|
|
|
|
|
|
|
|
library(tidyverse) |
|
|
library(stargazer) |
|
|
library(haven) |
|
|
library(estimatr) |
|
|
library(dplyr) |
|
|
library(fixest) |
|
|
library(modelsummary) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
load("dyadic_data_1-4-22.Rdata") |
|
|
dta <- updated_data |
|
|
|
|
|
|
|
|
vars <- c("to_mp_number", "to_rile", "to_economy", "to_society", "year", "country", |
|
|
"to_pfeml", "to_femaleleader") |
|
|
dta <- dta[vars] |
|
|
dta <- na.omit(dta) |
|
|
|
|
|
|
|
|
dta_unique <- unique(dta) |
|
|
|
|
|
|
|
|
fig1 <- ggplot(dta_unique, aes(x = to_pfeml)) + |
|
|
geom_histogram(color="black", fill="grey40", binwidth =0.1, center=0.25) + |
|
|
scale_x_continuous(breaks = seq(0,1,0.1)) + |
|
|
theme_minimal() + |
|
|
theme(plot.title = element_text(size=12)) + |
|
|
ylab("Frequency")+ |
|
|
xlab("Proportion of Women MPs");fig1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
load("dyadic_data_1-4-22.Rdata") |
|
|
|
|
|
dta <-updated_data |
|
|
|
|
|
|
|
|
dta$cntryyr <-paste(dta$country, dta$year, sep = "") |
|
|
|
|
|
|
|
|
dta <- subset(dta, dta$to_prior_seats >=4) |
|
|
|
|
|
|
|
|
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s", |
|
|
"year", "country", "party_dislike", "party_like", "cntryyr", "to_pfeml", "to_prior_seats", "to_mp_number") |
|
|
dta <- dta[vars] |
|
|
dta <- na.omit(dta) |
|
|
|
|
|
|
|
|
table1.1 <-lm(party_like ~ to_pfeml + as.factor(cntryyr), data = dta) |
|
|
table1.2 <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(cntryyr), data = dta) |
|
|
|
|
|
|
|
|
stargazer(table1.1, table1.2, |
|
|
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")), |
|
|
se = starprep(table1.1, table1.2, |
|
|
clusters = dta$country), |
|
|
keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition", |
|
|
"econ_distance_s", "society_distance_s")) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dta <- readRDS("gender_disagregated_8-8-21.rds") |
|
|
|
|
|
|
|
|
dta$countryyear <-paste(dta$country, dta$year, sep = "") |
|
|
|
|
|
|
|
|
dta <- subset(dta, dta$to_prior_seats >=4) |
|
|
|
|
|
|
|
|
dta$like <- 10- dta$dislike |
|
|
|
|
|
|
|
|
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s", |
|
|
"year", "country", "to_pfeml", |
|
|
"countryyear", "gender", "like", "dislike", "to_prior_seats") |
|
|
dta <- dta[vars] |
|
|
dta <- na.omit(dta) |
|
|
|
|
|
|
|
|
dta_male <- subset(dta, gender==1) |
|
|
dta_female <- subset(dta, gender==2) |
|
|
|
|
|
table1.3 <-lm(like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_female) |
|
|
table1.4 <-lm(like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_male) |
|
|
|
|
|
|
|
|
stargazer(table1.3, |
|
|
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Out-Party Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")), |
|
|
se = starprep(table1.3, |
|
|
clusters = dta_female$country), |
|
|
keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition", "to_pfeml2")) |
|
|
|
|
|
|
|
|
stargazer(table1.4, |
|
|
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Out-Party Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")), |
|
|
se = starprep(table1.4, |
|
|
clusters = dta_male$country), |
|
|
keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition", "to_pfeml2")) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
load("dyadic_data_1-4-22.Rdata") |
|
|
|
|
|
dta <-updated_data |
|
|
|
|
|
|
|
|
