|
|
|
|
|
|
|
|
|
|
|
|
|
|
rm(list = ls()) |
|
|
|
|
|
|
|
|
require(foreign) |
|
|
require(ggplot2) |
|
|
require(rgdal) |
|
|
require(rgeos) |
|
|
require(RColorBrewer) |
|
|
require(maptools) |
|
|
require(scales) |
|
|
require(gridExtra) |
|
|
require(plyr) |
|
|
require(dplyr) |
|
|
require(mapproj) |
|
|
require(raster) |
|
|
require(animation) |
|
|
require(tidyr) |
|
|
require(readstata13) |
|
|
require(haven) |
|
|
require(gstat) |
|
|
require(ncdf4) |
|
|
require(Hmisc) |
|
|
require(lubridate) |
|
|
library(lmtest) |
|
|
library(sandwich) |
|
|
library(dotwhisker) |
|
|
library(broom) |
|
|
require(stringr) |
|
|
require(readxl) |
|
|
require(rmapshaper) |
|
|
require(extrafont) |
|
|
require(ggmap) |
|
|
require(exactextractr) |
|
|
require(sf) |
|
|
require(elevatr) |
|
|
require(rdrobust) |
|
|
require(stringdist) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prop_data <- read.dta(file="./Data/prop_data.dta") |
|
|
|
|
|
|
|
|
prop_data <- mutate(prop_data, norm_dist = Total_Propretario - 500.00, |
|
|
Above500 = ifelse(norm_dist>0,1,0)) |
|
|
|
|
|
|
|
|
|
|
|
cantons <- readOGR(dsn="./Data/", layer="cantons_wCodigos") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
wgs84_proj <- "+proj=longlat +ellps=WGS84 +datum=WGS84" |
|
|
mercator <- "+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +no_defs" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
buffer_size <- 2500 |
|
|
|
|
|
|
|
|
cantons_wCovariates <- as(cantons,"sf") |
|
|
cantons_wCovariates <- st_transform(cantons_wCovariates, st_crs(mercator)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
path_to_suit_coffee <- "./Data/crop_suit/coffeelo.tif" |
|
|
coffee_suit <- raster(paste(path_to_suit_coffee,"",sep="")) |
|
|
|
|
|
|
|
|
|
|
|
cantons_wCovariates$canton_coffee_suit <- exact_extract(coffee_suit, |
|
|
cantons_wCovariates, |
|
|
'median') |
|
|
|
|
|
|
|
|
|
|
|
path_to_suit_sugarcane <- "./Data/crop_suit/sugarcanelo.tif" |
|
|
sugarcane_suit <- raster(paste(path_to_suit_sugarcane,"",sep="")) |
|
|
|
|
|
|
|
|
cantons_wCovariates$sugarcane_suit <- exact_extract(sugarcane_suit, |
|
|
cantons_wCovariates, |
|
|
'median') |
|
|
|
|
|
|
|
|
path_to_suit_cotton <- "./Data/crop_suit/cottonlo.tif" |
|
|
cotton_suit <- raster(paste(path_to_suit_cotton,"",sep="")) |
|
|
|
|
|
|
|
|
cantons_wCovariates$cotton_suit <- exact_extract(cotton_suit, |
|
|
cantons_wCovariates, |
|
|
'median') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
path_to_suit_maiz <- "./Data/crop_suit/maizelo.tif" |
|
|
miaze_suit <- raster(paste(path_to_suit_maiz,"",sep="")) |
|
|
|
|
|
|
|
|
|
|
|
cantons_wCovariates$miaze_suit <- exact_extract(miaze_suit, |
