied by defects in localization of pro-crossover RMH-1, MSH-5 and COSA-1 to designated crossover sites, and by the appearance of bivalents defective in chromosome remodelling required for segregation. These results reveal a ZHP-4 function at designated CO sites where it is required to stabilize pro-crossover factors at the late crossover intermediate, which in turn are required for the transition to a chiasma that is required for bivalent remodelling. Our study reveals an essential requirement for ZHP-4 in negotiating both the formation of COs and their ability to transition to structures capable of directing accurate chromosome segregation. We propose that ZHP-4 acts in concert with ZHP-3 to propel interhomolog JMs along the crossover pathway by stabilizing pro-CO factors that associate with early and late intermediates, thereby protecting designated crossovers as they transition into the chiasmata required for disjunction. Output:
The creation of a viable individual from the fusion of egg and sperm requires that they each contain the correct number of chromosomes. This is ensured through the meiotic divisions, which initially fasten identical chromosomes through DNA linkages that hold them together until the cell is ready to separate them. To make these linkages, called crossovers, the cell breaks the DNA in many places, and must repair them to create a crossover, or a noncrossover. We investigate here the role of ZHP-4, and its partner ZHP-3 which form a complex that associates along paired chromosomes and finally with crossover sites. ZHP-3/4 are conserved proteins found in many organisms that function in recruiting proteins required to decide which DNA event will become a crossover and how this DNA event is coordinated with changes in chromosome structure. Using mutations that reduce the function of ZHP-4, we show that the complex cannot localize normally to meiotic chromosome and that crossing over fails. Our results suggest that ZHP-3/4 work at early and late steps in the process to stabilize other factors required for crossover formation.
PLOS662
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Francisella tularensis (Ft) causes a frequently fatal, acute necrotic pneumonia in humans and animals. Following lethal Ft infection in mice, infiltration of the lungs by predominantly immature myeloid cells and subsequent myeloid cell death drive pathogenesis and host mortality. However, following sub-lethal Ft challenge, more mature myeloid cells are elicited and are protective. In addition, inflammasome-dependent IL-1β and IL-18 are important for protection. As Nlrp3 appears dispensable for resistance to infection with Francisella novicida, we considered its role during infection with the virulent Type A strain SchuS4 and the attenuated Type B live vaccine strain LVS. Here we show that both in vitro macrophage and in vivo IL-1β and IL-18 responses to Ft LVS and SchuS4 involve both the Aim2 and Nlrp3 inflammasomes. However, following lethal infection with Francisella, IL-1r-, Caspase-1/11-, Asc- and Aim2-deficient mice exhibited increased susceptibility as expected, while Nlrp3-deficient mice were more resistant. Despite reduced levels of IL-1β and IL-18, in the absence of Nlrp3, Ft infected mice have dramatically reduced lung pathology, diminished recruitment and death of immature myeloid cells, and reduced bacterial burden in comparison to wildtype and inflammasome-deficient mice. Further, increased numbers of mature neutrophil appear in the lung early during lethal Ft infection in Nlrp3-deficient mice. Finally, Ft infection induces myeloid and lung stromal cell death that in part requires Nlrp3, is necrotic/necroptotic in nature, and drives host mortality. Thus, Nlrp3 mediates an inflammasome-independent process that restricts the appearance of protective mature neutrophils and promotes lethal necrotic lung pathology. Output:
The Nlrp3 inflammasome is critical for various innate and adaptive immune responses through elaboration of IL-1β and IL-18. In contrast to the anticipated minimal, or perhaps absent, role of Nlrp3 in the pathogenesis of pulmonary tularemia, we find that Nlrp3 is a host susceptibility factor. Likely through promoting necrotic/necroptotic cell death, Nlrp3 contributes to the immature myeloid response and necrotic pathology that characterize lethal infection with Francisella tularensis.
PLOS663
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Immunity-related GTPases (IRG) play an important role in defense against intracellular pathogens. One member of this gene family in humans, IRGM, has been recently implicated as a risk factor for Crohn's disease. We analyzed the detailed structure of this gene family among primates and showed that most of the IRG gene cluster was deleted early in primate evolution, after the divergence of the anthropoids from prosimians ( about 50 million years ago). Comparative sequence analysis of New World and Old World monkey species shows that the single-copy IRGM gene became pseudogenized as a result of an Alu retrotransposition event in the anthropoid common ancestor that disrupted the open reading frame (ORF). We find that the ORF was reestablished as a part of a polymorphic stop codon in the common ancestor of humans and great apes. Expression analysis suggests that this change occurred in conjunction with the insertion of an endogenous retrovirus, which altered the transcription initiation, splicing, and expression profile of IRGM. These data argue that the gene became pseudogenized and was then resurrected through a series of complex structural events and suggest remarkable functional plasticity where alleles experience diverse evolutionary pressures over time. Such dynamism in structure and evolution may be critical for a gene family locked in an arms race with an ever-changing repertoire of intracellular parasites. Output:
The IRG gene family plays an important role in defense against intracellular bacteria, and genome-wide association studies have implicated structural variants of the single-copy human IRGM locus as a risk factor for Crohn's disease. We reconstruct the evolutionary history of this region among primates and show that the ancestral tandem gene family contracted to a single pseudogene within the ancestral lineage of apes and monkeys. Phylogenetic analyses support a model where the gene has been “dead” for at least 25 million years of human primate evolution but whose ORF became restored in all human and great ape lineages. We suggest that the rebirth or restoration of the gene coincided with the insertion of an endogenous retrovirus, which now serves as the functional promoter driving human gene expression. We suggest that either the gene is not functional in humans or this represents one of the first documented examples of gene death and rebirth.
PLOS664
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The long-term treatment outcome of visceral leishmaniasis (VL) patients with HIV co-infection is complicated by a high rate of relapse, especially when the CD4 count is low. Although use of secondary prophylaxis is recommended, it is not routinely practiced and data on its effectiveness and safety are limited. A prospective cohort study was conducted in Northwest Ethiopia from August 2014 to August 2017 (NCT02011958). HIV-VL patients were followed for up to 12 months. Patients with CD4 cell counts below 200/μL at the end of VL treatment received pentamidine prophylaxis starting one month after parasitological cure, while those with CD4 count ≥200 cells/μL were followed without secondary prophylaxis. Compliance, safety and relapse-free survival, using Kaplan-Meier analysis methods to account for variable time at risk, were summarised. Risk factors for relapse or death were analysed. Fifty-four HIV patients were followed. The probability of relapse-free survival at one year was 50% (95% confidence interval [CI]: 35–63%): 53% (30–71%) in 22 patients with CD4 ≥200 cells/μL without pentamidine prophylaxis and 46% (26–63%) in 29 with CD4 <200 cells/μL who started pentamidine. Three patients with CD4 <200 cells/μL did not start pentamidine. Amongst those with CD4 ≥200 cells/μL, VL relapse was an independent risk factor for subsequent relapse or death (adjusted rate ratio: 5.42, 95% CI: 1.1–25.8). Except for one case of renal failure which was considered possibly related to pentamidine, there were no drug-related safety concerns. The relapse-free survival rate for VL patients with HIV was low. Relapse-free survival of patients with CD4 count <200cells/μL given pentamidine secondary prophylaxis appeared to be comparable to patients with a CD4 count ≥200 cells/μL not given prophylaxis. Patients with relapsed VL are at higher risk for subsequent relapse and should be considered a priority for secondary prophylaxis, irrespective of their CD4 count. Output:
Achieving parasitological cure at the end of visceral leishmaniasis (VL) treatment in HIV co-infected patients does not assure definitive cure, as the disease will recur within a year in many patients. In this cohort study, the probability of relapse-free survival at one-year was 50% in all patients. The use of monthly pentamidine infusion for those with lower CD4 counts (<200 cells/μL) at the time of VL cure appeared to result in a comparable relapse-free survival rate to those patients with higher CD4 count (≥200 cells/μL) who did not receive secondary prophylaxis. On the other hand, patients with a history of previous VL treatment (VL relapse) remained at high risk of relapse despite achieving CD4 count ≥200 cells/μL at the end of the VL treatment. While all VL patients with HIV co-infection may benefit from secondary prophylaxis, those with CD4 <200 cells/μL and previous history of treatment should be prioritized for secondary prophylaxis. New modalities for prevention of VL relapse in HIV patients should also be explored.
PLOS665
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Cis-regulatory sequences are not always conserved across species. Divergence within cis-regulatory sequences may result from the evolution of species-specific patterns of gene expression or the flexible nature of the cis-regulatory code. The identification of functional divergence in cis-regulatory sequences is therefore important for both understanding the role of gene regulation in evolution and annotating regulatory elements. We have developed an evolutionary model to detect the loss of constraint on individual transcription factor binding sites (TFBSs). We find that a significant fraction of functionally constrained binding sites have been lost in a lineage-specific manner among three closely related yeast species. Binding site loss has previously been explained by turnover, where the concurrent gain and loss of a binding site maintains gene regulation. We estimate that nearly half of all loss events cannot be explained by binding site turnover. Recreating the mutations that led to binding site loss confirms that these sequence changes affect gene expression in some cases. We also estimate that there is a high rate of binding site gain, as more than half of experimentally identified S. cerevisiae binding sites are not conserved across species. The frequent gain and loss of TFBSs implies that cis-regulatory sequences are labile and, in the absence of turnover, may contribute to species-specific patterns of gene expression. Output:
Research in the field of molecular evolution is focused on understanding the genetic basis of functional differences between species. Protein coding sequences have traditionally been the focus of these studies, as the genetic code enables a detailed study of the strength of selection acting on amino acid sequences. However, from the earliest cross-species sequence comparisons, it was clear that protein sequences among closely related species are too similar to explain the observed phenotypic diversity. This led to the hypothesis that the evolution of gene regulation has played a key role in generating diversity between species. The availability of numerous complete genome sequences has made it possible to begin testing this hypothesis. In this work, the authors use an evolutionary model to identify functional divergence within transcription factor binding sites, the core functional elements involved in gene regulation. Applying this model to the baker's yeast, Saccharomyces cerevisiae, and its three closest relatives, the authors find that a substantial fraction of the ancestral binding sites have been lost in a species-specific manner. In some cases the loss of the binding site creates gene expression differences that may be indicative of species-specific changes in gene regulation. This work provides a useful computational framework that will allow further study of the conservation of cis-regulatory sequences and their role in molecular evolution.
