|
""" |
|
This is the huggingface data loader for TOPVIEWRS Benchmark. |
|
""" |
|
|
|
import json |
|
import os |
|
import shutil |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """ |
|
@misc{li2024topviewrs, |
|
title={TopViewRS: Vision-Language Models as Top-View Spatial Reasoners}, |
|
author={Chengzu Li and Caiqi Zhang and Han Zhou and Nigel Collier and Anna Korhonen and Ivan Vulić}, |
|
year={2024}, |
|
eprint={2406.02537}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
TopViewRS dataset, comprising 11,384 multiple-choice questions with either photo-realistic |
|
or semantic top-view maps of real-world scenarios through a pipeline of automatic collection followed by human alignment. |
|
""" |
|
|
|
_HOMEPAGE = "https://topviewrs.github.io/" |
|
|
|
_LICENSE = "MIT" |
|
|
|
TASK_SPLIT = ['top_view_recognition', 'top_view_localization', 'static_spatial_reasoning', 'dynamic_spatial_reasoning'] |
|
|
|
_URLS = { |
|
"realistic_json": f"released_realistic_datasets.json", |
|
"semantic_json": f"released_semantic_datasets.json", |
|
"images": f"data.zip" |
|
} |
|
|
|
|
|
class TOPVIEWRSConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for TOPVIEWRS.""" |
|
|
|
def __init__(self, task_split, map_type, image_save_dir, **kwargs): |
|
"""BuilderConfig for TOPVIEWRS. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(TOPVIEWRSConfig, self).__init__(**kwargs) |
|
self.task_split = task_split |
|
self.map_type = map_type |
|
self.image_save_dir = image_save_dir |
|
|
|
|
|
class TOPVIEWRS(datasets.GeneratorBasedBuilder): |
|
"""TOPVIEWRS Dataset""" |
|
|
|
BUILDER_CONFIG_CLASS = TOPVIEWRSConfig |
|
BUILDER_CONFIGS = [ |
|
TOPVIEWRSConfig( |
|
name="topviewrs", |
|
version=datasets.Version("0.0.0"), |
|
description=_DESCRIPTION, |
|
task_split=None, |
|
map_type=None, |
|
image_save_dir="." |
|
) |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "topviewrs" |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"index": datasets.Value("int32"), |
|
"scene_id": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"choices": datasets.Sequence(datasets.Value("string")), |
|
"labels": datasets.Sequence(datasets.Value("string")), |
|
"choice_type": datasets.Value("string"), |
|
"map_path": datasets.Value("string"), |
|
"question_ability": datasets.Value("string"), |
|
} |
|
) |
|
if self.config.task_split == "dynamic_spatial_reasoning": |
|
features = datasets.Features( |
|
{ |
|
"index": datasets.Value("int32"), |
|
"scene_id": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"choices": datasets.Sequence(datasets.Value("string")), |
|
"labels": datasets.Sequence(datasets.Value("string")), |
|
"choice_type": datasets.Value("string"), |
|
"map_path": datasets.Value("string"), |
|
"question_ability": datasets.Value("string"), |
|
"reference_path": datasets.Sequence(datasets.Sequence(datasets.Value("int32"))) |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
zip_file = dl_manager.download({"images": _URLS['images']}) |
|
os.rename(zip_file['images'], os.path.join(os.path.dirname(zip_file['images']), _URLS['images'])) |
|
try: |
|
shutil.unpack_archive(os.path.join(os.path.dirname(zip_file['images']), _URLS['images']), self.config.image_save_dir) |
|
except: |
|
raise FileNotFoundError(f"Unpacking the image data.zip failed. Make sure that you have the zip file at {zip_file}. ") |
|
|
|
downloaded_files = dl_manager.download_and_extract({k: v for k, v in _URLS.items() if k != "images"}) |
|
|
|
image_base_file_dir = self.config.image_save_dir |
|
json_file_path = downloaded_files[f"{self.config.map_type}_json"] |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split('val'), |
|
gen_kwargs={ |
|
"json_file_path": json_file_path, |
|
"image_base_dir": image_base_file_dir |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, json_file_path: str, image_base_dir: str): |
|
task = self.config.task_split |
|
map_type = self.config.map_type |
|
|
|
map_key = "rgb" if map_type.lower() == "realistic" else map_type |
|
with open(json_file_path) as f: |
|
data_list = json.load(f)[task] |
|
|
|
for idx, data_item in enumerate(data_list): |
|
return_item = { |
|
"index": idx, |
|
"scene_id": data_item['scene_id'], |
|
"question": data_item['question'], |
|
"choices": data_item['choices'], |
|
"labels": data_item['labels'], |
|
"choice_type": str(data_item["question_meta_data"]["choices"]), |
|
"map_path": os.path.join(image_base_dir, data_item[f"{map_key}_map"]), |
|
"question_ability": data_item['ability'], |
|
} |
|
if "reference_path" in data_item.keys(): |
|
return_item["reference_path"] = data_item["reference_path"] |
|
|
|
yield idx, return_item |
|
idx += 1 |