dta$cntryyr <-paste(dta$country, dta$year, sep = "") |
|
|
|
|
|
|
|
|
|
|
|
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s", |
|
|
"year", "country", "party_dislike", "party_like", "cntryyr", "to_pfeml", "to_prior_seats", "to_mp_number") |
|
|
dta <- dta[vars] |
|
|
dta <- na.omit(dta) |
|
|
|
|
|
|
|
|
tableS2.1 <-lm(party_like ~ to_pfeml + as.factor(cntryyr), data = dta) |
|
|
tableS2.2 <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(cntryyr), data = dta) |
|
|
|
|
|
summary(tableS2.1) |
|
|
summary(tableS2.2) |
|
|
|
|
|
|
|
|
stargazer(tableS2.1, tableS2.2, |
|
|
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")), |
|
|
se = starprep(tableS2.1, tableS2.2, |
|
|
clusters = dta$country), |
|
|
keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition", |
|
|
"econ_distance_s", "society_distance_s")) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dta <- readRDS("gender_disagregated_8-8-21.rds") |
|
|
|
|
|
|
|
|
dta$countryyear <-paste(dta$country, dta$year, sep = "") |
|
|
|
|
|
|
|
|
|
|
|
dta$like <- 10- dta$dislike |
|
|
|
|
|
|
|
|
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s", |
|
|
"year", "country", "to_pfeml", |
|
|
"countryyear", "gender", "like", "dislike", "to_prior_seats") |
|
|
dta <- dta[vars] |
|
|
dta <- na.omit(dta) |
|
|
|
|
|
|
|
|
dta_male <- subset(dta, gender==1) |
|
|
dta_female <- subset(dta, gender==2) |
|
|
|
|
|
tableS2.3 <-lm(like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_female) |
|
|
tableS2.4 <-lm(like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_male) |
|
|
|
|
|
summary(tableS2.3) |
|
|
summary(tableS2.4) |
|
|
|
|
|
|
|
|
stargazer(tableS2.3, |
|
|
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Out-Party Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")), |
|
|
se = starprep(tableS2.3, |
|
|
clusters = dta_female$country), |
|
|
keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition", "to_pfeml2")) |
|
|
|
|
|
|
|
|
stargazer(tableS2.4, |
|
|
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Out-Party Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")), |
|
|
se = starprep(tableS2.4, |
|
|
clusters = dta_male$country), |
|
|
keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition", "to_pfeml2")) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
load("dyadic_data_1-4-22.Rdata") |
|
|
|
|
|
dta <-updated_data |
|
|
colnames(dta) |
|
|
|
|
|
|
|
|
dta$cntryyr <-paste(dta$country, dta$year, sep = "") |
|
|
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s", |
|
|
"year", "country", "party_dislike","party_like", "cntryyr", "to_pfeml", "from_rile", "to_rile", |
|
|
"from_left_bloc", "from_right_bloc", "to_left_bloc", "to_right_bloc", "from_parfam", "to_parfam", |
|
|
"to_prior_seats") |
|
|
dta <- dta[vars] |
|
|
dta <- na.omit(dta) |
|
|
|
|
|
dta_nrr <- subset(dta, dta$to_parfam!=70) |
|
|
dta_nrr <- subset(dta_nrr, dta_nrr$from_parfam!=70) |
|
|
|
|
|
|
|
|
dta_small_nrr <- subset(dta_nrr, dta_nrr$to_prior_seats >=4) |
|
|
|
|
|
table.S3 <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(country), data = dta_small_nrr) |
|
|
summary(table.S3) |
|
|
|
|
|
stargazer(table.S3, |
|
|
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")), |
|
|
se = starprep(table.S3, |
|
|
clusters = dta_small_nrr$country), |
|
|
keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition", |
|
|