PLOS666
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Aphids are amongst the most devastating sap-feeding insects of plants. Like most plant parasites, aphids require intimate associations with their host plants to gain access to nutrients. Aphid feeding induces responses such as clogging of phloem sieve elements and callose formation, which are suppressed by unknown molecules, probably proteins, in aphid saliva. Therefore, it is likely that aphids, like plant pathogens, deliver proteins (effectors) inside their hosts to modulate host cell processes, suppress plant defenses, and promote infestation. We exploited publicly available aphid salivary gland expressed sequence tags (ESTs) to apply a functional genomics approach for identification of candidate effectors from Myzus persicae (green peach aphid), based on common features of plant pathogen effectors. A total of 48 effector candidates were identified, cloned, and subjected to transient overexpression in Nicotiana benthamiana to assay for elicitation of a phenotype, suppression of the Pathogen-Associated Molecular Pattern (PAMP)–mediated oxidative burst, and effects on aphid reproductive performance. We identified one candidate effector, Mp10, which specifically induced chlorosis and local cell death in N. benthamiana and conferred avirulence to recombinant Potato virus X (PVX) expressing Mp10, PVX-Mp10, in N. tabacum, indicating that this protein may trigger plant defenses. The ubiquitin-ligase associated protein SGT1 was required for the Mp10-mediated chlorosis response in N. benthamiana. Mp10 also suppressed the oxidative burst induced by flg22, but not by chitin. Aphid fecundity assays revealed that in planta overexpression of Mp10 and Mp42 reduced aphid fecundity, whereas another effector candidate, MpC002, enhanced aphid fecundity. Thus, these results suggest that, although Mp10 suppresses flg22-triggered immunity, it triggers a defense response, resulting in an overall decrease in aphid performance in the fecundity assays. Overall, we identified aphid salivary proteins that share features with plant pathogen effectors and therefore may function as aphid effectors by perturbing host cellular processes. Output:
Aphids are insects that can induce feeding damage, achieve high population densities, and most importantly, transmit economically important plant diseases worldwide. To develop durable approaches to control aphids, it is critical to understand how aphids interact with plants at the molecular level. Aphid feeding induces plant defenses, which can be suppressed by aphid saliva. Thus, aphids can alter plant cellular processes to promote infestation of plants. Suppression of plant defenses is common in plant pathogens and involves secretion of effector proteins that modulate host cell processes. Evidence suggests that aphids, like plant pathogens, deliver effectors inside their host cells to promote infestation. However, the identity of these effectors and their functions remain elusive. Here, we report a novel approach based on a combination of bioinformatics and functional assays to identify candidate effectors from the aphid species Myzus persicae. Using this approach, we identified three candidate effectors that affect plant defense responses and/or aphid reproductive performance. Further characterization of these candidates promises to reveal new insights into the plant cellular processes targeted by aphids.
PLOS667
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Cell heterogeneity and the inherent complexity due to the interplay of multiple molecular processes within the cell pose difficult challenges for current single-cell biology. We introduce an approach that identifies a disease phenotype from multiparameter single-cell measurements, which is based on the concept of “supercell statistics”, a single-cell-based averaging procedure followed by a machine learning classification scheme. We are able to assess the optimal tradeoff between the number of single cells averaged and the number of measurements needed to capture phenotypic differences between healthy and diseased patients, as well as between different diseases that are difficult to diagnose otherwise. We apply our approach to two kinds of single-cell datasets, addressing the diagnosis of a premature aging disorder using images of cell nuclei, as well as the phenotypes of two non-infectious uveitides (the ocular manifestations of Behçet's disease and sarcoidosis) based on multicolor flow cytometry. In the former case, one nuclear shape measurement taken over a group of 30 cells is sufficient to classify samples as healthy or diseased, in agreement with usual laboratory practice. In the latter, our method is able to identify a minimal set of 5 markers that accurately predict Behçet's disease and sarcoidosis. This is the first time that a quantitative phenotypic distinction between these two diseases has been achieved. To obtain this clear phenotypic signature, about one hundred CD8+ T cells need to be measured. Although the molecular markers identified have been reported to be important players in autoimmune disorders, this is the first report pointing out that CD8+ T cells can be used to distinguish two systemic inflammatory diseases. Beyond these specific cases, the approach proposed here is applicable to datasets generated by other kinds of state-of-the-art and forthcoming single-cell technologies, such as multidimensional mass cytometry, single-cell gene expression, and single-cell full genome sequencing techniques. Output:
The behavior of organisms is based on the concerted action occurring on an astonishing range of scales from the molecular to the organismal level. Molecular properties control the function of a cell, while cell ensembles form tissues and organs, which work together as an organism. In order to understand and characterize the molecular nature of the emergent properties of a cell, it is essential that multiple components of the cell are measured simultaneously in the same cell. Similarly, multiple cells must be measured in order to understand health and disease in the organism. In this work, we develop an approach that is able to determine how many cells, how many measurements per cell, and which measurements are needed to reliably diagnose disease. We apply this method to two different problems: the diagnosis of a premature aging disorder using images of cell nuclei, and the distinction between two similar autoimmune eye diseases using stained cells from patients' blood samples. Our findings shed new light on the role of specific kinds of immune system cells in systemic inflammatory diseases and may lead to improved diagnosis and treatment.
PLOS668
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Quorum sensing (QS) is a bacterial cell-to-cell communication process that relies on the production, release, and response to extracellular signaling molecules called autoinducers. QS controls virulence and biofilm formation in the human pathogen Pseudomonas aeruginosa. P. aeruginosa possesses two canonical LuxI/R-type QS systems, LasI/R and RhlI/R, which produce and detect 3OC12-homoserine lactone and C4-homoserine lactone, respectively. Here, we use biofilm analyses, reporter assays, RNA-seq studies, and animal infection assays to show that RhlR directs both RhlI-dependent and RhlI-independent regulons. In the absence of RhlI, RhlR controls the expression of genes required for biofilm formation as well as genes encoding virulence factors. Consistent with these findings, ΔrhlR and ΔrhlI mutants have radically different biofilm phenotypes and the ΔrhlI mutant displays full virulence in animals whereas the ΔrhlR mutant is attenuated. The ΔrhlI mutant cell-free culture fluids contain an activity that stimulates RhlR-dependent gene expression. We propose a model in which RhlR responds to an alternative ligand, in addition to its canonical C4-homoserine lactone autoinducer. This alternate ligand promotes a RhlR-dependent transcriptional program in the absence of RhlI. Output:
Quorum sensing (QS) is a cell-to-cell communication process that bacteria use to coordinate group behaviors. QS is essential for virulence and biofilm formation in many bacteria including the human pathogen Pseudomonas aeruginosa. P. aeruginosa has high clinical relevance because it has acquired resistance to commonly used antibiotics, and is a priority pathogen on the CDC ESKAPE pathogen list. The urgent need for new antimicrobials to combat P. aeruginosa infections makes targeting QS for interference an attractive approach. Here, we investigate P. aeruginosa under biofilm conditions that mimic authentic P. aeruginosa lifestyles in environmental and medical contexts rather than in traditional laboratory conditions. This strategy enabled us to find that P. aeruginosa uses a novel QS signal molecule that controls biofilm formation and virulence. The new signal molecule acts together with the long-known QS receptor RhlR. Using physiologic, genetic, and molecular studies, combined with animal models of infection, we characterize the roles of QS components in biofilm formation and virulence. We find that RhlR and the putative new signal molecule are crucial for both traits. Our work suggests that targeting RhlR with small molecule inhibitors could provide an exciting path forward for the development of novel antimicrobials.
PLOS669
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Atrial fibrillation (AF) is a morbid and heritable arrhythmia. Over 35 genes have been reported to underlie AF, most of which were described in small candidate gene association studies. Replication remains lacking for most, and therefore the contribution of coding variation to AF susceptibility remains poorly understood. We examined whole exome sequencing data in a large community-based sample of 1,734 individuals with and 9,423 without AF from the Framingham Heart Study, Cardiovascular Health Study, Atherosclerosis Risk in Communities Study, and NHLBI-GO Exome Sequencing Project and meta-analyzed the results. We also examined whether genetic variation was enriched in suspected AF genes (N = 37) in AF cases versus controls. The mean age ranged from 59 to 73 years; 8,656 (78%) were of European ancestry. None of the 99,404 common variants evaluated was significantly associated after adjusting for multiple testing. Among the most significantly associated variants was a common (allele frequency = 86%) missense variant in SYNPO2L (rs3812629, p.Pro707Leu, [odds ratio 1.27, 95% confidence interval 1.13–1.43, P = 6.6x10-5]) which lies at a known AF susceptibility locus and is in linkage disequilibrium with a top marker from prior analyses at the locus. We did not observe significant associations between rare variants and AF in gene-based tests. Individuals with AF did not display any statistically significant enrichment for common or rare coding variation in previously implicated AF genes. In conclusion, we did not observe associations between coding genetic variants and AF, suggesting that large-effect coding variation is not the predominant mechanism underlying AF. A coding variant in SYNPO2L requires further evaluation to determine whether it is causally related to AF. Efforts to identify biologically meaningful coding variation underlying AF may require large sample sizes or populations enriched for large genetic effects. Output:
Atrial fibrillation is a common and morbid cardiac arrhythmia. Atrial fibrillation is heritable, and numerous genome-wide susceptibility loci have been identified, predominantly in non-coding regions. Over 35 genes also have been implicated in atrial fibrillation pathogenesis mostly through prior smaller scale candidate gene association studies, which generally did not have robust replication to support the associations. Therefore, the role of coding variation in the biology of atrial fibrillation is unclear. We examined whole exome sequencing data from 1,734 individuals with and 9,423 without atrial fibrillation, and did not observe any significant associations between coding variation and the arrhythmia. Furthermore, we did not observe any enrichment for association in previously implicated atrial fibrillation genes. In aggregate, our findings suggest that large effect coding variation is unlikely to be a predominant mechanism of common forms of atrial fibrillation encountered in the community.
PLOS670
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Respiratory syncytial virus (RSV) is an important cause of acute respiratory disease in infants, immunocompromised subjects and the elderly. However, it is unclear why most primary RSV infections are associated with relatively mild symptoms, whereas some result in severe lower respiratory tract infections and bronchiolitis. Since RSV hospitalization has been associated with respiratory bacterial co-infections, we have tested if bacterial Toll-like receptor (TLR) agonists influence RSV-A2-GFP infection in human primary cells or cell lines. The synthetic bacterial lipopeptide Pam3-Cys-Ser-Lys4 (Pam3CSK4), the prototype ligand for the heterodimeric TLR1/TLR2 complex, enhanced RSV infection in primary epithelial, myeloid and lymphoid cells. Surprisingly, enhancement was optimal when lipopeptides and virus were added simultaneously, whereas addition of Pam3CSK4 immediately after infection had no effect. We have identified two structurally related lipopeptides without TLR-signaling capacity that also modulate RSV infection, whereas Pam3CSK4-reminiscent TLR1/2 agonists did not, and conclude that modulation of infection is independent of TLR activation. A similar TLR-independent enhancement of infection could also be demonstrated for wild-type RSV strains, and for HIV-1, measles virus and human metapneumovirus. We show that the effect of Pam3CSK4 is primarily mediated by enhanced binding of RSV to its target cells. The N-palmitoylated cysteine and the cationic lysines were identified as pivotal for enhanced virus binding. Surprisingly, we observed inhibition of RSV infection in immortalized epithelial cell lines, which was shown to be related to interactions between Pam3CSK4 and negatively charged glycosaminoglycans on these cells, which are known targets for binding of laboratory-adapted but not wild-type RSV. These data suggest a potential role for bacterial lipopeptides in enhanced binding of RSV and other viruses to their target cells, thus affecting viral entry or spread independent of TLR signaling. Moreover, our results also suggest a potential application for these synthetic lipopeptides as adjuvants for live-attenuated viral vaccines. Output:
Respiratory syncytial virus (RSV) infections are an important cause of hospitalization of infants during the winter season. However, RSV is often not the only detectable pathogen, but co-infections with respiratory bacteria are common. It has been hypothesized that this results from epithelial damage caused by the virus, facilitating colonization by pathogenic bacteria such as Streptococcus pneumoniae. However, an inverse order of events is not impossible: bacterial infections may activate respiratory epithelial cells through TLR signaling, resulting in increased susceptibility to virus infections. We tested this hypothesis by screening bacterial TLR agonists for their capacity to modulate RSV infection in different cell types, and identified the lipopeptide and prototype TLR1/2 agonist Pam3CSK4 as an enhancer of RSV infections. However, to our surprise this proved independent of TLR activation, but was mediated by enhancement of binding between virus and target cell. Two structurally related lipopeptides unable to stimulate TLR responses were identified that enhanced infections with RSV, but also with other enveloped viruses including HIV-1, human metapneumovirus, and measles virus. We speculate that bacterial infections may influence the pathogenesis of virus infections by facilitating binding to target cells.