|
|
cantons_wCovariates, |
|
|
'median') |
|
|
|
|
|
|
|
|
|
|
|
path_to_suit_beans <- "./Data/crop_suit/phaseolusbeanlo.tif" |
|
|
bean_suit <- raster(paste(path_to_suit_beans,"",sep="")) |
|
|
|
|
|
|
|
|
|
|
|
cantons_wCovariates$bean_suit <- exact_extract(bean_suit, |
|
|
cantons_wCovariates, |
|
|
'median') |
|
|
|
|
|
|
|
|
path_to_suit_sorghum <- "./Data/crop_suit/sorghumlo.tif" |
|
|
sorghum_suit <- raster(paste(path_to_suit_sorghum,"",sep="")) |
|
|
|
|
|
|
|
|
|
|
|
cantons_wCovariates$sorghum_suit <- exact_extract(sorghum_suit, |
|
|
cantons_wCovariates, |
|
|
'median') |
|
|
|
|
|
|
|
|
path_to_suit_rice <- "./Data/crop_suit/wetricelo.tif" |
|
|
rice_suit <- raster(paste(path_to_suit_rice,"",sep="")) |
|
|
|
|
|
|
|
|
|
|
|
cantons_wCovariates$rice_suit <- exact_extract(rice_suit, |
|
|
cantons_wCovariates, |
|
|
'median') |
|
|
|
|
|
path_rain <- "./Data/wc2.1_2.5m_prec_2000-2009/" |
|
|
|
|
|
|
|
|
for (month in 1:12) { |
|
|
|
|
|
print(month) |
|
|
x <- raster(paste(path_rain,"wc2.1_2.5m_prec_2007-", |
|
|
ifelse(month%/%10==0,paste0("0",month),month), |
|
|
".tif",sep="")) |
|
|
rainfall <- (x) |
|
|
proj4string(rainfall) <- CRS(wgs84_proj) |
|
|
assign(paste("rain","_",month,sep=""), rainfall) |
|
|
} |
|
|
sum_rain <- (rain_1 + rain_2 + rain_3 + rain_4 + rain_5 + rain_6 + rain_7 + rain_8 + rain_9 + rain_10 + rain_11 + rain_12) |
|
|
|
|
|
|
|
|
|
|
|
cantons_wCovariates$canton_mean_rain <- exact_extract(sum_rain, |
|
|
cantons_wCovariates, |
|
|
'median') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
path_land_suit <- "Data/suit/suit/w001001.adf" |
|
|
|
|
|
|
|
|
x <- new("GDALReadOnlyDataset", path_land_suit) |
|
|
xx<-asSGDF_GROD(x) |
|
|
land_suit <- raster(xx) |
|
|
proj4string(land_suit) <- CRS(proj4string(cantons)) |
|
|
|
|
|
|
|
|
cantons_wCovariates$canton_land_suit <- exact_extract(land_suit, |
|
|
cantons_wCovariates, |
|
|
'median') |
|
|
|
|
|
|
|
|
elev <- get_elev_raster(locations = cantons, z= 1) |
|
|
|
|
|
|
|
|
cantons_wCovariates$canton_elev_dem_30sec <- exact_extract(elev, cantons_wCovariates,'median') |
|
|
|
|
|
|
|
|
write_dta(st_drop_geometry(cantons_wCovariates), "./Output/cantons_wGeoCovariates.dta") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lm.beta <- function (MOD, dta,y="ln_agprod") |
|
|
{ |
|
|
b <- MOD$coef[1] |
|
|
model.dta <- filter(dta, norm_dist > -1*MOD$bws["h","left"] & norm_dist < MOD$bws["h","right"] ) |
|
|
sx <- sd(model.dta[,c("Above500")]) |
|
|
sy <- sd((model.dta[,c(y)]),na.rm=TRUE) |
|
|
beta <- b * sx/sy |
|
|
return(beta) |
|
|
} |
|
|
lm.beta.ses <- function (MOD, dta,y="ln_agprod") |
|
|
{ |
|
|