"econ_distance_s", "society_distance_s")) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
load("dyadic_data_1-4-22.Rdata") |
|
|
|
|
|
dta <-updated_data |
|
|
|
|
|
|
|
|
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s", |
|
|
"year", "country", "party_dislike", "party_like", "to_parfam", "to_left_bloc", "to_right_bloc", "cntryyr", "to_pfeml", |
|
|
"to_prior_seats") |
|
|
dta <- dta[vars] |
|
|
dta <- na.omit(dta) |
|
|
|
|
|
|
|
|
dta_small <- subset(dta, dta$to_prior_seats >=4) |
|
|
|
|
|
table.3B.1 <-lm(party_like ~ to_pfeml + as.factor(cntryyr), data = dta_small) |
|
|
table.3B.2 <-lm(party_like ~ to_pfeml + rile_distance_s + to_left_bloc + prior_coalition + prior_opposition + as.factor(cntryyr), data = dta_small) |
|
|
|
|
|
summary(table.3B.2) |
|
|
|
|
|
|
|
|
stargazer(table.3B.1, table.3B.2, |
|
|
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")), |
|
|
se = starprep(table.3B.1, table.3B.2, |
|
|
clusters = dta_small$country), |
|
|
keep = c("to_pfeml", "rile_distance_s", "to_left_bloc", "prior_coalition", "prior_opposition", |
|
|
"econ_distance_s", "society_distance_s")) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
load("dyadic_data_1-4-22.Rdata") |
|
|
|
|
|
dta <-updated_data |
|
|
|
|
|
|
|
|
dta$countryyear <-paste(dta$country, dta$year, sep = "") |
|
|
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s", |
|
|
"year", "country", "party_dislike","party_like", "countryyear", "to_pfeml", "from_rile", "to_rile", |
|
|
"logDM", "to_left_bloc", "to_prior_seats") |
|
|
dta <- dta[vars] |
|
|
dta <- na.omit(dta) |
|
|
|
|
|
|
|
|
dta_early <- subset(dta, dta$year<=2006) |
|
|
dta_late <- subset(dta, dta$year>=2007) |
|
|
|
|
|
|
|
|
table.early <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_early) |
|
|
table.late <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_late) |
|
|
|
|
|
|
|
|
dta_early_small <- subset(dta_early, dta_early$to_prior_seats >=4) |
|
|
dta_late_small <- subset(dta_late, dta_late$to_prior_seats >=4) |
|
|
|
|
|
table.4.1 <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_early_small) |
|
|
table.4.2 <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_late_small) |
|
|
|
|
|
summary(table.4.1) |
|
|
summary(table.4.2) |
|
|
|
|
|
|
|
|
stargazer(table.4.1, |
|
|
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Out-Party Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")), |
|
|
se = starprep(table.4.1, |
|
|
clusters = dta_early_small$country), |
|
|
keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition" |
|
|
)) |
|
|
|
|
|
|
|
|
stargazer(table.4.2, |
|
|
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Out-Party Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")), |
|
|
se = starprep(table.4.2, |
|
|
clusters = dta_late_small$country), |
|
|
keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition" |
|
|
)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
load("dyadic_data_1-4-22.Rdata") |
|
|
|
|
|
dta <-updated_data |
|
|
|
|
|
|
|
|
dta$countryyear <-paste(dta$country, dta$year, sep = "") |
|
|
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s", |
|
|
"year", "country", "party_dislike", "party_like", "countryyear", |
|
|
"to_pfeml", "from_pfeml", "diff_pfeml", "to_prior_seats") |
|
|
dta <- dta[vars] |
|
|
dta <- na.omit(dta) |
|
|
|
|
|
|
|
|
dta_small <- subset(dta, dta$to_prior_seats >=4) |
|
|
|
|
|