PLOS671
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: One goal of human genetics is to understand how the information for precise and dynamic gene expression programs is encoded in the genome. The interactions of transcription factors (TFs) with DNA regulatory elements clearly play an important role in determining gene expression outputs, yet the regulatory logic underlying functional transcription factor binding is poorly understood. Many studies have focused on characterizing the genomic locations of TF binding, yet it is unclear to what extent TF binding at any specific locus has functional consequences with respect to gene expression output. To evaluate the context of functional TF binding we knocked down 59 TFs and chromatin modifiers in one HapMap lymphoblastoid cell line. We then identified genes whose expression was affected by the knockdowns. We intersected the gene expression data with transcription factor binding data (based on ChIP-seq and DNase-seq) within 10 kb of the transcription start sites of expressed genes. This combination of data allowed us to infer functional TF binding. Using this approach, we found that only a small subset of genes bound by a factor were differentially expressed following the knockdown of that factor, suggesting that most interactions between TF and chromatin do not result in measurable changes in gene expression levels of putative target genes. We found that functional TF binding is enriched in regulatory elements that harbor a large number of TF binding sites, at sites with predicted higher binding affinity, and at sites that are enriched in genomic regions annotated as “active enhancers.” Output:
An important question in genomics is to understand how a class of proteins called “transcription factors” controls the expression level of other genes in the genome in a cell-type-specific manner – a process that is essential to human development. One major approach to this problem is to study where these transcription factors bind in the genome, but this does not tell us about the effect of that binding on gene expression levels and it is generally accepted that much of the binding does not strongly influence gene expression. To address this issue, we artificially reduced the concentration of 59 different transcription factors in the cell and then examined which genes were impacted by the reduced transcription factor level. Our results implicate some attributes that might influence what binding is functional, but they also suggest that a simple model of functional vs. non-functional binding may not suffice.
PLOS672
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: HIV-1 replicates via a low-fidelity polymerase with a high mutation rate; strong conservation of individual nucleotides is highly indicative of the presence of critical structural or functional properties. Identifying such conservation can reveal novel insights into viral behaviour. We analysed 3651 publicly available sequences for the presence of nucleic acid conservation beyond that required by amino acid constraints, using a novel scale-free method that identifies regions of outlying score together with a codon scoring algorithm. Sequences with outlying score were further analysed using an algorithm for producing local RNA folds whilst accounting for alignment properties. 11 different conserved regions were identified, some corresponding to well-known cis-acting functions of the HIV-1 genome but also others whose conservation has not previously been noted. We identify rational causes for many of these, including cis functions, possible additional reading frame usage, a plausible mechanism by which the central polypurine tract primes second-strand DNA synthesis and a conformational stabilising function of a region at the 5′ end of env. Output:
HIV-1 is a very rapidly mutating organism, however some parts of its genetic material change more than others. We looked for coding regions of HIV-1 that change relatively little, by turning the problem of finding such regions into a problem in signal processing, and solving this using a novel analytical approach that we recently described. We investigated why the regions we identified change less, including using the genetic code in the regions we found to prime an algorithm to predict their structures. In some cases there are already known functions for the features we found, in others they provide new insights into the properties of known regions, and in some cases we identify new regions that vary less for as yet unknown functional reasons.
PLOS673
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The mammalian circadian clockwork is composed of a core PER/CRY feedback loop and additional interlocking loops. In particular, the ROR/REV/Bmal1 loop, consisting of ROR activators and REV-ERB repressors that regulate Bmal1 expression, is thought to “stabilize” core clock function. However, due to functional redundancy and pleiotropic effects of gene deletions, the role of the ROR/REV/Bmal1 loop has not been accurately defined. In this study, we examined cell-autonomous circadian oscillations using combined gene knockout and RNA interference and demonstrated that REV-ERBα and β are functionally redundant and are required for rhythmic Bmal1 expression. In contrast, the RORs contribute to Bmal1 amplitude but are dispensable for Bmal1 rhythm. We provide direct in vivo genetic evidence that the REV-ERBs also participate in combinatorial regulation of Cry1 and Rorc expression, leading to their phase-delay relative to Rev-erbα. Thus, the REV-ERBs play a more prominent role than the RORs in the basic clock mechanism. The cellular genetic approach permitted testing of the robustness of the intracellular core clock function. We showed that cells deficient in both REV-ERBα and β function, or those expressing constitutive BMAL1, were still able to generate and maintain normal Per2 rhythmicity. Our findings thus underscore the resilience of the intracellular clock mechanism and provide important insights into the transcriptional topologies underlying the circadian clock. Since REV-ERB function and Bmal1 mRNA/protein cycling are not necessary for basic clock function, we propose that the major role of the ROR/REV/Bmal1 loop and its constituents is to control rhythmic transcription of clock output genes. Output:
Circadian clocks in plants, fungi, insects, and mammals all share a common transcriptional network architecture. At the cellular level, the mammalian clockwork consists of a core Per/Cry negative feedback loop and additional interlocking loops. We wished to address experimentally the contribution of the interlocking Bmal1 loop to clock function in mammals. Because behavioral rhythms do not always reflect cell-autonomous phenotypes and are subject to pleiotropic effects, we employed cell-based genetic approaches and monitored rhythms longitudinally using bioluminescent reporters of clock gene expression. We showed that REV-ERB repressors play a more prominent role than ROR activators in regulating the Bmal1 rhythm. However, significant rhythmicity remains even with constitutive expression of Bmal1, pointing to the resilience of the core loop to perturbations of the Bmal1 loop. We conclude that while the interlocking loop contributes to fine-tuning of the core loop, its primary function is to provide discrete waveforms of clock gene expression for control of local physiology. This study has important general implications not only for circadian biology across species, but also for the emerging field of systems biology that seeks to understand complex interactions in genetic networks.
PLOS674
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The 2013–2016 Ebola virus outbreak in West Africa was the largest and deadliest outbreak to date. Here we conducted a serological study to examine the antibody levels in survivors and the seroconversion in close contacts who took care of Ebola-infected individuals, but did not develop symptoms of Ebola virus disease. In March 2017, we collected blood samples from 481 individuals in Makeni, Sierra Leone: 214 survivors and 267 close contacts. Using commercial, quantitative ELISAs, we tested the plasma for IgG-specific antibodies against three major viral antigens: GP, the only viral glycoprotein expressed on the virus surface; NP, the most abundant viral protein; and VP40, a major structural protein of Zaire ebolavirus. We also determined neutralizing antibody titers. In the cohort of Ebola survivors, 97.7% of samples (209/214) had measurable antibody levels against GP, NP, and/or VP40. Of these positive samples, all but one had measurable neutralizing antibody titers against Ebola virus. For the close contacts, up to 12.7% (34/267) may have experienced a subclinical virus infection as indicated by detectable antibodies against GP. Further investigation is warranted to determine whether these close contacts truly experienced subclinical infections and whether these asymptomatic infections played a role in the dynamics of transmission. Output:
As the causative agent of an often lethal hemorrhagic fever disease in humans and nonhuman primates, Zaire ebolavirus typically causes high fever, severe diarrhea, and vomiting which results in case fatality rates as high as 90%. The 2013–2016 outbreak in West Africa was the largest and most devastating Ebola outbreak to date resulting in over 28,600 identified human cases and 11,300 deaths. Though our knowledge of virus transmission is incomplete, we do know that transmission occurs through direct contact with virus-contaminated body fluids (blood, secretions, or other body fluids), materials such as bedding contaminated with these fluids, and through the handling and preparation of contaminated food. Asymptomatic Ebola virus infections that result in seroconversion in the absence of disease symptoms have been observed both in humans and experimentally in animal models. In the present serology study, we determined a majority of Ebola survivors in our cohort had measurable antibody levels against at least one viral antigen, as expected. In our cohort of close contacts, relatives and health care workers who took care of Ebola-infected individuals during the outbreak, we observed a rate of seroprevalence of 12.7% as indicated by detectable GP antibody levels. Given that Ebola virus is typically associated with a highly lethal disease in humans, it is of great interest to determine the host-virus interactions and transmission dynamics associated with asymptomatic cases.
PLOS675
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Oscillations are omnipresent in neural population signals, like multi-unit recordings, EEG/MEG, and the local field potential. They have been linked to the population firing rate of neurons, with individual neurons firing in a close-to-irregular fashion at low rates. Using a combination of mean-field and linear response theory we predict the spectra generated in a layered microcircuit model of V1, composed of leaky integrate-and-fire neurons and based on connectivity compiled from anatomical and electrophysiological studies. The model exhibits low- and high-γ oscillations visible in all populations. Since locally generated frequencies are imposed onto other populations, the origin of the oscillations cannot be deduced from the spectra. We develop an universally applicable systematic approach that identifies the anatomical circuits underlying the generation of oscillations in a given network. Based on a theoretical reduction of the dynamics, we derive a sensitivity measure resulting in a frequency-dependent connectivity map that reveals connections crucial for the peak amplitude and frequency of the observed oscillations and identifies the minimal circuit generating a given frequency. The low-γ peak turns out to be generated in a sub-circuit located in layer 2/3 and 4, while the high-γ peak emerges from the inter-neurons in layer 4. Connections within and onto layer 5 are found to regulate slow rate fluctuations. We further demonstrate how small perturbations of the crucial connections have significant impact on the population spectra, while the impairment of other connections leaves the dynamics on the population level unaltered. The study uncovers connections where mechanisms controlling the spectra of the cortical microcircuit are most effective. Output:
Recordings of brain activity show multiple coexisting oscillations. The generation of these oscillations has so far only been investigated in generic one- and two-population networks, neglecting their embedment into larger systems. We introduce a method that determines the mechanisms and sub-circuits generating oscillations in structured spiking networks. Analyzing a multi-layered model of the cortical microcircuit, we trace back characteristic oscillations to experimentally observed connectivity patterns. The approach exposes the influence of individual connections on frequency and amplitude of these oscillations and therefore reveals locations, where biological mechanisms controlling oscillations and experimental manipulations have the largest impact. The new analytical tool replaces parameter scans in computationally expensive models, guides circuit design, and can be employed to validate connectivity data.
PLOS676
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The bacterium Deinococcus radiodurans is one of the most radioresistant organisms known. It is able to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Our work aims to highlight the genes involved in recombination between 438 bp direct repeats separated by intervening sequences of various lengths ranging from 1,479 bp to 10,500 bp to restore a functional tetA gene in the presence or absence of radiation-induced DNA double strand breaks. The frequency of spontaneous deletion events between the chromosomal direct repeats were the same in recA+ and in ΔrecA, ΔrecF, and ΔrecO bacteria, whereas recombination between chromosomal and plasmid DNA was shown to be strictly dependent on the RecA and RecF proteins. The presence of mutations in one of the repeated sequence reduced, in a MutS-dependent manner, the frequency of the deletion events. The distance between the repeats did not influence the frequencies of deletion events in recA+ as well in ΔrecA bacteria. The absence of the UvrD protein stimulated the recombination between the direct repeats whereas the absence of the DdrB protein, previously shown to be involved in DNA double strand break repair through a single strand annealing (SSA) pathway, strongly reduces the frequency of RecA- (and RecO-) independent deletions events. The absence of the DdrB protein also increased the lethal sectoring of cells devoid of RecA or RecO protein. γ-irradiation of recA+ cells increased about 10-fold the frequencies of the deletion events, but at a lesser extend in cells devoid of the DdrB protein. Altogether, our results suggest a major role of single strand annealing in DNA repeat deletion events in bacteria devoid of the RecA protein, and also in recA+ bacteria exposed to ionizing radiation. Output:
Deinococcus radiodurans is known for its exceptional ability to tolerate exposure to DNA damaging agents and, in particular, to very high doses of ionizing radiation. This exceptional radioresistance results from many features including efficient DNA double strand break repair. Here, we examine genome stability in D. radiodurans before and after exposure to ionizing radiation. Rearrangements between repeated sequences are a major source of genome instability and can be deleterious to the organism. Thus, we measured the frequency of recombination between direct repeats separated by intervening sequences of various lengths in the presence or absence of radiation-induced DNA double strand breaks. Strikingly, we showed that the frequency of deletions was as high in strains devoid of the RecA, RecF or RecO proteins as in wild type bacteria, suggesting a very efficient RecA-independent process able to generate genome rearrangements. Our results suggest that single strand annealing may play a major role in genome instability in the absence of homologous recombination.
