Datasets:
Tasks:
Other
Modalities:
Text
Sub-tasks:
part-of-speech
Languages:
Polish
Size:
10K - 100K
Tags:
structure-prediction
License:
Add loader
Browse files- nkjp-pos.py +164 -0
nkjp-pos.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""NKJP-POS tagging dataset."""
|
18 |
+
|
19 |
+
import csv
|
20 |
+
from typing import List, Tuple, Dict, Generator
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
|
24 |
+
_DESCRIPTION = """NKJP-POS tagging dataset."""
|
25 |
+
|
26 |
+
_URLS = {
|
27 |
+
"train": "https://huggingface.co/datasets/clarin-pl/nkjp-pos/resolve/main/data/train.tsv",
|
28 |
+
"validation": "https://huggingface.co/datasets/clarin-pl/nkjp-pos/resolve/main/data/valid.tsv",
|
29 |
+
"test": "https://huggingface.co/datasets/clarin-pl/nkjp-pos/resolve/main/data/test.tsv",
|
30 |
+
}
|
31 |
+
|
32 |
+
_HOMEPAGE = "http://clip.ipipan.waw.pl/NationalCorpusOfPolish"
|
33 |
+
|
34 |
+
_POS_TAGS = [
|
35 |
+
'adj',
|
36 |
+
'adja',
|
37 |
+
'adjc',
|
38 |
+
'adjp',
|
39 |
+
'adv',
|
40 |
+
'aglt',
|
41 |
+
'bedzie',
|
42 |
+
'brev',
|
43 |
+
'burk',
|
44 |
+
'comp',
|
45 |
+
'conj',
|
46 |
+
'depr',
|
47 |
+
'fin',
|
48 |
+
'ger',
|
49 |
+
'imps',
|
50 |
+
'impt',
|
51 |
+
'inf',
|
52 |
+
'interj',
|
53 |
+
'interp',
|
54 |
+
'num',
|
55 |
+
'numcol',
|
56 |
+
'pact',
|
57 |
+
'pant',
|
58 |
+
'pcon',
|
59 |
+
'ppas',
|
60 |
+
'ppron12',
|
61 |
+
'ppron3',
|
62 |
+
'praet',
|
63 |
+
'pred',
|
64 |
+
'prep',
|
65 |
+
'qub',
|
66 |
+
'siebie',
|
67 |
+
'subst',
|
68 |
+
'winien',
|
69 |
+
'xxx'
|
70 |
+
]
|
71 |
+
|
72 |
+
|
73 |
+
class NKJPPOS(datasets.GeneratorBasedBuilder):
|
74 |
+
|
75 |
+
def _info(self) -> datasets.DatasetInfo:
|
76 |
+
return datasets.DatasetInfo(
|
77 |
+
description=_DESCRIPTION,
|
78 |
+
features=datasets.Features(
|
79 |
+
{
|
80 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
81 |
+
"morph": datasets.Sequence(datasets.Value("string")),
|
82 |
+
"lemmas": datasets.Sequence(datasets.Value("string")),
|
83 |
+
"pos_tags": datasets.Sequence(datasets.features.ClassLabel(
|
84 |
+
names=_POS_TAGS,
|
85 |
+
num_classes=len(_POS_TAGS)
|
86 |
+
)),
|
87 |
+
"full_pos_tags": datasets.Sequence(
|
88 |
+
datasets.Value("string")),
|
89 |
+
"nps": datasets.Sequence(datasets.Value("string")),
|
90 |
+
}
|
91 |
+
),
|
92 |
+
homepage=_HOMEPAGE,
|
93 |
+
)
|
94 |
+
|
95 |
+
def _split_generators(
|
96 |
+
self, dl_manager: datasets.DownloadManager
|
97 |
+
) -> List[datasets.SplitGenerator]:
|
98 |
+
urls_to_download = _URLS
|
99 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
100 |
+
return [
|
101 |
+
datasets.SplitGenerator(
|
102 |
+
name=datasets.Split.TRAIN,
|
103 |
+
gen_kwargs={"filepath": downloaded_files["train"]},
|
104 |
+
),
|
105 |
+
datasets.SplitGenerator(
|
106 |
+
name=datasets.Split.VALIDATION,
|
107 |
+
gen_kwargs={"filepath": downloaded_files["validation"]},
|
108 |
+
),
|
109 |
+
datasets.SplitGenerator(
|
110 |
+
name=datasets.Split.TEST,
|
111 |
+
gen_kwargs={"filepath": downloaded_files["test"]},
|
112 |
+
),
|
113 |
+
]
|
114 |
+
|
115 |
+
@staticmethod
|
116 |
+
def _parse_tag(
|
117 |
+
tag: str
|
118 |
+
) -> Tuple[str, str]:
|
119 |
+
full_tag = tag
|
120 |
+
pos_tag = tag.split(':')[0]
|
121 |
+
|
122 |
+
return pos_tag, full_tag
|
123 |
+
|
124 |
+
def _generate_examples(
|
125 |
+
self, filepath: str
|
126 |
+
) -> Generator[Tuple[int, Dict[str, str]], None, None]:
|
127 |
+
with open(filepath, 'r') as f:
|
128 |
+
reader = csv.reader(f, delimiter='\t', quoting=csv.QUOTE_NONE)
|
129 |
+
|
130 |
+
tokens = []
|
131 |
+
morph = []
|
132 |
+
tags = []
|
133 |
+
full_tags = []
|
134 |
+
lemma = []
|
135 |
+
nps = []
|
136 |
+
gid = 0
|
137 |
+
|
138 |
+
for line in reader:
|
139 |
+
if not line:
|
140 |
+
yield gid, {
|
141 |
+
'tokens': tokens,
|
142 |
+
'morph': morph,
|
143 |
+
'pos_tags': tags,
|
144 |
+
'full_pos_tags': full_tags,
|
145 |
+
'lemmas': lemma,
|
146 |
+
'nps': nps
|
147 |
+
}
|
148 |
+
gid += 1
|
149 |
+
tokens = []
|
150 |
+
morph = []
|
151 |
+
tags = []
|
152 |
+
full_tags = []
|
153 |
+
lemma = []
|
154 |
+
nps = []
|
155 |
+
|
156 |
+
else:
|
157 |
+
tokens.append(line[0])
|
158 |
+
morph.append(line[1])
|
159 |
+
lemma.append(line[3])
|
160 |
+
nps.append(line[4])
|
161 |
+
tag, full_tag = self._parse_tag(line[2])
|
162 |
+
|
163 |
+
tags.append(tag)
|
164 |
+
full_tags.append(full_tag)
|