table.S5.1 <-lm(party_like ~ to_pfeml + from_pfeml + diff_pfeml + as.factor(countryyear), data = dta_small) |
|
|
table.S5.2 <-lm(party_like ~ to_pfeml + from_pfeml + diff_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_small) |
|
|
|
|
|
summary(table.S5.1) |
|
|
summary(table.S5.2) |
|
|
|
|
|
|
|
|
stargazer(table.S5.1, table.S5.2, |
|
|
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")), |
|
|
se = starprep(table.S5.1, table.S5.2, |
|
|
clusters = dta_small$country), |
|
|
keep = c("to_pfeml", "from_pfeml", "diff_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition", |
|
|
"econ_distance_s", "society_distance_s")) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
plot_1 <- as.data.frame((unique(dta$to_pfeml))) |
|
|
colnames(plot_1) <- c("to_pfeml") |
|
|
|
|
|
|
|
|
plot_1$from_pfeml <- mean(dta$from_pfeml, na.rm=T) + sd(dta$from_pfeml, na.rm=T) |
|
|
|
|
|
|
|
|
plot_1$diff_pfeml <- abs(plot_1$to_pfeml - plot_1$from_pfeml) |
|
|
|
|
|
|
|
|
plot_1$rile_distance_s <- mean(dta$rile_distance_s, na.rm=T) |
|
|
plot_1$prior_coalition <- 0 |
|
|
plot_1$prior_opposition <- 1 |
|
|
plot_1$countryyear <- "France2012" |
|
|
plot_1$to_mp_number <- "31320" |
|
|
plot_1$group <- "above_mean" |
|
|
|
|
|
|
|
|
plot_2 <- as.data.frame((unique(dta$to_pfeml))) |
|
|
colnames(plot_2) <- c("to_pfeml") |
|
|
|
|
|
|
|
|
plot_2$from_pfeml <- mean(dta$from_pfeml, na.rm=T) - sd(dta$from_pfeml, na.rm=T) |
|
|
|
|
|
|
|
|
plot_2$diff_pfeml <- abs(plot_2$to_pfeml - plot_2$from_pfeml) |
|
|
|
|
|
|
|
|
plot_2$rile_distance_s <- mean(dta$rile_distance_s, na.rm=T) |
|
|
plot_2$prior_coalition <- 0 |
|
|
plot_2$prior_opposition <- 1 |
|
|
plot_2$countryyear <- "France2012" |
|
|
plot_2$to_mp_number <- "31320" |
|
|
plot_2$group <- "below_mean" |
|
|
|
|
|
plot_dta <- rbind(plot_1, plot_2) |
|
|
|
|
|
|
|
|
|
|
|
figureS1.data <- as.data.frame(predict(table.S5.2, newdata = plot_dta, interval = "confidence")) |
|
|
|
|
|
plot_dta$fit <- figureS1.data$fit |
|
|
plot_dta$lwr <- figureS1.data$lwr |
|
|
plot_dta$upr <- figureS1.data$upr |
|
|
|
|
|
figS1 <- ggplot(plot_dta, aes(x=to_pfeml, y=fit, lty=group)) |
|
|
figS1 <- figS1 + geom_line() + |
|
|
geom_ribbon(aes(x = to_pfeml, y = fit, ymin = lwr, |
|
|
ymax = upr), |
|
|
lwd = 1/2, alpha=0.1) + |
|
|
theme_minimal() + |
|
|
theme(plot.title = element_text(size=12)) + |
|
|
ylab("Predicted Out-Party Thermometer Rating")+ |
|
|
xlab("Proportion of Out-Party Women MPs") + |
|
|
theme(legend.position = "none") + |
|
|
geom_text(x=0.70, y=5.3, label="in-party % of women is \n1 SD above the mean") + |
|
|
geom_text(x=0.70, y=4.0, label="in-party % of women is \n1 SD below the mean", color="grey37") + |
|
|
ylim(c(2.5,6.5));figS1 |
|
|
|
|
|
pdf("figS1.pdf") |
|
|
figS1 |
|
|
dev.off() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
load("dyadic_data_1-4-22.Rdata") |
|
|
|
|
|
dta <-updated_data |
|
|
|
|
|
|
|
|
dta$countryyear <-paste(dta$country, dta$year, sep = "") |
|
|
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s", |
|
|
"year", "country", "party_dislike","party_like", "countryyear", "to_pfeml", "from_rile", "to_rile", |
|
|
"logDM", "to_left_bloc", "to_prior_seats") |
|
|
dta <- dta[vars] |
|
|
dta <- na.omit(dta) |
|
|
|
|
|
dta_small <- subset(dta, dta$to_prior_seats >=4) |
|
|
|
|
|
table.S6.1 <-lm(party_like ~ to_pfeml + rile_distance_s + logDM + prior_coalition + prior_opposition + as.factor(year), data = dta_small) |