PLOS677
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Grid cells in the medial entorhinal cortex encode space with firing fields that are arranged on the nodes of spatial hexagonal lattices. Potential candidates to read out the space information of this grid code and to combine it with other sensory cues are hippocampal place cells. In this paper, we investigate a population of grid cells providing feed-forward input to place cells. The capacity of the underlying synaptic transformation is determined by both spatial acuity and the number of different spatial environments that can be represented. The codes for different environments arise from phase shifts of the periodical entorhinal cortex patterns that induce a global remapping of hippocampal place fields, i.e., a new random assignment of place fields for each environment. If only a single environment is encoded, the grid code can be read out at high acuity with only few place cells. A surplus in place cells can be used to store a space code for more environments via remapping. The number of stored environments can be increased even more efficiently by stronger recurrent inhibition and by partitioning the place cell population such that learning affects only a small fraction of them in each environment. We find that the spatial decoding acuity is much more resilient to multiple remappings than the sparseness of the place code. Since the hippocampal place code is sparse, we thus conclude that the projection from grid cells to the place cells is not using its full capacity to transfer space information. Both populations may encode different aspects of space. Output:
The mammalian brain represents space in the population of hippocampal place cells as well as in the population of medial entorhinal cortex grid cells. Since both populations are active at the same time, space information has to be synchronized between the two. Both brain areas are reciprocally connected, and it is unclear how the two codes influence each other. In this paper, we analyze a theoretical model of how a place code processes inputs from the grid cell population. The model shows that the sparseness of the place code poses a much stronger constraint than maximal information transfer. We thus conclude that the potentially high spatial acuity of the grid code cannot be efficiently conveyed to a sparse place cell population and thus propose that sparseness and spatial acuity are two independent objectives of the neuronal place representation.
PLOS678
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Acute kidney injury (AKI) is an adverse event that carries significant morbidity. Given that interventions after AKI occurrence have poor performance, there is substantial interest in prediction of AKI prior to its diagnosis. However, integration of real-time prognostic modeling into the electronic health record (EHR) has been challenging, as complex models increase the risk of error and complicate deployment. Our goal in this study was to create an implementable predictive model to accurately predict AKI in hospitalized patients and could be easily integrated within an existing EHR system. We performed a retrospective analysis looking at data of 169,859 hospitalized adults admitted to one of three study hospitals in the United States (in New Haven and Bridgeport, Connecticut) from December 2012 to February 2016. Demographics, medical comorbidities, hospital procedures, medications, and laboratory data were used to develop a model to predict AKI within 24 hours of a given observation. Outcomes of AKI severity, requirement for renal replacement therapy, and mortality were also measured and predicted. Models were trained using discrete-time logistic regression in a subset of Hospital 1, internally validated in the remainder of Hospital 1, and externally validated in Hospital 2 and Hospital 3. Model performance was assessed via the area under the receiver-operator characteristic (ROC) curve (AUC). The training set cohort contained 60,701 patients, and the internal validation set contained 30,599 patients. External validation data sets contained 43,534 and 35,025 patients. Patients in the overall cohort were generally older (median age ranging from 61 to 68 across hospitals); 44%–49% were male, 16%–20% were black, and 23%–29% were admitted to surgical wards. In the training set and external validation set, 19.1% and 18.9% of patients, respectively, developed AKI. The full model, including all covariates, had good ability to predict imminent AKI for the validation set, sustained AKI, dialysis, and death with AUCs of 0.74 (95% CI 0.73–0.74), 0.77 (95% CI 0.76–0.78), 0.79 (95% CI 0.73–0.85), and 0.69 (95% CI 0.67–0.72), respectively. A simple model using only readily available, time-updated laboratory values had very similar predictive performance to the complete model. The main limitation of this study is that it is observational in nature; thus, we are unable to conclude a causal relationship between covariates and AKI and do not provide an optimal treatment strategy for those predicted to develop AKI. In this study, we observed that a simple model using readily available laboratory data could be developed to predict imminent AKI with good discrimination. This model may lend itself well to integration into the EHR without sacrificing the performance seen in more complex models. Output:
Acute kidney injury (AKI) is an adverse event associated with significant morbidity and healthcare costs. Treatments for AKI are generally poor and largely supportive; thus, there has been a focus on early identification and prevention of AKI. There has been growing interest in harnessing electronic health data for the prediction of AKI in hospitalized patients. We developed a mathematical model that predicts which patients would develop AKI for 169,859 patients observed at three hospitals in the US (specifically in New Haven and Bridgeport, Connecticut) between 2012 and 2016. The model included several elements about the patients, including demographics, medical history, and bloodwork. The model was able to provide a good prediction for patients who would develop AKI and was also able to predict with fair discrimination whether the patient would need dialysis or whether they would die in the hospital. This model could be readily implemented on an electronic health record (EHR) to alert or caution healthcare providers of their patient’s risk for developing AKI and provide guided decision support to best help prevent this adverse event. In the future, there could be a study evaluating different interventions randomized to individual patients at high risk for developing AKI as per the model. This strategy could develop novel therapies for the prevention of AKI.
PLOS679
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: To evaluate the effect of ivermectin mass drug administration on strongyloidiasis and other soil transmitted helminthiases. We conducted a retrospective analysis of data collected in Esmeraldas (Ecuador) during surveys conducted in areas where ivermectin was annually administered to the entire population for the control of onchocerciasis. Data from 5 surveys, conducted between 1990 (before the start of the distribution of ivermectin) and 2013 (six years after the interruption of the intervention) were analyzed. The surveys also comprised areas where ivermectin was not distributed because onchocerciasis was not endemic. Different laboratory techniques were used in the different surveys (direct fecal smear, formol-ether concentration, IFAT and IVD ELISA for Strongyloides stercoralis). In the areas where ivermectin was distributed the strongyloidiasis prevalence fell from 6.8% in 1990 to zero in 1996 and 1999. In 2013 prevalence in children was zero with stool examination and 1.3% with serology, in adult 0.7% and 2.7%. In areas not covered by ivermectin distribution the prevalence was 23.5% and 16.1% in 1996 and 1999, respectively. In 2013 the prevalence was 0.6% with fecal exam and 9.3% with serology in children and 2.3% and 17.9% in adults. Regarding other soil transmitted helminthiases: in areas where ivermectin was distributed the prevalence of T. trichiura was significantly reduced, while A. lumbricoides and hookworms were seemingly unaffected. Periodic mass distribution of ivermectin had a significant impact on the prevalence of strongyloidiasis, less on trichuriasis and apparently no effect on ascariasis and hookworm infections. Output:
Strongyloides stercoralis (Ss) is a soil-transmitted helminth (STH) that is not yet targeted by control programs, although it is highly prevalent in many areas of the world and may cause severe consequences, in particular to immunosuppressed patients, with a high fatality rate. Unfortunately, albendazole, the drug most commonly used for the control of the other STH (hookworm, Ascaris lumbricoides and Trichuris trichiura) has little effect on Ss. The drug of choice, ivermectin, has been extensively used in mass drug administration (MDA) for the filarial worms Onchocerca volvulus and Wuchereria bancrofti. In the province of Esmeraldas, in Ecuador, we studied Ss (and other STH) prevalence from 1990 (prior to MDA initiation) to 2013 (6 years after MDA cessation) in rural communities where MDA was regularly executed for onchocerciasis compared with neighboring communities where ivermectin was not distributed because onchocerciasis was not present. Ss prevalence remained high over the years in the areas with no MDA, while in those with MDA prevalence fell to zero, and remained very low 6 years after MDA cessation. A less important effect was observed for T. trichiura. Adding ivermectin to MDA programs for STH would importantly contribute to the control of Ss infection.
PLOS680
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Foamy viruses (FV) belong to the genus Spumavirus, which forms a distinct lineage in the Retroviridae family. Although the infection in natural hosts and zoonotic transmission to humans is asymptomatic, FVs can replicate well in human cells making it an attractive gene therapy vector candidate. Here we present cryo-electron microscopy and (cryo-)electron tomography ultrastructural data on purified prototype FV (PFV) and PFV infected cells. Mature PFV particles have a distinct morphology with a capsid of constant dimension as well as a less ordered shell of density between the capsid and the membrane likely formed by the Gag N-terminal domain and the cytoplasmic part of the Env leader peptide gp18LP. The viral membrane contains trimeric Env glycoproteins partly arranged in interlocked hexagonal assemblies. In situ 3D reconstruction by subtomogram averaging of wild type Env and of a Env gp48TM- gp80SU cleavage site mutant showed a similar spike architecture as well as stabilization of the hexagonal lattice by clear connections between lower densities of neighboring trimers. Cryo-EM was employed to obtain a 9 Å resolution map of the glycoprotein in its pre-fusion state, which revealed extensive trimer interactions by the receptor binding subunit gp80SU at the top of the spike and three central helices derived from the fusion protein subunit gp48TM. The lower part of Env, presumably composed of interlaced parts of gp48TM, gp80SU and gp18LP anchors the spike at the membrane. We propose that the gp48TM density continues into three central transmembrane helices, which interact with three outer transmembrane helices derived from gp18LP. Our ultrastructural data and 9 Å resolution glycoprotein structure provide important new insights into the molecular architecture of PFV and its distinct evolutionary relationship with other members of the Retroviridae. Output:
Foamy viruses (FVs), which belong to the retroviral genus Spumavirus, are endemic to non-human primates and can be transmitted to humans. They are considered as potential vectors for gene therapy due to their broad cell tropism and their apparent apathogenicity in natural hosts and humans. In order to gain more insight into the ultrastructure of the prototype FV (PFV) we performed (cryo-)electron tomography and microscopy of infected cells and of isolated virions. We find that PFV contains a nucleocapsid of constant dimensions at its center, an intermediate shell of protein positioned between the core capsid and the viral membrane and glycoprotein that arranges into regular hexagonal lattices on the virus membrane. Structural analysis of the glycoprotein was performed in situ to a resolution of 9Å, which shows regular helical features such as a trimeric coiled coil of the fusion protein subunit, a hallmark of class I fusion proteins, spacer arms between the glycoprotein trimers and the arrangement of six transmembrane helices, a characteristic feature of the PFV Env glycoprotein. We discuss our results in light of the evolutionary relationship of PFV with other retroviruses as well as the role of the unique glycoprotein architecture on the virus life cycle.