b <- MOD$se[1] |
|
|
model.dta <- filter(dta, norm_dist > -1*MOD$bws["h","left"] & norm_dist < MOD$bws["h","right"] ) |
|
|
sx <- sd(model.dta[,c("Above500")]) |
|
|
sy <- sd((model.dta[,c(y)]),na.rm=TRUE) |
|
|
beta <- b * sx/sy |
|
|
return(beta) |
|
|
} |
|
|
|
|
|
winsor <- function (x, fraction=.01) |
|
|
{ |
|
|
if(length(fraction) != 1 || fraction < 0 || |
|
|
fraction > 0.5) { |
|
|
stop("bad value for 'fraction'") |
|
|
} |
|
|
lim <- quantile(x, probs=c(fraction, 1-fraction),na.rm = TRUE) |
|
|
x[ x < lim[1] ] <- NA |
|
|
x[ x > lim[2] ] <- NA |
|
|
x |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
aesthetics <- list( |
|
|
theme_bw(), |
|
|
theme(legend.title=element_blank(), |
|
|
text=element_text(family="Palatino"), |
|
|
plot.background=element_rect(colour="white",fill="white"), |
|
|
panel.grid.major=element_blank(), |
|
|
panel.grid.minor=element_blank(), |
|
|
axis.title=element_text(size=12,face="bold"), |
|
|
)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alpha<- 0.05 |
|
|
Multiplier <- qnorm(1 - alpha / 2) |
|
|
|
|
|
prop_data_wgeo <- left_join(prop_data, st_drop_geometry(cantons_wCovariates),by=c("CODIGO")) |
|
|
|
|
|
b0 <- rdrobust(y = (prop_data_wgeo$miaze_suit), x=prop_data_wgeo$norm_dist,c = 0,p = 1,q=2, bwselect = "mserd", cluster=prop_data_wgeo$Expropretario_ISTA, vce="hc0") |
|
|
b1 <- rdrobust(y = (prop_data_wgeo$sorghum_suit), x=prop_data_wgeo$norm_dist,c = 0,p = 1,q=2, bwselect = "mserd", cluster=prop_data_wgeo$Expropretario_ISTA, vce="hc0") |
|
|
b2 <- rdrobust(y = (prop_data_wgeo$bean_suit), x=prop_data_wgeo$norm_dist,c = 0,p = 1,q=2, bwselect = "mserd", cluster=prop_data_wgeo$Expropretario_ISTA, vce="hc0") |
|
|
b3 <- rdrobust(y = (prop_data_wgeo$rice_suit), x=prop_data_wgeo$norm_dist,c = 0,p = 1,q=2, bwselect = "mserd", cluster=prop_data_wgeo$Expropretario_ISTA, vce="hc0") |
|
|
b4 <- rdrobust(y = (prop_data_wgeo$cotton_suit), x=prop_data_wgeo$norm_dist,c = 0,p = 1,q=2, bwselect = "mserd", cluster=prop_data_wgeo$Expropretario_ISTA, vce="hc0") |
|
|
b5 <- rdrobust(y = (prop_data_wgeo$sugarcane_suit), x=prop_data_wgeo$norm_dist,c = 0,p = 1,q=2, bwselect = "mserd", cluster=prop_data_wgeo$Expropretario_ISTA, vce="hc0") |
|
|
b6 <- rdrobust(y = (prop_data_wgeo$canton_coffee_suit), x=prop_data_wgeo$norm_dist,c = 0,p = 1,q=2, bwselect = "mserd", cluster=prop_data_wgeo$Expropretario_ISTA, vce="hc0") |
|
|
b7 <- rdrobust(y = (prop_data_wgeo$canton_elev_dem_30sec), x=prop_data_wgeo$norm_dist,c = 0,p = 1,q=2, bwselect = "mserd", cluster=prop_data_wgeo$Expropretario_ISTA, vce="hc0") |
|
|