|
|
table.S6.2 <-lm(party_like ~ to_pfeml*logDM + rile_distance_s + prior_coalition + prior_opposition + as.factor(year), data = dta_small) |
|
|
table.S6.3 <-lm(party_like ~ to_pfeml*logDM + rile_distance_s*logDM + prior_coalition*logDM + prior_opposition*logDM + as.factor(year), data = dta_small) |
|
|
|
|
|
summary(table.S6.1) |
|
|
summary(table.S6.2) |
|
|
summary(table.S6.3) |
|
|
|
|
|
stargazer(table.S6.1, table.S6.2, table.S6.3, |
|
|
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")), |
|
|
se = starprep(table.S6.1, table.S6.2, table.S6.3, |
|
|
clusters = dta_small$country), |
|
|
keep = c("to_pfeml", "rile_distance_s", "logDM", "prior_coalition", "prior_opposition", |
|
|
"econ_distance_s", "society_distance_s")) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
load("dyadic_data_1-4-22.Rdata") |
|
|
|
|
|
dta <-updated_data |
|
|
|
|
|
|
|
|
dta$cntryyr <-paste(dta$country, dta$year, sep = "") |
|
|
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s", |
|
|
"year", "country", "party_dislike", "party_like", "cntryyr", "to_pfeml", "to_prior_seats") |
|
|
dta <- dta[vars] |
|
|
dta <- na.omit(dta) |
|
|
|
|
|
|
|
|
dta$to_pfeml2 <- dta$to_pfeml^2 |
|
|
|
|
|
|
|
|
dta <- subset(dta, dta$to_prior_seats >=4) |
|
|
|
|
|
table.S7.1 <-lm(party_like ~ to_pfeml + to_pfeml2 + as.factor(cntryyr), data = dta) |
|
|
table.S7.2 <-lm(party_like ~ to_pfeml + to_pfeml2 + rile_distance_s + prior_coalition + prior_opposition + as.factor(cntryyr), data = dta) |
|
|
|
|
|
summary(table.S7.1) |
|
|
summary(table.S7.2) |
|
|
|
|
|
|
|
|
stargazer(table.S7.1, table.S7.2, |
|
|
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")), |
|
|
se = starprep(table.S7.1, table.S7.2, |
|
|
clusters = dta$country), |
|
|
keep = c("to_pfeml", "to_pfeml2", "rile_distance_s", "prior_coalition", "prior_opposition", |
|
|
"econ_distance_s", "society_distance_s")) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
plot_S2 <- as.data.frame((unique(dta$to_pfeml))) |
|
|
colnames(plot_S2) <- c("to_pfeml") |
|
|
|
|
|
|
|
|
plot_S2$to_pfeml2 <- plot_S2$to_pfeml^2 |
|
|
|
|
|
|
|
|
plot_S2$rile_distance_s <- mean(dta$rile_distance_s, na.rm=T) |
|
|
plot_S2$prior_coalition <- 0 |
|
|
plot_S2$prior_opposition <- 1 |
|
|
plot_S2$cntryyr <- "France2012" |
|
|
plot_S2$to_mp_number <- "31320" |
|
|
|
|
|
figureS2.data <- as.data.frame(predict(table.S7.2, newdata = plot_S2, interval = "confidence")) |
|
|
|
|
|
plot_S2$fit <- figureS2.data$fit |
|
|
plot_S2$lwr <- figureS2.data$lwr |
|
|
plot_S2$upr <- figureS2.data$upr |
|
|
|
|
|
figS2 <- ggplot(plot_S2, aes(x=to_pfeml, y=fit)) |
|
|
figS2 <- figS2 + geom_line() + |
|
|
geom_ribbon(aes(x = to_pfeml, y = fit, ymin = lwr, |
|
|
ymax = upr), |
|
|
lwd = 1/2, alpha=0.1) + |
|
|
theme_minimal() + |
|
|
theme(plot.title = element_text(size=12)) + |
|
|
ylab("Predicted Out-Party Thermometer Rating")+ |
|
|
xlab("Proportion of Out-Party Women MPs") + |
|
|
ylim(c(2,5));figS2 |
|
|
|
|
|
pdf("figS2.pdf") |
|
|
figS2 |
|
|
dev.off() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
load("dyadic_data_1-4-22.Rdata") |
|
|
|
|
|
dta <-updated_data |
|
|
|
|
|
dta_womenlead <- subset(dta, dta$to_femaleleader==1) |
|
|
|
|
|
|
|
|
dta_womenlead$countryyear <-paste(dta_womenlead$country, dta_womenlead$year, sep = "") |
|
|
