Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
intent-classification
Languages:
English
Size:
10K - 100K
License:
"""An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction""" | |
import json | |
import textwrap | |
import datasets | |
_CITATION = """\ | |
@inproceedings{larson-etal-2019-evaluation, | |
title = "An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction", | |
author = "Larson, Stefan and | |
Mahendran, Anish and | |
Peper, Joseph J. and | |
Clarke, Christopher and | |
Lee, Andrew and | |
Hill, Parker and | |
Kummerfeld, Jonathan K. and | |
Leach, Kevin and | |
Laurenzano, Michael A. and | |
Tang, Lingjia and | |
Mars, Jason", | |
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)", | |
year = "2019", | |
url = "https://www.aclweb.org/anthology/D19-1131" | |
} | |
""" | |
_DESCRIPTION = """\ | |
This dataset is for evaluating the performance of intent classification systems in the | |
presence of "out-of-scope" queries. By "out-of-scope", we mean queries that do not fall | |
into any of the system-supported intent classes. Most datasets include only data that is | |
"in-scope". Our dataset includes both in-scope and out-of-scope data. You might also know | |
the term "out-of-scope" by other terms, including "out-of-domain" or "out-of-distribution". | |
""" | |
_DESCRIPTIONS = { | |
"small": textwrap.dedent( | |
"""\ | |
Small, in which there are only 50 training queries per each in-scope intent | |
""" | |
), | |
"imbalanced": textwrap.dedent( | |
"""\ | |
Imbalanced, in which intents have either 25, 50, 75, or 100 training queries. | |
""" | |
), | |
"plus": textwrap.dedent( | |
"""\ | |
OOS+, in which there are 250 out-of-scope training examples, rather than 100. | |
""" | |
), | |
} | |
_URL = "https://github.com/clinc/oos-eval/" | |
# Source: | |
# - https://raw.githubusercontent.com/clinc/oos-eval/master/data/data_small.json | |
# - https://raw.githubusercontent.com/clinc/oos-eval/master/data/data_imbalanced.json | |
# - https://raw.githubusercontent.com/clinc/oos-eval/master/data/data_oos_plus.json | |
_DATA_URLS = { | |
"small": "data/data_small.json.gz", | |
"imbalanced": "data/data_imbalanced.json.gz", | |
"plus": "data/data_oos_plus.json.gz", | |
} | |
class ClincConfig(datasets.BuilderConfig): | |
"""BuilderConfig for CLINC150""" | |
def __init__(self, description, data_url, citation, url, **kwrags): | |
""" | |
Args: | |
description: `string`, brief description of the dataset | |
data_url: `dictionary`, dict with url for each split of data. | |
citation: `string`, citation for the dataset. | |
url: `string`, url for information about the dataset. | |
**kwrags: keyword arguments frowarded to super | |
""" | |
super(ClincConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwrags) | |
self.description = description | |
self.data_url = data_url | |
self.citation = citation | |
self.url = url | |
class ClincOos(datasets.GeneratorBasedBuilder): | |
BUILDER_CONFIGS = [ | |
ClincConfig( | |
name=name, description=_DESCRIPTIONS[name], data_url=_DATA_URLS[name], citation=_CITATION, url=_URL | |
) | |
for name in ["small", "imbalanced", "plus"] | |
] | |
def _info(self): | |
features = {} | |
features["text"] = datasets.Value("string") | |
labels_list = [ | |
"restaurant_reviews", | |
"nutrition_info", | |
"account_blocked", | |
"oil_change_how", | |
"time", | |
"weather", | |
"redeem_rewards", | |
"interest_rate", | |
"gas_type", | |
"accept_reservations", | |
"smart_home", | |
"user_name", | |
"report_lost_card", | |
"repeat", | |
"whisper_mode", | |
"what_are_your_hobbies", | |
"order", | |
"jump_start", | |
"schedule_meeting", | |
"meeting_schedule", | |
"freeze_account", | |
"what_song", | |
"meaning_of_life", | |
"restaurant_reservation", | |
"traffic", | |
"make_call", | |
"text", | |
"bill_balance", | |
"improve_credit_score", | |
"change_language", | |
"no", | |
"measurement_conversion", | |
"timer", | |
"flip_coin", | |
"do_you_have_pets", | |
"balance", | |
"tell_joke", | |
"last_maintenance", | |
"exchange_rate", | |
"uber", | |
"car_rental", | |
"credit_limit", | |
"oos", | |
"shopping_list", | |
"expiration_date", | |
"routing", | |
"meal_suggestion", | |
"tire_change", | |
"todo_list", | |
"card_declined", | |
"rewards_balance", | |
"change_accent", | |
"vaccines", | |
"reminder_update", | |
"food_last", | |
"change_ai_name", | |
"bill_due", | |
"who_do_you_work_for", | |
"share_location", | |
"international_visa", | |
"calendar", | |
"translate", | |
"carry_on", | |
"book_flight", | |
"insurance_change", | |
"todo_list_update", | |
"timezone", | |
"cancel_reservation", | |
"transactions", | |
"credit_score", | |
"report_fraud", | |
"spending_history", | |
"directions", | |
"spelling", | |
"insurance", | |
"what_is_your_name", | |
"reminder", | |
"where_are_you_from", | |
"distance", | |
"payday", | |
"flight_status", | |
"find_phone", | |
"greeting", | |
"alarm", | |
"order_status", | |
"confirm_reservation", | |
"cook_time", | |
"damaged_card", | |
"reset_settings", | |
"pin_change", | |
"replacement_card_duration", | |
"new_card", | |
"roll_dice", | |
"income", | |
"taxes", | |
"date", | |
"who_made_you", | |
"pto_request", | |
"tire_pressure", | |
"how_old_are_you", | |
"rollover_401k", | |
"pto_request_status", | |
"how_busy", | |
"application_status", | |
"recipe", | |
"calendar_update", | |
"play_music", | |
"yes", | |
"direct_deposit", | |
"credit_limit_change", | |
"gas", | |
"pay_bill", | |
"ingredients_list", | |
"lost_luggage", | |
"goodbye", | |
"what_can_i_ask_you", | |
"book_hotel", | |
"are_you_a_bot", | |
"next_song", | |
"change_speed", | |
"plug_type", | |
"maybe", | |
"w2", | |
"oil_change_when", | |
"thank_you", | |
"shopping_list_update", | |
"pto_balance", | |
"order_checks", | |
"travel_alert", | |
"fun_fact", | |
"sync_device", | |
"schedule_maintenance", | |
"apr", | |
"transfer", | |
"ingredient_substitution", | |
"calories", | |
"current_location", | |
"international_fees", | |
"calculator", | |
"definition", | |
"next_holiday", | |
"update_playlist", | |
"mpg", | |
"min_payment", | |
"change_user_name", | |
"restaurant_suggestion", | |
"travel_notification", | |
"cancel", | |
"pto_used", | |
"travel_suggestion", | |
"change_volume", | |
] | |
features["intent"] = datasets.ClassLabel(names=labels_list) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION + "\n" + self.config.description, | |
features=datasets.Features(features), | |
homepage=self.config.url, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
file_ = dl_manager.download_and_extract(self.config.data_url) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": file_, "split": "train"}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": file_, "split": "val"}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": file_, "split": "test"}), | |
] | |
def _generate_examples(self, filepath, split): | |
with open(filepath, encoding="utf-8") as f: | |
j = json.load(f) | |
for id_, row in enumerate(j[split] + j["oos_" + split]): | |
yield id_, {"text": row[0], "intent": row[1]} | |