b8 <- rdrobust(y = (prop_data_wgeo$canton_mean_rain), x=prop_data_wgeo$norm_dist,c = 0,p = 1,q=2, bwselect = "mserd", cluster=prop_data_wgeo$Expropretario_ISTA, vce="hc0") |
|
|
b9 <- rdrobust(y = (prop_data_wgeo$canton_land_suit), x=prop_data_wgeo$norm_dist,c = 0,p = 1,q=2, bwselect = "mserd", cluster=prop_data_wgeo$Expropretario_ISTA, vce="hc0") |
|
|
|
|
|
|
|
|
beta_coefs <- c(lm.beta(MOD=b0, dta=prop_data_wgeo, y="miaze_suit"), |
|
|
lm.beta(MOD=b1, dta=prop_data_wgeo, y="sorghum_suit"), |
|
|
lm.beta(MOD=b2, dta=prop_data_wgeo, y="bean_suit"), |
|
|
lm.beta(MOD=b3, dta=prop_data_wgeo, y="rice_suit"), |
|
|
lm.beta(MOD=b4, dta=prop_data_wgeo, y="cotton_suit"), |
|
|
lm.beta(MOD=b5, dta=prop_data_wgeo, y="sugarcane_suit"), |
|
|
lm.beta(MOD=b6, dta=prop_data_wgeo, y="canton_coffee_suit"), |
|
|
lm.beta(MOD=b7, dta=prop_data_wgeo, y="canton_elev_dem_30sec"), |
|
|
lm.beta(MOD=b8, dta=prop_data_wgeo, y="canton_mean_rain"), |
|
|
lm.beta(MOD=b9, dta=prop_data_wgeo, y="canton_land_suit")) |
|
|
|
|
|
beta_ses <- c(lm.beta.ses(MOD=b0, dta=prop_data_wgeo, y="miaze_suit"), |
|
|
lm.beta.ses(MOD=b1, dta=prop_data_wgeo, y="sorghum_suit"), |
|
|
lm.beta.ses(MOD=b2, dta=prop_data_wgeo, y="bean_suit"), |
|
|
lm.beta.ses(MOD=b3, dta=prop_data_wgeo, y="rice_suit"), |
|
|
lm.beta.ses(MOD=b4, dta=prop_data_wgeo, y="cotton_suit"), |
|
|
lm.beta.ses(MOD=b5, dta=prop_data_wgeo, y="sugarcane_suit"), |
|
|
lm.beta.ses(MOD=b6, dta=prop_data_wgeo, y="canton_coffee_suit"), |
|
|
lm.beta.ses(MOD=b7, dta=prop_data_wgeo, y="canton_elev_dem_30sec"), |
|
|
lm.beta.ses(MOD=b8, dta=prop_data_wgeo, y="canton_mean_rain"), |
|
|
lm.beta.ses(MOD=b9, dta=prop_data_wgeo, y="canton_land_suit")) |
|
|
|
|
|
yvars<-c("Maize Suitability","Sorghum Suitability","Bean Suitability","Rice Suitability","Cotton Suitability","Sugar Cane Suitability","Coffee Suitability","Elevation","Precipitation","Land Suitability") |
|
|
geo_vars <- c("miaze_suit","sorghum_suit","bean_suit","rice_suit","cotton_suit", |
|
|
"sugarcane_suit", "canton_coffee_suit", "canton_elev_dem_30sec", |
|
|
"canton_mean_rain","canton_land_suit") |
|
|
betas <- cbind(yvars,beta_coefs,beta_ses) |
|
|
ests <- cbind(geo_vars, c(b0$coef[1],b1$coef[1],b2$coef[1],b3$coef[1],b4$coef[1],b5$coef[1],b6$coef[1],b7$coef[1],b8$coef[1],b9$coef[1]), |
|
|
c(b0$se[1],b1$se[1],b2$se[1],b3$se[1],b4$se[1],b5$se[1],b6$se[1],b7$coef[1],b8$se[1],b9$se[1])) |
|
|
|
|
|
write_dta(as.data.frame(ests),path="./Output/balance_ests.dta") |
|
|
|
|
|
row.names(betas)<-NULL |
|
|
|
|
|
MatrixofModels <- as.data.frame(as.matrix(betas)) |
|
|
colnames(MatrixofModels) <- c("IV", "Estimate", "StandardError") |
|
|