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s", |
|
|
"year", "country", "party_dislike","party_like", "countryyear", "to_pfeml", "to_prior_seats") |
|
|
dta_womenlead <- dta_womenlead[vars] |
|
|
dta_womenlead <- na.omit(dta_womenlead) |
|
|
|
|
|
|
|
|
dta_womenlead <- subset(dta_womenlead, dta_womenlead$to_prior_seats >=4) |
|
|
|
|
|
table.S8A1 <-lm(party_like ~ to_pfeml + as.factor(countryyear), data = dta_womenlead) |
|
|
table.S8A2 <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_womenlead) |
|
|
|
|
|
summary(table.S8A1) |
|
|
summary(table.S8A2) |
|
|
|
|
|
|
|
|
stargazer(table.S8A1, table.S8A2, |
|
|
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")), |
|
|
se = starprep(table.S8A1, table.S8A2, |
|
|
clusters = dta_womenlead$country), |
|
|
keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition", |
|
|
"econ_distance_s", "society_distance_s")) |
|
|
|
|
|
|
|
|
load("dyadic_data_1-4-22.Rdata") |
|
|
dta <-updated_data |
|
|
|
|
|
dta_malelead <- subset(dta, dta$to_femaleleader==0) |
|
|
|
|
|
|
|
|
dta_malelead$countryyear <-paste(dta_malelead$country, dta_malelead$year, sep = "") |
|
|
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s", |
|
|
"year", "country", "party_dislike","party_like", "countryyear", "to_pfeml", "to_prior_seats") |
|
|
dta_malelead <- dta_malelead[vars] |
|
|
dta_malelead <- na.omit(dta_malelead) |
|
|
|
|
|
|
|
|
dta_malelead <- subset(dta_malelead, dta_malelead$to_prior_seats >=4) |
|
|
|
|
|
table.S8B1 <-lm(party_like ~ to_pfeml + as.factor(countryyear), data = dta_malelead) |
|
|
table.S8B2 <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta_malelead) |
|
|
|
|
|
summary(table.S8B1) |
|
|
summary(table.S8B2) |
|
|
|
|
|
|
|
|
stargazer(table.S8B1, table.S8B2, |
|
|
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")), |
|
|
se = starprep(table.S8B1, table.S8B2, |
|
|
clusters = dta_malelead$country), |
|
|
keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition", |
|
|
"econ_distance_s", "society_distance_s")) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
load("dyadic_data_1-4-22.Rdata") |
|
|
|
|
|
dta <- updated_data |
|
|
|
|
|
|
|
|
dta$countryyear <-paste(dta$country, dta$year, sep = "") |
|
|
|
|
|
|
|
|
dta$partydyad <-paste(dta$from_mp_number, dta$to_mp_number, sep = "") |
|
|
|
|
|
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s", |
|
|
"year", "country", "party_dislike","party_like", "countryyear", "to_pfeml", |
|
|
"from_rile", "to_rile", "to_mp_number", "partydyad", "to_prior_seats") |
|
|
dta <- dta[vars] |
|
|
dta <- na.omit(dta) |
|
|
|
|
|
|
|
|
dta <- subset(dta, dta$to_prior_seats >=4) |
|
|
|
|
|
table.S9 <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(countryyear), data = dta) |
|
|
summary(table.S9) |
|
|
|
|
|
|
|
|
stargazer(table.S9, |
|
|
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Out-Party Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")), |
|
|
se = starprep(table.S9, |
|
|
clusters = dta$partydyad), |
|
|
keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition", |
|
|
"econ_distance_s", "society_distance_s")) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
load("dyadic_data_1-4-22.Rdata") |
|
|
|
|
|
dta <-updated_data |
|
|
|
|
|
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s", |
|
|
"year", "country", "party_dislike", "to_pfeml", "party_like", "to_prior_seats") |