PLOS681
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Infectious diseases impose considerable burden on society, despite significant advances in technology and medicine over the past century. Advanced warning can be helpful in mitigating and preparing for an impending or ongoing epidemic. Historically, such a capability has lagged for many reasons, including in particular the uncertainty in the current state of the system and in the understanding of the processes that drive epidemic trajectories. Presently we have access to data, models, and computational resources that enable the development of epidemiological forecasting systems. Indeed, several recent challenges hosted by the U.S. government have fostered an open and collaborative environment for the development of these technologies. The primary focus of these challenges has been to develop statistical and computational methods for epidemiological forecasting, but here we consider a serious alternative based on collective human judgment. We created the web-based “Epicast” forecasting system which collects and aggregates epidemic predictions made in real-time by human participants, and with these forecasts we ask two questions: how accurate is human judgment, and how do these forecasts compare to their more computational, data-driven alternatives? To address the former, we assess by a variety of metrics how accurately humans are able to predict influenza and chikungunya trajectories. As for the latter, we show that real-time, combined human predictions of the 2014–2015 and 2015–2016 U.S. flu seasons are often more accurate than the same predictions made by several statistical systems, especially for short-term targets. We conclude that there is valuable predictive power in collective human judgment, and we discuss the benefits and drawbacks of this approach. Output:
Despite advanced and widely accessible health care, a large number of annual deaths in the United States are attributable to infectious diseases like influenza. Many of these cases could be easily prevented if sufficiently advanced warning was available. This is the main goal of epidemiological forecasting, a relatively new field that attempts to predict when and where disease outbreaks will occur. In response to growing interest in this endeavor, many forecasting frameworks have been developed for a variety of diseases. We ask whether an approach based on collective human judgment can be used to produce reasonable forecasts and how such forecasts compare with forecasts produced by purely data-driven systems. To answer this, we collected simple predictions in real-time from a set of expert and non-expert volunteers during the 2014–2015 and 2015–2016 U.S. flu seasons and during the 2014–2015 chikungunya invasion of Central America, and we report several measures of accuracy based on these predictions. By comparing these predictions with published forecasts of data-driven methods, we build an intuition for the difficulty of the task and learn that there is real value in collective human judgment.
PLOS682
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Susceptibility loci identified by GWAS generally account for a limited fraction of heritability. Predictive models based on identified loci also have modest success in risk assessment and therefore are of limited practical use. Many methods have been developed to overcome these limitations by incorporating prior biological knowledge. However, most of the information utilized by these methods is at the level of genes, limiting analyses to variants that are in or proximate to coding regions. We propose a new method that integrates protein protein interaction (PPI) as well as expression quantitative trait loci (eQTL) data to identify sets of functionally related loci that are collectively associated with a trait of interest. We call such sets of loci “population covering locus sets” (PoCos). The contributions of the proposed approach are three-fold: 1) We consider all possible genotype models for each locus, thereby enabling identification of combinatorial relationships between multiple loci. 2) We develop a framework for the integration of PPI and eQTL into a heterogenous network model, enabling efficient identification of functionally related variants that are associated with the disease. 3) We develop a novel method to integrate the genotypes of multiple loci in a PoCo into a representative genotype to be used in risk assessment. We test the proposed framework in the context of risk assessment for seven complex diseases, type 1 diabetes (T1D), type 2 diabetes (T2D), psoriasis (PS), bipolar disorder (BD), coronary artery disease (CAD), hypertension (HT), and multiple sclerosis (MS). Our results show that the proposed method significantly outperforms individual variant based risk assessment models as well as the state-of-the-art polygenic score. We also show that incorporation of eQTL data improves the performance of identified POCOs in risk assessment. We also assess the biological relevance of PoCos for three diseases that have similar biological mechanisms and identify novel candidate genes. The resulting software is publicly available at http://compbio.case.edu/pocos/. Output:
Several studies try to predict the individual disease risk using genetic data obtained from genome wide association studies (GWAS). Earlier studies only focus on individual genetic variants. However, studies on disease mechanisms suggest the aggregation of genomic variants may contribute to diseases. For this reason, researchers commonly use prior biological knowledge to identify genetic variants that are functionally related. However, these approaches are often limited to variants that are in the coding regions of genes. However, several risk variants are in the regulatory region. Here, we incorporate known regulatory and functional interactions to find sets of genetic variants which are informative features for risk assessment. Our result on seven complex diseases show that our method outperforms individual variant based risk assessment models, as well as other methods that integrate multiple genetic variants.
PLOS683
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Receptor Tyrosine Kinases (RTKs) and Focal Adhesion Kinase (FAK) regulate multiple signalling pathways, including mitogen-activated protein (MAP) kinase pathway. FAK interacts with several RTKs but little is known about how FAK regulates their downstream signalling. Here we investigated how FAK regulates signalling resulting from the overexpression of the RTKs RET and EGFR. FAK suppressed RTKs signalling in Drosophila melanogaster epithelia by impairing MAPK pathway. This regulation was also observed in MDA-MB-231 human breast cancer cells, suggesting it is a conserved phenomenon in humans. Mechanistically, FAK reduced receptor recycling into the plasma membrane, which resulted in lower MAPK activation. Conversely, increasing the membrane pool of the receptor increased MAPK pathway signalling. FAK is widely considered as a therapeutic target in cancer biology; however, it also has tumour suppressor properties in some contexts. Therefore, the FAK-mediated negative regulation of RTK/MAPK signalling described here may have potential implications in the designing of therapy strategies for RTK-driven tumours. Output:
Due to their deregulation in cancer and their potential to be inhibited by small chemical compounds, tyrosine kinases are among the most important targets under consideration for cancer therapeutics. One such oncogenic tyrosine kinase is FAK, which is known to regulate cellular signalling downstream of Integrins and Receptor Tyrosine Kinases (RTK) at the cell surface. In this study, however, we report that FAK can act as a suppressor of oncogenic Receptor Tyrosine Kinases. This mechanism was observed in fruit fly tissues in vivo and human cancer-derived cells in vitro, which additionally suggests it is an evolutionary conserved mechanism in humans. FAK mediated this inhibition by controlling the sub-cellular localisation of receptors, via suppression of receptor recycling to the cell surface. These results suggest that in some particular cancer contexts such as RTK-driven tumours, FAK may act as a tumour suppressor and therefore, may not be a valid drug target.
PLOS684
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Selective IgA deficiency (IgAD; serum IgA<0.07 g/l) is the most common form of human primary immune deficiency, affecting approximately 1∶600 individuals in populations of Northern European ancestry. The polygenic nature of IgAD is underscored by the recent identification of several new risk genes in a genome-wide association study. Among the characterized susceptibility loci, the association with specific HLA haplotypes represents the major genetic risk factor for IgAD. Despite the robust association, the nature and location of the causal variants in the HLA region remains unknown. To better characterize the association signal in this region, we performed a high-density SNP mapping of the HLA locus and imputed the genotypes of common HLA-B, -DRB1, and -DQB1 alleles in a combined sample of 772 IgAD patients and 1,976 matched controls from 3 independent European populations. We confirmed the complex nature of the association with the HLA locus, which is the result of multiple effects spanning the entire HLA region. The primary association signal mapped to the HLA-DQB1*02 allele in the HLA Class II region (combined P = 7.69×10−57; OR = 2.80) resulting from the combined independent effects of the HLA-B*0801-DRB1*0301-DQB1*02 and -DRB1*0701-DQB1*02 haplotypes, while additional secondary signals were associated with the DRB1*0102 (combined P = 5.86×10−17; OR = 4.28) and the DRB1*1501 (combined P = 2.24×10−35; OR = 0.13) alleles. Despite the strong population-specific frequencies of HLA alleles, we found a remarkable conservation of these effects regardless of the ethnic background, which supports the use of large multi-ethnic populations to characterize shared genetic association signals in the HLA region. We also provide evidence for the location of association signals within the specific extended haplotypes, which will guide future sequencing studies aimed at characterizing the precise functional variants contributing to disease pathogenesis. Output:
The human leukocyte antigen (HLA) locus is robustly associated with many immune-mediated conditions. However, identification of the genetic variants contributing to the disease pathophysiology has been greatly hampered by the extensive chromosomal conservation within this genomic region. To better understand the association of the HLA locus in selective IgA deficiency (IgAD), we used an extensive genotyping database from a recent genome-wide association study (GWAS) to generate a high-density SNP map of this region in a combined sample of >2,700 individuals from 3 independent European populations. In addition, we took advantage of recent methodological advances to impute the more common HLA-B, -DRB1, and -DQB1 alleles in all subjects. We confirmed the strong disease-association of the HLA locus and identified several different signals located in specific conserved HLA haplotypes contributing independent risk or protection for IgAD. Further analysis of the chromosomal sequences associated with the associated HLA alleles allowed us to refine the mapping of the susceptibility variants. These findings represent the most comprehensive high-density SNP mapping of the HLA locus in IgAD to date and provide important new information as to the location of the genetic variants contributing to this common immune deficiency.
PLOS685
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The properties of disordered proteins are thought to depend on intrinsic conformational propensities for polyproline II (PPII) structure. While intrinsic PPII propensities have been measured for the common biological amino acids in short peptides, the ability of these experimentally determined propensities to quantitatively reproduce structural behavior in intrinsically disordered proteins (IDPs) has not been established. Presented here are results from molecular simulations of disordered proteins showing that the hydrodynamic radius (Rh) can be predicted from experimental PPII propensities with good agreement, even when charge-based considerations are omitted. The simulations demonstrate that Rh and chain propensity for PPII structure are linked via a simple power-law scaling relationship, which was tested using the experimental Rh of 22 IDPs covering a wide range of peptide lengths, net charge, and sequence composition. Charge effects on Rh were found to be generally weak when compared to PPII effects on Rh. Results from this study indicate that the hydrodynamic dimensions of IDPs are evidence of considerable sequence-dependent backbone propensities for PPII structure that qualitatively, if not quantitatively, match conformational propensities measured in peptides. Output:
Molecular models of disordered protein structures are needed to elucidate the functional mechanisms of intrinsically disordered proteins, a class of proteins implicated in many disease pathologies and human health issues. Several studies have measured intrinsic conformational propensities for polyproline II helix, a key structural motif of disordered proteins, in short peptides. Whether or not these experimental polyproline II propensities, which vary by amino acid type, reproduce structural behavior in intrinsically disordered proteins has yet to be demonstrated. Presented here are simulation results showing that polyproline II propensities from short peptides accurately describe sequence-dependent variability in the hydrodynamic dimensions of intrinsically disordered proteins. Good agreement was observed from a simple molecular model even when charge-based considerations were ignored, predicting that global organization of disordered protein structure is strongly dependent on intrinsic conformational propensities and, for many intrinsically disordered proteins, modulated only weakly by coulombic effects.