MatrixofModels$IV <- factor(MatrixofModels$IV, levels = rev(c("Land Suitability", "Precipitation", "Elevation", "Coffee Suitability", "Sugar Cane Suitability", "Cotton Suitability", "Maize Suitability", "Bean Suitability", "Rice Suitability", "Sorghum Suitability"))) |
|
|
MatrixofModels[, -c(1, 6)] <- apply(MatrixofModels[, -c(1, 6)], 2, function(x){as.numeric(as.character(x))}) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
OutputPlot <- qplot(IV, Estimate, ymin = Estimate - Multiplier * StandardError, |
|
|
ymax = Estimate + Multiplier * StandardError, data = MatrixofModels, geom = "pointrange", |
|
|
ylab = NULL, xlab = NULL) |
|
|
OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12)) |
|
|
|
|
|
OutputPlot <- OutputPlot + geom_hline(yintercept = 0.0, alpha = 0.05) |
|
|
|
|
|
OutputPlot <- OutputPlot + coord_flip() + theme_classic() + ylab("\nStandardized Effect") + |
|
|
xlab("") |
|
|
|
|
|
|
|
|
OutputPlot + scale_y_continuous(breaks = seq(-0.4, 0.4,0.1)) + aesthetics |
|
|
|
|
|
ggsave(filename="./Output/CoefPlot_Balance_PropLevel1980.pdf",width = 6, height=4) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
require(rdd) |
|
|
|
|
|
|
|
|
DCdensity2 <- function (runvar, cutpoint, bin = NULL, bw = NULL, verbose = FALSE, |
|
|
plot = TRUE, ext.out = FALSE, htest = FALSE, my_xlim = c(-0.5,0.5)) |
|
|
{ |
|
|
runvar <- runvar[complete.cases(runvar)] |
|
|
rn <- length(runvar) |
|
|
rsd <- sd(runvar) |
|
|
rmin <- min(runvar) |
|
|
rmax <- max(runvar) |
|
|
if (missing(cutpoint)) { |
|
|
if (verbose) |
|
|
cat("Assuming cutpoint of zero.\n") |
|
|
cutpoint <- 0 |
|
|
} |
|
|
if (cutpoint <= rmin | cutpoint >= rmax) { |
|
|
stop("Cutpoint must lie within range of runvar") |
|
|
} |
|
|
if (is.null(bin)) { |
|
|
bin <- 2 * rsd * rn^(-1/2) |
|
|
if (verbose) |
|
|
cat("Using calculated bin size: ", sprintf("%.3f", |
|
|
bin), "\n") |
|
|
} |
|
|
l <- floor((rmin - cutpoint)/bin) * bin + bin/2 + cutpoint |
|
|
r <- floor((rmax - cutpoint)/bin) * bin + bin/2 + cutpoint |
|
|
lc <- cutpoint - (bin/2) |
|
|
rc <- cutpoint + (bin/2) |
|
|
j <- floor((rmax - rmin)/bin) + 2 |
|
|
binnum <- round((((floor((runvar - cutpoint)/bin) * bin + |
|
|
bin/2 + cutpoint) - l)/bin) + 1) |
|
|
cellval <- rep(0, j) |
|
|
for (i in seq(1, rn)) { |
|
|
cnum <- binnum[i] |
|
|
cellval[cnum] <- cellval[cnum] + 1 |
|
|
} |
|
|
cellval <- (cellval/rn)/bin |
|
|
cellmp <- seq(from = 1, to = j, by = 1) |
|
|
cellmp <- floor(((l + (cellmp - 1) * bin) - cutpoint)/bin) * |
|
|
bin + bin/2 + cutpoint |
|
|
if (is.null(bw)) { |
|
|
leftofc <- round((((floor((lc - cutpoint)/bin) * bin + |
|
|
bin/2 + cutpoint) - l)/bin) + 1) |
|
|
rightofc <- round((((floor((rc - cutpoint)/bin) * bin + |
|
|