|
|
dta <- dta[vars] |
|
|
dta <- na.omit(dta) |
|
|
|
|
|
|
|
|
dta_small <- subset(dta, dta$to_prior_seats >=4) |
|
|
|
|
|
table.S10.1 <-lm(party_like ~ to_pfeml + as.factor(country), data = dta_small) |
|
|
table.S10.2 <-lm(party_like ~ to_pfeml + rile_distance_s + prior_coalition + prior_opposition + as.factor(country), data = dta_small) |
|
|
|
|
|
summary(table.S10.2) |
|
|
|
|
|
|
|
|
stargazer(table.S10.1, table.S10.2, |
|
|
add.lines = list(c("Country-Year Fixed Effects?", "Yes"), c("Country-Level Clustered SEs?", "Yes")), |
|
|
se = starprep(table.S10.1, table.S10.2, |
|
|
clusters = dta_small$country), |
|
|
keep = c("to_pfeml", "rile_distance_s", "prior_coalition", "prior_opposition", |
|
|
"econ_distance_s", "society_distance_s")) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
load("Data/multilevel_1-5-22.Rdata") |
|
|
|
|
|
indiv_data <-multilevel_data |
|
|
|
|
|
|
|
|
vars <- c("rile_distance_s", "prior_coalition", "prior_opposition", "econ_distance_s", "society_distance_s", |
|
|
"year", "country", "cntryyr", "to_pfeml", "from_pfeml", "thermometer_score", "ID", "party_to", "party_from", |
|
|
"from_partyname", "to_partyname", "to_left_bloc", "from_left_bloc", |
|
|
"to_right_bloc", "from_right_bloc", "gender", "to_parfam", "from_parfam", "to_prior_seats", |
|
|
"from_mp_number", "to_mp_number") |
|
|
|
|
|
|
|
|
indiv_data <- indiv_data[vars] |
|
|
|
|
|
|
|
|
indiv_data <-mutate(indiv_data, gender = ifelse(gender == "1", "male", |
|
|
ifelse(gender == "2", "female", NA))) |
|
|
|
|
|
indiv_data$gender <-as.factor(indiv_data$gender) |
|
|
|
|
|
|
|
|
indiv_data <-filter(indiv_data, is.na(to_pfeml) == F) |
|
|
|
|
|
|
|
|
indiv_data$dyad <-paste(indiv_data$from_mp_number, indiv_data$to_mp_number, sep ="_to_") |
|
|
|
|
|
|
|
|
table11A.1.1 <-feols(thermometer_score ~ to_pfeml | ID, data = indiv_data, cluster = ~cntryyr) |
|
|
table11A.1.2 <-feols(thermometer_score ~ to_pfeml | ID, data = indiv_data, cluster = ~dyad) |
|
|
table11A.1.3 <-feols(thermometer_score ~ to_pfeml | ID, data = indiv_data, cluster = ~ID) |
|
|
|
|
|
|
|
|
table11A.2.1 <-feols(thermometer_score ~ to_pfeml + + rile_distance_s + prior_coalition + prior_opposition | ID, data = indiv_data, cluster = ~cntryyr) |
|
|
table11A.2.2 <-feols(thermometer_score ~ to_pfeml + + rile_distance_s + prior_coalition + prior_opposition | ID, data = indiv_data, cluster = ~dyad) |
|
|
table11A.2.3 <-feols(thermometer_score ~ to_pfeml + + rile_distance_s + prior_coalition + prior_opposition | ID, data = indiv_data, cluster = ~ID) |
|
|
|
|
|
|
|
|
table11B.1.1 <-feols(thermometer_score ~ to_pfeml | cntryyr, data = indiv_data, cluster = ~cntryyr) |
|
|
table11B.1.2 <-feols(thermometer_score ~ to_pfeml | cntryyr, data = indiv_data, cluster = ~dyad) |
|
|
table11B.1.3 <-feols(thermometer_score ~ to_pfeml | cntryyr, data = indiv_data, cluster = ~ID) |
|
|
|
|
|
|
|
|
table11B.2.1 <-feols(thermometer_score ~ to_pfeml + + rile_distance_s + prior_coalition + prior_opposition | cntryyr, data = indiv_data, cluster = ~cntryyr) |
|
|
table11B.2.2 <-feols(thermometer_score ~ to_pfeml + + rile_distance_s + prior_coalition + prior_opposition | cntryyr, data = indiv_data, cluster = ~dyad) |
|
|
table11B.2.3 <-feols(thermometer_score ~ to_pfeml + + rile_distance_s + prior_coalition + prior_opposition | cntryyr, data = indiv_data, cluster = ~ID) |
|
|
|
|
|
|