PLOS686
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Leishmania parasites are transmitted in the presence of sand fly saliva. Together with the parasite, the sand fly injects biologically active salivary components that favorably change the environment at the feeding site. Exposure to bites or to salivary proteins results in immunity specific to these components. Mice immunized with Phlebotomus papatasi salivary gland homogenate (SGH) or pre-exposed to uninfected bites were protected against Leishmania major infection delivered by needle inoculation with SGH or by infected sand fly bites. Immunization with individual salivary proteins of two sand fly species protected mice from L. major infection. Here, we analyze the immune response to distinct salivary proteins from P. papatasi that produced contrasting outcomes of L. major infection. DNA immunization with distinct DTH-inducing salivary proteins from P. papatasi modulates L. major infection. PpSP15-immunized mice (PpSP15-mice) show lasting protection while PpSP44-immunized mice (PpSP44-mice) aggravate the infection, suggesting that immunization with these distinct molecules alters the course of anti-Leishmania immunity. Two weeks post-infection, 31.5% of CD4+ T cells produced IFN-γ in PpSP15-mice compared to 7.1% in PpSP44-mice. Moreover, IL-4-producing cells were 3-fold higher in PpSP44-mice. At an earlier time point of two hours after challenge with SGH and L. major, the expression profile of PpSP15-mice showed over 3-fold higher IFN-γ and IL-12-Rβ2 and 20-fold lower IL-4 expression relative to PpSP44-mice, suggesting that salivary proteins differentially prime anti-Leishmania immunity. This immune response is inducible by sand fly bites where PpSP15-mice showed a 3-fold higher IFN-γ and a 5-fold lower IL-4 expression compared with PpSP44-mice. Immunization with two salivary proteins from P. papatasi, PpSP15 and PpSP44, produced distinct immune profiles that correlated with resistance or susceptibility to Leishmania infection. The demonstration for the first time that immunity to a defined salivary protein (PpSP44) results in disease enhancement stresses the importance of the proper selection of vector-based vaccine candidates. Output:
In vector-borne diseases, the role of vectors has been overlooked in the search for vaccines. Nonetheless, there is a body of evidence showing the importance of salivary proteins of vectors in pathogen transmission. Leishmaniasis is a neglected vector-borne disease transmitted by sand flies. Pre-exposure to sand fly saliva or immunization with a salivary protein protected mice against cutaneous leishmaniasis. Using DNA immunization we investigated the immune response induced by abundant proteins within the saliva of the sand fly Phlebotomus papatasi. We found that one salivary protein protected while another exacerbated L. major infection, suggesting that the type of immune response induced by specific salivary proteins can prime and direct anti-Leishmania immunity. This stresses the importance of the proper selection of vector-based vaccine candidates. This work validates the powerful protection that can be acquired through vaccination with the appropriate salivary molecule and more importantly, shows that this protective immune response is efficiently recalled by sand fly bites, the natural route of transmission.
PLOS687
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: A biochemical oscillator can be reconstituted in vitro with three purified proteins, that displays the salient properties of circadian (daily) rhythms, including self-sustained 24-h periodicity that is temperature compensated. We analyze the biochemical basis of this oscillator by quantifying the time-dependent interactions of the three proteins (KaiA, KaiB, and KaiC) by electron microscopy and native gel electrophoresis to elucidate the timing of the formation of complexes among the Kai proteins. The data are used to derive a dynamic model for the in vitro oscillator that accurately reproduces the rhythms of KaiABC complexes and of KaiC phosphorylation, and is consistent with biophysical observations of individual Kai protein interactions. We use fluorescence resonance energy transfer (FRET) to confirm that monomer exchange among KaiC hexamers occurs. The model demonstrates that the function of this monomer exchange may be to maintain synchrony among the KaiC hexamers in the reaction, thereby sustaining a high-amplitude oscillation. Finally, we apply the first perturbation analyses of an in vitro oscillator by using temperature pulses to reset the phase of the KaiABC oscillator, thereby testing the resetting characteristics of this unique circadian oscillator. This study analyzes a circadian clockwork to an unprecedented level of molecular detail. Output:
Circadian biological clocks are present in a diverse range of organisms, from bacteria to humans. A central function of circadian clocks is controlling the adaptive response to the daily cycle of light and darkness. As such, altering the clock (e.g., by jet lag or shiftwork) affects mental and physical health in humans. It has generally been thought that the underlying molecular mechanism of circadian oscillations is an autoregulatory transcriptional/translational feedback loop. However, in cyanobacteria, only three purified clock proteins can reconstitute a circadian rhythm of protein phosphorylation in a test tube (in vitro). Using this in vitro system we found that the three proteins interact to form complexes of different compositions throughout the cycle. We derived a dynamic model for the in vitro oscillator that accurately reproduces the rhythms of complexes and of protein phosphorylation. One of the proteins undergoes phase-dependent exchange of its monomers, and the model demonstrates that this monomer exchange allows the maintenance of robust oscillations. Finally, we perturbed the in vitro oscillator with temperature pulses to demonstrate the resetting characteristics of this unique circadian oscillator. Our study analyzes a circadian clockwork to an unprecedented level of molecular detail.
PLOS688
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Mass drug administration (MDA) using praziquantel is the WHO-recommended approach for control of schistosomiasis. However, few studies have compared the impact of different schedules of MDA on the resultant infection levels. We wished to evaluate whether annual MDA was more effective than less frequent treatments for reducing community-level prevalence and intensity of Schistosoma mansoni infections. We performed a cluster randomized trial (ISRCTN 14849830) of 3 different MDA frequencies over a 5 year period in 75 villages with moderate (10%-24%) initial prevalence of S. mansoni in school children in western Kenya. Praziquantel was distributed by school teachers to students either annually, the first 2 years, or every other year over a 4 year period. Prevalence and intensity of infection were measured by stool examination in 9–12 year old students using the Kato-Katz method at baseline, each treatment year, and for the final evaluation at year 5. S. mansoni prevalence and intensity were also measured in first year students at baseline and year 5. Twenty-five schools were randomly assigned to each arm. S. mansoni prevalence and infection intensity in 9–12 year old students significantly decreased within each arm from baseline to year 5 but there were no differences between arms. There were no differences in infection levels in first year students either within or between arms. Strategies employing 2 or 4 rounds of MDA had a similar impact in schools with moderate initial prevalence, suggesting that schistosomiasis control can be sustained by school-based MDA, even if provided only every other year. Output:
The World Health Organization (WHO) guidelines recommend mass drug administration (MDA) of praziquantel for control of schistosomiasis. The target group for and the frequency of treatment are based on infections levels in school age children at the initiation of the control program. However, these guidelines have not been rigorously evaluated. Through the Schistosomiasis Consortium for Operational Research and Evaluation (SCORE), we had the opportunity to compare the impact of school-based treatment in an area of western Kenya with moderate (10%-24%) initial prevalence of Schistosoma mansoni infections. We found that providing MDA every year or every other year over a 4 year period provided similar benefits for reducing prevalence and intensity of infection in the final evaluation at year 5. Annual or biennial MDA moved villages from the “moderate risk” to the “low risk category” prescribed in the WHO guidelines. The results from this study and parallel SCORE studies in other African countries should provide the evidence base necessary for improved WHO guidelines for schistosomiasis.
PLOS689
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The obligate intracellular parasite Toxoplasma gondii exploits cells of the immune system to disseminate. Upon T. gondii-infection, γ–aminobutyric acid (GABA)/GABAA receptor signaling triggers a hypermigratory phenotype in dendritic cells (DCs) by unknown signal transduction pathways. Here, we demonstrate that calcium (Ca2+) signaling in DCs is indispensable for T. gondii-induced DC hypermotility and transmigration in vitro. We report that activation of GABAA receptors by GABA induces transient Ca2+ entry in DCs. Murine bone marrow-derived DCs preferentially expressed the L-type voltage-dependent Ca2+ channel (VDCC) subtype Cav1.3. Silencing of Cav1.3 by short hairpin RNA or selective pharmacological antagonism of VDCCs abolished the Toxoplasma-induced hypermigratory phenotype. In a mouse model of toxoplasmosis, VDCC inhibition of adoptively transferred Toxoplasma-infected DCs delayed the appearance of cell-associated parasites in the blood circulation and reduced parasite dissemination to target organs. The present data establish that T. gondii-induced hypermigration of DCs requires signaling via VDCCs and that Ca2+ acts as a second messenger to GABAergic signaling via the VDCC Cav1.3. The findings define a novel motility-related signaling axis in DCs and unveil that interneurons and DCs share common GABAergic motogenic pathways. T. gondii employs GABAergic non-canonical pathways to induce host cell migration and facilitate dissemination. Output:
Dendritic cells are considered the gatekeepers of the immune system but can, paradoxically, also function as ‘Trojan horses’ to mediate dissemination of the common intracellular parasite Toxoplasma gondii. Previous work has shown that Toxoplasma hijacks the migratory machinery of dendritic cells by inducing secretion of the neurotransmitter GABA and by activating GABAergic signaling pathways, thereby making infected dendritic cells hypermigratory in vitro and in vivo. Here, we show that the signaling molecule calcium plays a central role for this migratory activation and that signal transduction is preferentially mediated through a subtype of voltage-gated calcium channel (Cav1.3). This study functionally implicates Cav1.3 channels in a, hitherto uncharacterized, calcium signaling axis by which dendritic cells are induced to become migratory. The studies show how an obligate intracellular pathogen takes advantage of non-canonical signaling pathways in immune cells to modulate their migratory properties, and thereby facilitate the dissemination of the parasite.
PLOS690
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Ebola (EBOV) and Marburg (MARV) viruses are members of the Filoviridae family which cause outbreaks of hemorrhagic fever. The filovirus VP40 matrix protein is essential for virus assembly and budding, and its PPxY L-domain motif interacts with WW-domains of specific host proteins, such as Nedd4 and ITCH, to facilitate the late stage of virus-cell separation. To identify additional WW-domain-bearing host proteins that interact with VP40, we used an EBOV PPxY-containing peptide to screen an array of 115 mammalian WW-domain-bearing proteins. Using this unbiased approach, we identified BCL2 Associated Athanogene 3 (BAG3), a member of the BAG family of molecular chaperone proteins, as a specific VP40 PPxY interactor. Here, we demonstrate that the WW-domain of BAG3 interacts with the PPxY motif of both EBOV and MARV VP40 and, unexpectedly, inhibits budding of both eVP40 and mVP40 virus-like particles (VLPs), as well as infectious VSV-EBOV recombinants. BAG3 is a stress induced protein that regulates cellular protein homeostasis and cell survival through chaperone-mediated autophagy (CMA). Interestingly, our results show that BAG3 alters the intracellular localization of VP40 by sequestering VP40 away from the plasma membrane. As BAG3 is the first WW-domain interactor identified that negatively regulates budding of VP40 VLPs and infectious virus, we propose that the chaperone-mediated autophagy function of BAG3 represents a specific host defense strategy to counteract the function of VP40 in promoting efficient egress and spread of virus particles. Output:
The unprecedented magnitude and scope of the catastrophic 2014–2015 EBOV outbreak in West Africa, and its continued global emergence underscores the urgent need to better understand the biology and pathogenesis of this zoonotic pathogen. We have identified BAG3 as a novel and functional host VP40 interactor that negatively regulates VP40 VLP and virus egress in a PPxY/WW-domain dependent manner. As a cell survival protein and key regulator of chaperone-mediated autophagy (CMA), BAG3 sequesters EBOV and MARV VP40 away from the site of budding at the plasma membrane, and thus may represent a novel host defense strategy to combat filovirus VP40-mediated egress and spread.