bin/2 + cutpoint) - l)/bin) + 1) |
|
|
if (rightofc - leftofc != 1) { |
|
|
stop("Error occurred in bandwidth calculation") |
|
|
} |
|
|
cellmpleft <- cellmp[1:leftofc] |
|
|
cellmpright <- cellmp[rightofc:j] |
|
|
P.lm <- lm(cellval ~ poly(cellmp, degree = 4, raw = T), |
|
|
subset = cellmp < cutpoint) |
|
|
mse4 <- summary(P.lm)$sigma^2 |
|
|
lcoef <- coef(P.lm) |
|
|
fppleft <- 2 * lcoef[3] + 6 * lcoef[4] * cellmpleft + |
|
|
12 * lcoef[5] * cellmpleft * cellmpleft |
|
|
hleft <- 3.348 * (mse4 * (cutpoint - l)/sum(fppleft * |
|
|
fppleft))^(1/5) |
|
|
P.lm <- lm(cellval ~ poly(cellmp, degree = 4, raw = T), |
|
|
subset = cellmp >= cutpoint) |
|
|
mse4 <- summary(P.lm)$sigma^2 |
|
|
rcoef <- coef(P.lm) |
|
|
fppright <- 2 * rcoef[3] + 6 * rcoef[4] * cellmpright + |
|
|
12 * rcoef[5] * cellmpright * cellmpright |
|
|
hright <- 3.348 * (mse4 * (r - cutpoint)/sum(fppright * |
|
|
fppright))^(1/5) |
|
|
bw = 0.5 * (hleft + hright) |
|
|
if (verbose) |
|
|
cat("Using calculated bandwidth: ", sprintf("%.3f", |
|
|
bw), "\n") |
|
|
} |
|
|
if (sum(runvar > cutpoint - bw & runvar < cutpoint) == 0 | |
|
|
sum(runvar < cutpoint + bw & runvar >= cutpoint) == 0) |
|
|
stop("Insufficient data within the bandwidth.") |
|
|
if (plot) { |
|
|
d.l <- data.frame(cellmp = cellmp[cellmp < cutpoint], |
|
|
cellval = cellval[cellmp < cutpoint], dist = NA, |
|
|
est = NA, lwr = NA, upr = NA) |
|
|
pmin <- cutpoint - 2 * rsd |
|
|
pmax <- cutpoint + 2 * rsd |
|
|
for (i in 1:nrow(d.l)) { |
|
|
d.l$dist <- d.l$cellmp - d.l[i, "cellmp"] |
|
|
w <- kernelwts(d.l$dist, 0, bw, kernel = "triangular") |
|
|
newd <- data.frame(dist = 0) |
|
|
pred <- predict(lm(cellval ~ dist, weights = w, data = d.l), |
|
|
interval = "confidence", newdata = newd) |
|
|
d.l$est[i] <- pred[1] |
|
|
d.l$lwr[i] <- pred[2] |
|
|
d.l$upr[i] <- pred[3] |
|
|
} |
|
|
d.r <- data.frame(cellmp = cellmp[cellmp >= cutpoint], |
|
|
cellval = cellval[cellmp >= cutpoint], dist = NA, |
|
|
est = NA, lwr = NA, upr = NA) |
|
|
for (i in 1:nrow(d.r)) { |
|
|
d.r$dist <- d.r$cellmp - d.r[i, "cellmp"] |
|
|
w <- kernelwts(d.r$dist, 0, bw, kernel = "triangular") |
|
|
newd <- data.frame(dist = 0) |
|
|
pred <- predict(lm(cellval ~ dist, weights = w, data = d.r), |
|
|
interval = "confidence", newdata = newd) |
|
|
d.r$est[i] <- pred[1] |
|
|
d.r$lwr[i] <- pred[2] |
|
|
d.r$upr[i] <- pred[3] |
|
|
} |
|
|
plot(d.l$cellmp, d.l$est, lty = 1, lwd = 2, col = "black", |
|
|
type = "l", xlim = my_xlim, ylim = c(min(cellval[cellmp <= |
|
|
pmax & cellmp >= pmin]), max(cellval[cellmp <= |
|
|
pmax & cellmp >= pmin])), xlab = NA, ylab = NA, |
|
|
main = NA) |
|
|
