imagenet-100 / scripts /imagenet-100.py
clane9's picture
Move generation scripts
74e36af
raw
history blame
2.65 kB
"""
Dataset builder for ImageNet-100.
References:
https://huggingface.co/datasets/imagenet-1k/blob/main/imagenet-1k.py
"""
import os
from pathlib import Path
from typing import List
import datasets
from datasets.tasks import ImageClassification
from .classes import IMAGENET100_CLASSES
_CITATION = """\
@inproceedings{tian2020contrastive,
title={Contrastive multiview coding},
author={Tian, Yonglong and Krishnan, Dilip and Isola, Phillip},
booktitle={Computer Vision--ECCV 2020: 16th European Conference, Glasgow, UK, August 23--28, 2020, Proceedings, Part XI 16},
pages={776--794},
year={2020},
organization={Springer}
}
"""
_HOMEPAGE = "https://github.com/HobbitLong/CMC"
_DESCRIPTION = f"""\
ImageNet-100 is a subset of ImageNet with 100 classes randomly selected from the original ImageNet-1k dataset.
"""
_IMAGENET_ROOT = os.environ.get("IMAGENET_ROOT", "/data/imagenet")
_DATA_URL = {
"train": [f"{_IMAGENET_ROOT}/train/{label}" for label in IMAGENET100_CLASSES],
"val": [f"{_IMAGENET_ROOT}/val/{label}" for label in IMAGENET100_CLASSES],
}
class Imagenet100(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
DEFAULT_WRITER_BATCH_SIZE = 1000
def _info(self):
assert len(IMAGENET100_CLASSES) == 100
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"image": datasets.Image(),
"label": datasets.ClassLabel(
names=list(IMAGENET100_CLASSES.values())
),
}
),
homepage=_HOMEPAGE,
citation=_CITATION,
task_templates=[
ImageClassification(image_column="image", label_column="label")
],
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"folders": _DATA_URL["train"]},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"folders": _DATA_URL["val"]},
),
]
def _generate_examples(self, folders: List[str]):
"""Yields examples."""
idx = 0
for folder in folders:
synset_id = Path(folder).name
label = IMAGENET100_CLASSES[synset_id]
for path in Path(folder).glob("*.JPEG"):
ex = {"image": str(path), "label": label}
yield idx, ex
idx += 1