PLOS691
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The locus coeruleus (LC) in the pons is the major source of noradrenaline (NA) in the brain. Two modes of LC firing have been associated with distinct cognitive states: changes in tonic rates of firing are correlated with global levels of arousal and behavioural flexibility, whilst phasic LC responses are evoked by salient stimuli. Here, we unify these two modes of firing by modelling the response of the LC as a correlate of a prediction error when inferring states for action planning under Active Inference (AI). We simulate a classic Go/No-go reward learning task and a three-arm ‘explore/exploit’ task and show that, if LC activity is considered to reflect the magnitude of high level ‘state-action’ prediction errors, then both tonic and phasic modes of firing are emergent features of belief updating. We also demonstrate that when contingencies change, AI agents can update their internal models more quickly by feeding back this state-action prediction error–reflected in LC firing and noradrenaline release–to optimise learning rate, enabling large adjustments over short timescales. We propose that such prediction errors are mediated by cortico-LC connections, whilst ascending input from LC to cortex modulates belief updating in anterior cingulate cortex (ACC). In short, we characterise the LC/ NA system within a general theory of brain function. In doing so, we show that contrasting, behaviour-dependent firing patterns are an emergent property of the LC that translates state-action prediction errors into an optimal balance between plasticity and stability. Output:
The brain uses sensory information to build internal models and make predictions about the world. When errors of prediction occur, models must be updated to ensure desired outcomes are still achieved. Neuromodulator chemicals provide a possible pathway for triggering such changes in brain state. One such neuromodulator, noradrenaline, originates predominantly from a cluster of neurons in the brainstem—the locus coeruleus (LC)—and plays a key role in behaviour, for instance, in determining the balance between exploiting or exploring the environment. Here we use Active Inference (AI), a mathematical model of perception and action, to formally describe LC function. We propose that LC activity is triggered by errors in prediction and that the subsequent release of noradrenaline alters the rate of learning about the environment. Biologically, this describes an LC-cortex feedback loop promoting behavioural flexibility in times of uncertainty. We model LC output as a simulated animal performs two tasks known to elicit archetypal responses. We find that experimentally observed ‘phasic’ and ‘tonic’ patterns of LC activity emerge naturally, and that modulation of learning rates improves task performance. This provides a simple, unified computational account of noradrenergic computational function within a general model of behaviour.
PLOS692
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Hepatitis B virus (HBV) persists with global and virus-specific T-cell dysfunction, without T-cell based correlates of outcomes. To determine if γδT-cells are altered in HBV infection relative to clinical status, we examined the frequency, phenotype and function of peripheral blood Vδ1+ and Vδ2+γδT-cells by multi-parameter cytometry in a clinically diverse North American cohort of chronic hepatitis B (CHB), acute hepatitis B (AHB) and uninfected control subjects. We show that circulating γδT-cells were comprised predominantly of CD3hiCD4- Vδ2+γδT-cells with frequencies that were 2–3 fold higher among Asian than non-Asian Americans and inversely correlated with age, but without differences between CHB, AHB and control subjects. However, compared to control subjects, CHB was associated with increased TbethiEomesdim phenotype in Vδ2+γδT-cells whereas AHB was associated with increased TbethiEomesdim phenotype in Vδ1+γδT-cells, with significant correlations between Tbet/Eomes expression in γδT-cells with their expression of NK and T-cell activation and regulatory markers. As for effector functions, IFNγ/TNF responses to phosphoantigens or PMA/Ionomycin in Vδ2+γδT-cells were weaker in AHB but preserved in CHB, without significant differences for Vδ1+γδT-cells. Furthermore, early IFNγ/TNF responses in Vδ2+ γδT-cells to brief PMA/Ionomycin stimulation correlated inversely with serum ALT but not HBV DNA. Accordingly, IFNγ/TNF responses in Vδ2+γδT-cells were weaker in patients with CHB with hepatitis flare compared to those without hepatitis flares, and this functional deficit persisted beyond clinical resolution of CHB flare. We conclude that circulating γδT-cells show distinct activation and differentiatiation in acute and chronic HBV infection as part of lymphoid stress surveillance with potential role in clinical outcomes. Output:
We examined circulating γδT-cells in a North American cohort with chronic hepatitis B (CHB) and acute hepatitis B (AHB) compared to uninfected control subjects. While frequencies and composition of circulating γδT-cells were preserved in AHB and CHB, γδT-cells showed distinct and innate phenotypes based on the expression of Tbet/Eomes in association with various NK/T-cell markers. Notably, IFNγ/TNF responses to phosphoantigens and PMA/Ionomycin were preserved in CHB, but weaker in AHB compared to uninfected control subjects, in association with NKG2A/CD94 but not PD1. Furthermore, early IFNγ/TNF responses in Vδ2+ γδT-cells to brief PMA/Ionomycin stimulation showed significant inverse correlations with serum alanine aminotransferase, a measure of hepatocellular injury, and were persistently deficient in CHB subjects with hepatitis flare compared to those without such flares. Finally, Vδ2+ γδT-cells were significantly enriched for TbethiEomesdim phenotype in associations with their expression of NK and T-cell activation and regulatory markers, suggesting a role for Tbet in γδT-cell differentiation and function. We conclude that circulating γδT-cells show distinct activation and differentiation in acute and chronic HBV infection as part of lymphoid stress surveillance with potential role in clinical outcomes.
PLOS693
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Staphylococcus aureus USA300 strains cause a highly inflammatory necrotizing pneumonia. The virulence of this strain has been attributed to its expression of multiple toxins that have diverse targets including ADAM10, NLRP3 and CD11b. We demonstrate that induction of necroptosis through RIP1/RIP3/MLKL signaling is a major consequence of S. aureus toxin production. Cytotoxicity could be prevented by inhibiting either RIP1 or MLKL signaling and S. aureus mutants lacking agr, hla or Hla pore formation, lukAB or psms were deficient in inducing cell death in human and murine immune cells. Toxin-associated pore formation was essential, as cell death was blocked by exogenous K+ or dextran. MLKL inhibition also blocked caspase-1 and IL-1β production, suggesting a link to the inflammasome. Rip3-/- mice exhibited significantly improved staphylococcal clearance and retained an alveolar macrophage population with CD200R and CD206 markers in the setting of acute infection, suggesting increased susceptibility of these leukocytes to necroptosis. The importance of this anti-inflammatory signaling was indicated by the correlation between improved outcome and significantly decreased expression of KC, IL-6, TNF, IL-1α and IL-1β in infected mice. These findings indicate that toxin-induced necroptosis is a major cause of lung pathology in S. aureus pneumonia and suggest the possibility of targeting components of this signaling pathway as a therapeutic strategy. Output:
Staphylococcus aureus (SA) cause a highly inflammatory pneumonia associated with substantial morbidity and mortality. Much of this lung destruction is attributed to toxins that target specific receptors on human and murine cells. We demonstrate that the α-hemolysin (Hla) and other agr-regulated toxins activate RIP1/RIP3/MLKL-mediated necroptosis and IL-1β expression, through a mechanism that involves MLKL pore-formation and inflammasome activation. Cell death can be inhibited by osmoprotectants and K+ repletion. Necroptosis results in alveolar macrophage depletion and loss of anti-inflammatory signaling. Rip3-/- mice maintain significantly greater numbers of alveolar macrophages with anti-inflammatory phenotypes, CD206+ and CD200R+; decreased proinflammatory cytokine production; and improved SA clearance. Necroptosis represents a common mechanism of pulmonary damage activated by multiple SA toxins.
PLOS694
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Plant developmental dynamics can be heritable, genetically correlated with fitness and yield, and undergo selection. Therefore, characterizing the mechanistic connections between the genetic architecture governing plant development and the resulting ontogenetic dynamics of plants in field settings is critically important for agricultural production and evolutionary ecology. We use hierarchical Bayesian Function-Valued Trait (FVT) models to estimate Brassica rapa growth curves throughout ontogeny, across two treatments, and in two growing seasons. We find genetic variation for plasticity of growth rates and final sizes, but not the inflection point (transition from accelerating to decelerating growth) of growth curves. There are trade-offs between growth rate and duration, indicating that selection for maximum yields at early harvest dates may come at the expense of late harvest yields and vice versa. We generate eigengene modules and determine which are co-expressed with FVT traits using a Weighted Gene Co-expression Analysis. Independently, we seed a Mutual Rank co-expression network model with FVT traits to identify specific genes and gene networks related to FVT. GO-analyses of eigengene modules indicate roles for actin/cytoskeletal genes, herbivore resistance/wounding responses, and cell division, while MR networks demonstrate a close association between metabolic regulation and plant growth. We determine that combining FVT Quantitative Trait Loci (QTL) and MR genes/WGCNA eigengene expression profiles better characterizes phenotypic variation than any single data type (i.e. QTL, gene, or eigengene alone). Our network analysis allows us to employ a targeted eQTL analysis, which we use to identify regulatory hotspots for FVT. We examine cis vs. trans eQTL that mechanistically link FVT QTL with structural trait variation. Colocalization of FVT, gene, and eigengene eQTL provide strong evidence for candidate genes influencing plant height. The study is the first to explore eQTL for FVT, and specifically do so in agroecologically relevant field settings. Output:
We estimate the developmental dynamics of plant growth using mathematical functions to fit continuous functions to discrete plant height data collected throughout growth, and we use the parameters defining these mathematical functions as data. We identify genomic regions controlling plant growth and filter a novel transcriptomic data set using network reconstruction models to identify the genes and eigengenes associated with plant height. We combine these genomic and transcriptomic data to predict variation in plant height, and we use quantitative genetics to mechanistically connect plant genetics, transcriptomics, and development. Our approach demonstrates two powerful methods for the type of data reduction (FVT modeling and gene expression network reconstruction for targeted eQTL analyses) and data integration that will be necessary for driving forward the field of genetics in the post-genomic era. To the best of our knowledge, we are the first to apply these techniques to continuous models of plant development, and the first to do so in agroecologically relevant field settings.
PLOS695
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Vanillyl alcohol oxidase (VAO) is a homo-octameric flavoenzyme belonging to the VAO/PCMH family. Each VAO subunit consists of two domains, the FAD-binding and the cap domain. VAO catalyses, among other reactions, the two-step conversion of p-creosol (2-methoxy-4-methylphenol) to vanillin (4-hydroxy-3-methoxybenzaldehyde). To elucidate how different ligands enter and exit the secluded active site, Monte Carlo based simulations have been performed. One entry/exit path via the subunit interface and two additional exit paths have been identified for phenolic ligands, all leading to the si side of FAD. We argue that the entry/exit path is the most probable route for these ligands. A fourth path leading to the re side of FAD has been found for the co-ligands dioxygen and hydrogen peroxide. Based on binding energies and on the behaviour of ligands in these four paths, we propose a sequence of events for ligand and co-ligand migration during catalysis. We have also identified two residues, His466 and Tyr503, which could act as concierges of the active site for phenolic ligands, as well as two other residues, Tyr51 and Tyr408, which could act as a gateway to the re side of FAD for dioxygen. Most of the residues in the four paths are also present in VAO’s closest relatives, eugenol oxidase and p-cresol methylhydroxylase. Key path residues show movements in our simulations that correspond well to conformations observed in crystal structures of these enzymes. Preservation of other path residues can be linked to the electron acceptor specificity and oligomerisation state of the three enzymes. This study is the first comprehensive overview of ligand and co-ligand migration in a member of the VAO/PCMH family, and provides a proof of concept for the use of an unbiased method to sample this process. Output:
Enzymes are bionanomachines, which speed up chemical reactions in organisms. To understand how they achieve that, we need to study their mechanisms. Computational enzymology can show us what happens in the enzyme’s active site during a reaction. But molecules need first to reach the active site before a reaction can start. The process of substrate entry and product exit to the active site is often neglected when studying enzymes. However, these two events are of fundamental importance to the proper functioning of any enzyme. We are interested in these dynamic processes to complete our understanding of the mode of action of enzymes. In our work, we have studied substrate and product migration in vanillyl alcohol oxidase. This enzyme can produce the flavour vanillin and enantiopure alcohols, but also catalyses other reactions. The named products are of interest to the flavour- and fine-chemical industries.