lines(d.l$cellmp, d.l$lwr, lty = 2, lwd = 1, col = "black", |
|
|
type = "l") |
|
|
lines(d.l$cellmp, d.l$upr, lty = 2, lwd = 1, col = "black", |
|
|
type = "l") |
|
|
lines(d.r$cellmp, d.r$est, lty = 1, lwd = 2, col = "black", |
|
|
type = "l") |
|
|
lines(d.r$cellmp, d.r$lwr, lty = 2, lwd = 1, col = "black", |
|
|
type = "l") |
|
|
lines(d.r$cellmp, d.r$upr, lty = 2, lwd = 1, col = "black", |
|
|
type = "l") |
|
|
points(cellmp, cellval, type = "p", pch = 20) |
|
|
} |
|
|
cmp <- cellmp |
|
|
cval <- cellval |
|
|
padzeros <- ceiling(bw/bin) |
|
|
jp <- j + 2 * padzeros |
|
|
if (padzeros >= 1) { |
|
|
cval <- c(rep(0, padzeros), cellval, rep(0, padzeros)) |
|
|
cmp <- c(seq(l - padzeros * bin, l - bin, bin), cellmp, |
|
|
seq(r + bin, r + padzeros * bin, bin)) |
|
|
} |
|
|
dist <- cmp - cutpoint |
|
|
w <- 1 - abs(dist/bw) |
|
|
w <- ifelse(w > 0, w * (cmp < cutpoint), 0) |
|
|
w <- (w/sum(w)) * jp |
|
|
fhatl <- predict(lm(cval ~ dist, weights = w), newdata = data.frame(dist = 0))[[1]] |
|
|
w <- 1 - abs(dist/bw) |
|
|
w <- ifelse(w > 0, w * (cmp >= cutpoint), 0) |
|
|
w <- (w/sum(w)) * jp |
|
|
fhatr <- predict(lm(cval ~ dist, weights = w), newdata = data.frame(dist = 0))[[1]] |
|
|
thetahat <- log(fhatr) - log(fhatl) |
|
|
sethetahat <- sqrt((1/(rn * bw)) * (24/5) * ((1/fhatr) + |
|
|
(1/fhatl))) |
|
|
z <- thetahat/sethetahat |
|
|
p <- 2 * pnorm(abs(z), lower.tail = FALSE) |
|
|
if (verbose) { |
|
|
cat("Log difference in heights is ", sprintf("%.3f", |
|
|
thetahat), " with SE ", sprintf("%.3f", sethetahat), |
|
|
"\n") |
|
|
cat(" this gives a z-stat of ", sprintf("%.3f", z), |
|
|
"\n") |
|
|
cat(" and a p value of ", sprintf("%.3f", p), "\n") |
|
|
} |
|
|
if (ext.out) |
|
|
return(list(theta = thetahat, se = sethetahat, z = z, |
|
|
p = p, binsize = bin, bw = bw, cutpoint = cutpoint, |
|
|
data = data.frame(cellmp, cellval))) |
|
|
else if (htest) { |
|
|
structure(list(statistic = c(z = z), p.value = p, method = "McCrary (2008) sorting test", |
|
|
parameter = c(binwidth = bin, bandwidth = bw, cutpoint = cutpoint), |
|
|
alternative = "no apparent sorting"), class = "htest") |
|
|
} |
|
|
else return(p) |
|
|
} |
|
|
|
|
|
|
|
|
prop_subset <- prop_data[which(prop_data$Total_Propretario < 1500 & prop_data$Total_Propretario >180),] |
|
|
pdf(file="./Output/McCrarySorting_PropLevel.pdf", height=6, width=9, paper = "USr", family = "Palatino") |
|
|
DCdensity2(runvar = prop_subset$Total_Propretario,cutpoint = 500,plot = TRUE,verbose = TRUE, ext.out = FALSE, bw=350, my_xlim = c(200,1000)) |
|
|
abline(v=500,col=c("red")) |
|
|
|
|
|
title(xlab="Cumulative Landholdings (ha)", ylab="Density") |
|
|
dev.off() |
|
|
|
|
|
|