Yield full path to audio files
Browse files- ksponspeech.py +17 -17
ksponspeech.py
CHANGED
@@ -15,9 +15,9 @@
|
|
15 |
"""The Korean Spontaneous Speech Corpus for Automatic Speech Recognition (KsponSpeech)"""
|
16 |
|
17 |
|
18 |
-
import
|
19 |
-
import datasets
|
20 |
|
|
|
21 |
|
22 |
_CITATION = """\
|
23 |
@article{bang2020ksponspeech,
|
@@ -46,9 +46,7 @@ class KsponSpeech(datasets.GeneratorBasedBuilder):
|
|
46 |
|
47 |
@property
|
48 |
def manual_download_instructions(self):
|
49 |
-
return (
|
50 |
-
"To use KsponSpeech, data files must be downloaded manually to a local drive. Please submit your request on the official website (https://aihub.or.kr/aidata/105). Once your request is approved, download all files, extract .zip files in one folder, and load the dataset with `datasets.load_dataset('ksponspeech', data_dir='path/to/folder')`."
|
51 |
-
)
|
52 |
|
53 |
def _info(self):
|
54 |
return datasets.DatasetInfo(
|
@@ -66,12 +64,12 @@ class KsponSpeech(datasets.GeneratorBasedBuilder):
|
|
66 |
|
67 |
def _split_generators(self, dl_manager):
|
68 |
"""Returns SplitGenerators."""
|
69 |
-
data_dir =
|
70 |
return [
|
71 |
datasets.SplitGenerator(
|
72 |
name=datasets.Split.TRAIN,
|
73 |
gen_kwargs={
|
74 |
-
"filepath":
|
75 |
"split": "train",
|
76 |
},
|
77 |
),
|
@@ -79,30 +77,32 @@ class KsponSpeech(datasets.GeneratorBasedBuilder):
|
|
79 |
name=datasets.Split.TEST,
|
80 |
gen_kwargs={
|
81 |
"filepath": {
|
82 |
-
"clean":
|
83 |
-
"other":
|
84 |
},
|
85 |
-
"split": "test"
|
86 |
},
|
87 |
),
|
88 |
datasets.SplitGenerator(
|
89 |
name=datasets.Split.VALIDATION,
|
90 |
gen_kwargs={
|
91 |
-
"filepath":
|
92 |
-
"split": "
|
93 |
},
|
94 |
),
|
95 |
]
|
96 |
|
97 |
def _generate_examples(self, filepath, split):
|
98 |
-
"""
|
99 |
if split is "test":
|
100 |
-
with open(filepath["clean"], encoding="utf-8") as f1, open(
|
|
|
|
|
101 |
data = "\n".join([f1.read().strip(), f2.read().strip()])
|
102 |
for id_, row in enumerate(data.split("\n")):
|
103 |
path, sentence = tuple(row.split(" :: "))
|
104 |
yield id_, {
|
105 |
-
"
|
106 |
"sentence": sentence,
|
107 |
}
|
108 |
else:
|
@@ -111,6 +111,6 @@ class KsponSpeech(datasets.GeneratorBasedBuilder):
|
|
111 |
for id_, row in enumerate(data.split("\n")):
|
112 |
path, sentence = tuple(row.split(" :: "))
|
113 |
yield id_, {
|
114 |
-
"
|
115 |
-
"sentence": sentence
|
116 |
}
|
|
|
15 |
"""The Korean Spontaneous Speech Corpus for Automatic Speech Recognition (KsponSpeech)"""
|
16 |
|
17 |
|
18 |
+
from os import path
|
|
|
19 |
|
20 |
+
import datasets
|
21 |
|
22 |
_CITATION = """\
|
23 |
@article{bang2020ksponspeech,
|
|
|
46 |
|
47 |
@property
|
48 |
def manual_download_instructions(self):
|
49 |
+
return "To use KsponSpeech, data files must be downloaded manually to a local drive. Please submit your request on the official website (https://aihub.or.kr/aidata/105). Once your request is approved, download all files, extract .zip files in one folder, and load the dataset with `datasets.load_dataset('ksponspeech', data_dir='path/to/folder')`."
|
|
|
|
|
50 |
|
51 |
def _info(self):
|
52 |
return datasets.DatasetInfo(
|
|
|
64 |
|
65 |
def _split_generators(self, dl_manager):
|
66 |
"""Returns SplitGenerators."""
|
67 |
+
self.data_dir = path.abspath(path.expanduser(dl_manager.manual_dir))
|
68 |
return [
|
69 |
datasets.SplitGenerator(
|
70 |
name=datasets.Split.TRAIN,
|
71 |
gen_kwargs={
|
72 |
+
"filepath": path.join(self.data_dir, "scripts/train.trn"),
|
73 |
"split": "train",
|
74 |
},
|
75 |
),
|
|
|
77 |
name=datasets.Split.TEST,
|
78 |
gen_kwargs={
|
79 |
"filepath": {
|
80 |
+
"clean": path.join(self.data_dir, "scripts/eval_clean.trn"),
|
81 |
+
"other": path.join(self.data_dir, "scripts/eval_other.trn"),
|
82 |
},
|
83 |
+
"split": "test",
|
84 |
},
|
85 |
),
|
86 |
datasets.SplitGenerator(
|
87 |
name=datasets.Split.VALIDATION,
|
88 |
gen_kwargs={
|
89 |
+
"filepath": path.join(self.data_dir, "scripts/dev.trn"),
|
90 |
+
"split": "validation",
|
91 |
},
|
92 |
),
|
93 |
]
|
94 |
|
95 |
def _generate_examples(self, filepath, split):
|
96 |
+
"""Yields examples as (key, example) tuples."""
|
97 |
if split is "test":
|
98 |
+
with open(filepath["clean"], encoding="utf-8") as f1, open(
|
99 |
+
filepath["other"], encoding="utf-8"
|
100 |
+
) as f2:
|
101 |
data = "\n".join([f1.read().strip(), f2.read().strip()])
|
102 |
for id_, row in enumerate(data.split("\n")):
|
103 |
path, sentence = tuple(row.split(" :: "))
|
104 |
yield id_, {
|
105 |
+
"file": path.join(self.data_dir, path),
|
106 |
"sentence": sentence,
|
107 |
}
|
108 |
else:
|
|
|
111 |
for id_, row in enumerate(data.split("\n")):
|
112 |
path, sentence = tuple(row.split(" :: "))
|
113 |
yield id_, {
|
114 |
+
"file": path.join(self.data_dir, path),
|
115 |
+
"sentence": sentence,
|
116 |
}
|