bprec / bprec.py
system's picture
system HF staff
Update files from the datasets library (from 1.6.1)
1dbde89
raw
history blame
8.63 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Brand-Product Relation Extraction Corpora"""
import json
import datasets
# DONE: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@inproceedings{inproceedings,
author = {Janz, Arkadiusz and Kopociński, Łukasz and Piasecki, Maciej and Pluwak, Agnieszka},
year = {2020},
month = {05},
pages = {},
title = {Brand-Product Relation Extraction Using Heterogeneous Vector Space Representations}
}
"""
# DONE: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
Dataset consisting of Polish language texts annotated to recognize brand-product relations.
"""
# DONE: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://clarin-pl.eu/dspace/handle/11321/736"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLs = {
"tele": "https://minio.clarin-pl.eu/semrel/corpora/ner_export_json/ner_tele_export.json",
"electro": "https://minio.clarin-pl.eu/semrel/corpora/ner_export_json/ner_electro_export.json",
"cosmetics": "https://minio.clarin-pl.eu/semrel/corpora/ner_export_json/ner_cosmetics_export.json",
"banking": "https://minio.clarin-pl.eu/semrel/corpora/ner_export_json/ner_banking_export.json",
}
_CATEGORIES = {
"tele": "telecommunications",
"electro": "electronics",
"cosmetics": "cosmetics",
"banking": "banking",
}
_ALL_CATEGORIES = "all"
_VERSION = "1.1.0"
class BprecConfig(datasets.BuilderConfig):
"""BuilderConfig for BprecConfig."""
def __init__(self, categories=None, **kwargs):
super(BprecConfig, self).__init__(version=datasets.Version(_VERSION, ""), **kwargs),
self.categories = categories
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class Bprec(datasets.GeneratorBasedBuilder):
"""Brand-Product Relation Extraction Corpora in Polish"""
BUILDER_CONFIGS = [
BprecConfig(
name=_ALL_CATEGORIES,
categories=_CATEGORIES,
description="A collection of Polish language texts annotated to recognize brand-product relations",
)
] + [
BprecConfig(
name=cat,
categories=[cat],
description=f"{_CATEGORIES[cat]} examples from a collection of Polish language texts annotated to recognize brand-product relations",
)
for cat in _CATEGORIES
]
BUILDER_CONFIG_CLASS = BprecConfig
DEFAULT_CONFIG_NAME = _ALL_CATEGORIES
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
features = datasets.Features(
{
"id": datasets.Value("int32"),
"category": datasets.Value("string"),
"text": datasets.Value("string"),
"ner": datasets.features.Sequence(
{
"source": {
"from": datasets.Value("int32"),
"text": datasets.Value("string"),
"to": datasets.Value("int32"),
"type": datasets.features.ClassLabel(
names=[
"PRODUCT_NAME",
"PRODUCT_NAME_IMP",
"PRODUCT_NO_BRAND",
"BRAND_NAME",
"BRAND_NAME_IMP",
"VERSION",
"PRODUCT_ADJ",
"BRAND_ADJ",
"LOCATION",
"LOCATION_IMP",
]
),
},
"target": {
"from": datasets.Value("int32"),
"text": datasets.Value("string"),
"to": datasets.Value("int32"),
"type": datasets.features.ClassLabel(
names=[
"PRODUCT_NAME",
"PRODUCT_NAME_IMP",
"PRODUCT_NO_BRAND",
"BRAND_NAME",
"BRAND_NAME_IMP",
"VERSION",
"PRODUCT_ADJ",
"BRAND_ADJ",
"LOCATION",
"LOCATION_IMP",
]
),
},
}
),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
_my_urls = [_URLs[cat] for cat in self.config.categories]
downloaded_files = dl_manager.download_and_extract(_my_urls)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filedirs": downloaded_files}),
]
def _generate_examples(self, filedirs, split="tele"):
"""Yields examples."""
# TODO: This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
# It is in charge of opening the given file and yielding (key, example) tuples from the dataset
# The key is not important, it's more here for legacy reason (legacy from tfds)
cats = [cat for cat in self.config.categories]
for cat, filepath in zip(cats, filedirs):
with open(filepath, "r", encoding="utf-8") as f:
data = json.load(f)
for key in data.keys():
example = data[key]
id_ = example.get("id")
text = example.get("text")
ner = example.get("ner")
yield id_, {
"id": id_,
"category": cat,
"text": text,
"ner": ner,
}