PLOS696
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The primary goal in cluster analysis is to discover natural groupings of objects. The field of cluster analysis is crowded with diverse methods that make special assumptions about data and address different scientific aims. Despite its shortcomings in accuracy, hierarchical clustering is the dominant clustering method in bioinformatics. Biologists find the trees constructed by hierarchical clustering visually appealing and in tune with their evolutionary perspective. Hierarchical clustering operates on multiple scales simultaneously. This is essential, for instance, in transcriptome data, where one may be interested in making qualitative inferences about how lower-order relationships like gene modules lead to higher-order relationships like pathways or biological processes. The recently developed method of convex clustering preserves the visual appeal of hierarchical clustering while ameliorating its propensity to make false inferences in the presence of outliers and noise. The solution paths generated by convex clustering reveal relationships between clusters that are hidden by static methods such as k-means clustering. The current paper derives and tests a novel proximal distance algorithm for minimizing the objective function of convex clustering. The algorithm separates parameters, accommodates missing data, and supports prior information on relationships. Our program CONVEXCLUSTER incorporating the algorithm is implemented on ATI and nVidia graphics processing units (GPUs) for maximal speed. Several biological examples illustrate the strengths of convex clustering and the ability of the proximal distance algorithm to handle high-dimensional problems. CONVEXCLUSTER can be freely downloaded from the UCLA Human Genetics web site at http://www.genetics.ucla.edu/software/ Output:
Pattern discovery is one of the most important goals of data-driven research. In the biological sciences hierarchical clustering has achieved a position of pre-eminence due to its ability to capture multiple levels of data granularity. Hierarchical clustering’s visual displays of phylogenetic trees and gene-expression modules are indeed seductive. Despite its merits, hierarchical clustering is greedy by nature and often produces spurious clusters, particularly in the presence of substantial noise. This paper presents a relatively new alternative to hierarchical clustering known as convex clustering. Although convex clustering is more computationally demanding, it enjoys several advantages over hierarchical clustering and other traditional methods of clustering. Convex clustering delivers a uniquely defined clustering path that partially obviates the need for choosing an optimal number of clusters. Along the path small clusters gradually coalesce to form larger clusters. Clustering can be guided by external information through appropriately defined similarity weights. Comparisons to hierarchical clustering demonstrate the superior robustness of convex clustering to noise. Our genetics examples include inference of the demographic history of 52 populations across the world, a more detailed analysis of European demography, and a re-analysis of a well-known breast cancer expression dataset. We also introduce a new algorithm for solving the convex clustering problem. This algorithm belongs to a subclass of MM (minimization-majorization) algorithms known as proximal distance algorithms. The proximal distance convex clustering algorithm is inherently parallelizable and readily maps to modern many-core devices such as graphics processing units (GPUs). Our freely available software, convexcluster, exploits OpenCL routines that ensure compatibility across a variety of hardware environments.
PLOS697
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: The neglected tropical diseases (NTDs) cause significant morbidity and mortality worldwide. Due to the growth in international travel and immigration, NTDs may be diagnosed in countries of the western world, but there has been no specific focus in the literature on imported NTDs. Retrospective study of a cohort of immigrants and travelers diagnosed with one of the 13 core NTDs at a Tropical Medicine Referral Unit in Spain during the period April 1989-December 2007. Area of origin or travel was recorded and analyzed. There were 6168 patients (2634 immigrants, 3277 travelers and 257 VFR travelers) in the cohort. NTDs occurred more frequently in immigrants, followed by VFR travelers and then by other travelers (p<0.001 for trend). The main NTDs diagnosed in immigrants were onchocerciasis (n = 240, 9.1%) acquired mainly in sub-Saharan Africa, Chagas disease (n = 95, 3.6%) in immigrants from South America, and ascariasis (n = 86, 3.3%) found mainly in immigrants from sub-Saharan Africa. Most frequent NTDs in travelers were: schistosomiasis (n = 43, 1.3%), onchocerciasis (n = 17, 0.5%) and ascariasis (n = 16, 0.5%), and all were mainly acquired in sub-Saharan Africa. The main NTDs diagnosed in VFR travelers were onchocerciasis (n = 14, 5.4%), and schistosomiasis (n = 2, 0.8%). The concept of imported NTDs is emerging as these infections acquire a more public profile. Specific issues such as the possibility of non-vectorial transmission outside endemic areas and how some eradication programmes in endemic countries may have an impact even in non-tropical western countries are addressed. Recognising NTDs even outside tropical settings would allow specific prevention and control measures to be implemented and may create unique opportunities for research in future. Output:
Neglected Tropical Diseases (NTDs) have been targeted due to their prevalence and the burden of disease they cause globally, but there has been no significant focus in the literature on the subject of NTDs as a group in immigrants and travelers, and no specific studies on the emerging phenomenon of imported NTDs. We present the experience of a Tropical Medicine Unit in a major European city, over a 19-year period, describing and comparing NTDs diagnosed amongst immigrants, travelers and travelers visiting friends and relatives (VFRs). NTDs were diagnosed outside tropical areas and occurred more frequently in immigrants, followed by VFR travelers and then by other travelers. The main NTDs diagnosed in immigrants were onchocerciasis, Chagas disease and ascariasis; most frequent NTDs in travelers were schistosomiasis, onchocerciasis and ascariasis, and onchocerciasis and schistosomiasis in VFRs. Issues focusing on modes of transmission outside endemic areas and how eradication programs for some NTDs in endemic countries may have an impact in non-tropical Western countries by decreasing disease burden in immigrants, are addressed. Adherence to basic precautions such as safe consumption of food/water and protection against arthropod bites could help prevent many NTDs in travelers.
PLOS698
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: During replication, mismatch repair proteins recognize and repair mispaired bases that escape the proofreading activity of DNA polymerase. In this work, we tested the model that the eukaryotic mismatch recognition complex tracks with the advancing replisome. Using yeast, we examined the dynamics during replication of the leading strand polymerase Polε using Pol2 and the eukaryotic mismatch recognition complex using Msh2, the invariant protein involved in mismatch recognition. Specifically, we synchronized cells and processed samples using chromatin immunoprecipitation combined with custom DNA tiling arrays (ChIP-chip). The Polε signal was not detectable in G1, but was observed at active origins and replicating DNA throughout S-phase. The Polε signal provided the resolution to track origin firing timing and efficiencies as well as replisome progression rates. By detecting Polε and Msh2 dynamics within the same strain, we established that the mismatch recognition complex binds origins and spreads to adjacent regions with the replisome. In mismatch repair defective PCNA mutants, we observed that Msh2 binds to regions of replicating DNA, but the distribution and dynamics are altered, suggesting that PCNA is not the sole determinant for the mismatch recognition complex association with replicating regions, but may influence the dynamics of movement. Using biochemical and genomic methods, we provide evidence that both MutS complexes are in the vicinity of the replisome to efficiently repair the entire spectrum of mutations during replication. Our data supports the model that the proximity of MutSα/β to the replisome for the efficient repair of the newly synthesized strand before chromatin reassembles. Output:
During replication, errors that escape the replication machinery are identified and repaired by DNA mismatch repair proteins. A mismatch in the helix is recognized by MutS homologs and subsequent events include excision of the error-containing strand followed by re-synthesis. A critical step in this process is directing repair to the newly synthesized strand. Current data suggest that transient discontinuities in the DNA backbone, known as nicks, generated during replication serve as the strand discrimination signals. Additionally, proteins that package DNA have the capacity to block mismatch recognition and are known to rapidly assemble behind the replication fork. Thus, there must be a short window of opportunity for the mismatch recognition complexes to scan for mismatches and access the strand discrimination signals. To address these issues, we tested the model that the mismatch recognition complexes track with the replisome. We employed high resolution genomic methods to determine that during replication, the mismatch recognition complexes bind origins of replication and advances with the replisome. The findings support the hypothesis that the mismatch recognition proteins track with the DNA replication machinery to accurately survey and repair the newly synthesized strands while the DNA is unpackaged and strand specificity signals are accessible.
PLOS699
***TASK*** the task is to simplify the input abstract of a biomedical literature ***INPUT*** the input is the abstract of a biomedical literature ***OUTPUT*** the output is the simplified abstract for the input abstract of a biomedical literature ***DOCUMENTATION*** ***EXAMPLES*** Input: Output: ***EXAMPLES*** Input: Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. Output: When species evolve, their genes duplicate and diverge to allow for adaptation of their functional repertoires to the changing environment. In this scenario, unrelated genes can convergently evolve to produce proteins with the same molecular function, termed “functionally analogous.” A quantitative determination of the reaction similarities among functionally analogous enzymes could provide insight about the different structural solutions nature has used to evolve similar catalysts. Bond changes between substrates and products, and between successive reaction intermediates, were used to compare the reactions catalyzed and the mechanisms of catalysis for 95 pairs of functionally analogous enzymes. Less than half of the reactions catalyzed by unrelated enzymes, but defined as similar by the Enzyme Commission (EC) classification, are similar in terms of bond changes, suggesting that this classification often fails to capture quantitative differences between many enzyme reactions. Furthermore, we addressed for the first time whether the chemical mechanisms by which similar overall reactions are achieved in functional analogs are also similar. We conclude that convergence of reaction is often accompanied by convergence of chemical mechanism. These results will be useful for classifying enzymes, guiding functional annotation of newly determined enzyme sequences and structures and for informing the engineering of enzymes with new functions. Input: Pseudokinases lack essential residues for kinase activity, yet are emerging as important regulators of signal transduction networks. The pseudokinase STRAD activates the LKB1 tumour suppressor by forming a heterotrimeric complex with LKB1 and the scaffolding protein MO25. Here, we describe the structure of STRADα in complex with MO25α. The structure reveals an intricate web of interactions between STRADα and MO25α involving the αC-helix of STRADα, reminiscent of the mechanism by which CDK2 interacts with cyclin A. Surprisingly, STRADα binds ATP and displays a closed conformation and an ordered activation loop, typical of active protein kinases. Inactivity is accounted for by nonconservative substitution of almost all essential catalytic residues. We demonstrate that binding of ATP enhances the affinity of STRADα for MO25α, and conversely, binding of MO25α promotes interaction of STRADα with ATP. Mutagenesis studies reveal that association of STRADα with either ATP or MO25α is essential for LKB1 activation. We conclude that ATP and MO25α cooperate to maintain STRADα in an “active” closed conformation required for LKB1 activation. It has recently been demonstrated that a mutation in human STRADα that truncates a C-terminal region of the pseudokinase domain leads to the polyhydramnios, megalencephaly, symptomatic epilepsy (PMSE) syndrome. We demonstrate this mutation destabilizes STRADα and prevents association with LKB1. In summary, our findings describe one of the first structures of a genuinely inactive pseudokinase. The ability of STRADα to activate LKB1 is dependent on a closed “active” conformation, aided by ATP and MO25α binding. Thus, the function of STRADα is mediated through an active kinase conformation rather than kinase activity. It is possible that other pseudokinases exert their function through nucleotide binding and active conformations. Output:
There are 518 human protein kinases that are responsible for orchestrating the phosphorylation-dependant signal transduction events that regulate almost all cellular processes. Curiously, approximately 10% of protein kinases lack one or more catalytic residues, and these kinases have been termed pseudokinases. It has been proposed that some pseudokinases act as scaffolds, bringing together proteins involved in signalling networks. Here, we report the structure of the pseudokinase STRADα in complex with the adaptor protein MO25α; together these two proteins regulate the LKB1 tumour suppressor kinase. Despite lacking several key catalytic residues, STRADα binds ATP and adopts an active conformation typical of catalytically competent kinases. The affinity of STRADα for ATP is enhanced by MO25α and vice versa. We go on to demonstrate through mutagenesis studies that binding to both ATP and MO25α is essential for the activation of LKB1. Our data suggest that STRADα exerts its functions through an active conformation, not through actual catalytic activity, thus raising the possibility that pseudokinases regulate signalling networks by adopting different structural conformations.