Datasets:
Tasks:
Text Classification
Sub-tasks:
multi-label-classification
Languages:
English
Size:
100K<n<1M
ArXiv:
License:
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Switchboard Dialog Act Corpus | |
| The Switchboard Dialog Act Corpus (SwDA) extends the Switchboard-1 Telephone Speech Corpus, Release 2, | |
| with turn/utterance-level dialog-act tags. The tags summarize syntactic, semantic, and pragmatic information | |
| about the associated turn. The SwDA project was undertaken at UC Boulder in the late 1990s. | |
| This script is a modified version of the original swda.py from https://github.com/cgpotts/swda/blob/master/swda.py from | |
| the original corpus repo. Modifications are made to accommodate the HuggingFace Dataset project format. | |
| """ | |
| import csv | |
| import datetime | |
| import glob | |
| import os | |
| import re | |
| import datasets | |
| # Citation as described here: https://github.com/cgpotts/swda#citation. | |
| _CITATION = """\ | |
| @techreport{Jurafsky-etal:1997, | |
| Address = {Boulder, CO}, | |
| Author = {Jurafsky, Daniel and Shriberg, Elizabeth and Biasca, Debra}, | |
| Institution = {University of Colorado, Boulder Institute of Cognitive Science}, | |
| Number = {97-02}, | |
| Title = {Switchboard {SWBD}-{DAMSL} Shallow-Discourse-Function Annotation Coders Manual, Draft 13}, | |
| Year = {1997}} | |
| @article{Shriberg-etal:1998, | |
| Author = {Shriberg, Elizabeth and Bates, Rebecca and Taylor, Paul and Stolcke, Andreas and Jurafsky, Daniel and Ries, Klaus and Coccaro, Noah and Martin, Rachel and Meteer, Marie and Van Ess-Dykema, Carol}, | |
| Journal = {Language and Speech}, | |
| Number = {3--4}, | |
| Pages = {439--487}, | |
| Title = {Can Prosody Aid the Automatic Classification of Dialog Acts in Conversational Speech?}, | |
| Volume = {41}, | |
| Year = {1998}} | |
| @article{Stolcke-etal:2000, | |
| Author = {Stolcke, Andreas and Ries, Klaus and Coccaro, Noah and Shriberg, Elizabeth and Bates, Rebecca and Jurafsky, Daniel and Taylor, Paul and Martin, Rachel and Meteer, Marie and Van Ess-Dykema, Carol}, | |
| Journal = {Computational Linguistics}, | |
| Number = {3}, | |
| Pages = {339--371}, | |
| Title = {Dialogue Act Modeling for Automatic Tagging and Recognition of Conversational Speech}, | |
| Volume = {26}, | |
| Year = {2000}} | |
| """ | |
| # Description of dataset gathered from: https://github.com/cgpotts/swda#overview. | |
| _DESCRIPTION = """\ | |
| The Switchboard Dialog Act Corpus (SwDA) extends the Switchboard-1 Telephone Speech Corpus, Release 2 with | |
| turn/utterance-level dialog-act tags. The tags summarize syntactic, semantic, and pragmatic information about the | |
| associated turn. The SwDA project was undertaken at UC Boulder in the late 1990s. | |
| The SwDA is not inherently linked to the Penn Treebank 3 parses of Switchboard, and it is far from straightforward to | |
| align the two resources. In addition, the SwDA is not distributed with the Switchboard's tables of metadata about the | |
| conversations and their participants. | |
| """ | |
| # Homepage gathered from: https://github.com/cgpotts/swda#overview. | |
| _HOMEPAGE = "http://compprag.christopherpotts.net/swda.html" | |
| # More details about the license: https://creativecommons.org/licenses/by-nc-sa/3.0/. | |
| _LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License" | |
| # Dataset main url. | |
| _URL = "https://github.com/cgpotts/swda/raw/master/swda.zip" | |
| # Dialogue act tags - long version 217 dialogue acts labels. | |
| _ACT_TAGS = [ | |
| "b^m^r", | |
| "qw^r^t", | |
| "aa^h", | |
| "br^m", | |
| "fa^r", | |
| "aa,ar", | |
| "sd^e(^q)^r", | |
| "^2", | |
| "sd;qy^d", | |
| "oo", | |
| "bk^m", | |
| "aa^t", | |
| "cc^t", | |
| "qy^d^c", | |
| "qo^t", | |
| "ng^m", | |
| "qw^h", | |
| "qo^r", | |
| "aa", | |
| "qy^d^t", | |
| "qrr^d", | |
| "br^r", | |
| "fx", | |
| "sd,qy^g", | |
| "ny^e", | |
| "^h^t", | |
| "fc^m", | |
| "qw(^q)", | |
| "co", | |
| "o^t", | |
| "b^m^t", | |
| "qr^d", | |
| "qw^g", | |
| "ad(^q)", | |
| "qy(^q)", | |
| "na^r", | |
| "am^r", | |
| "qr^t", | |
| "ad^c", | |
| "qw^c", | |
| "bh^r", | |
| "h^t", | |
| "ft^m", | |
| "ba^r", | |
| "qw^d^t", | |
| "%", | |
| "t3", | |
| "nn", | |
| "bd", | |
| "h^m", | |
| "h^r", | |
| "sd^r", | |
| "qh^m", | |
| "^q^t", | |
| "sv^2", | |
| "ft", | |
| "ar^m", | |
| "qy^h", | |
| "sd^e^m", | |
| "qh^r", | |
| "cc", | |
| "fp^m", | |
| "ad", | |
| "qo", | |
| "na^m^t", | |
| "fo^c", | |
| "qy", | |
| "sv^e^r", | |
| "aap", | |
| "no", | |
| "aa^2", | |
| "sv(^q)", | |
| "sv^e", | |
| "nd", | |
| '"', | |
| "bf^2", | |
| "bk", | |
| "fp", | |
| "nn^r^t", | |
| "fa^c", | |
| "ny^t", | |
| "ny^c^r", | |
| "qw", | |
| "qy^t", | |
| "b", | |
| "fo", | |
| "qw^r", | |
| "am", | |
| "bf^t", | |
| "^2^t", | |
| "b^2", | |
| "x", | |
| "fc", | |
| "qr", | |
| "no^t", | |
| "bk^t", | |
| "bd^r", | |
| "bf", | |
| "^2^g", | |
| "qh^c", | |
| "ny^c", | |
| "sd^e^r", | |
| "br", | |
| "fe", | |
| "by", | |
| "^2^r", | |
| "fc^r", | |
| "b^m", | |
| "sd,sv", | |
| "fa^t", | |
| "sv^m", | |
| "qrr", | |
| "^h^r", | |
| "na", | |
| "fp^r", | |
| "o", | |
| "h,sd", | |
| "t1^t", | |
| "nn^r", | |
| "cc^r", | |
| "sv^c", | |
| "co^t", | |
| "qy^r", | |
| "sv^r", | |
| "qy^d^h", | |
| "sd", | |
| "nn^e", | |
| "ny^r", | |
| "b^t", | |
| "ba^m", | |
| "ar", | |
| "bf^r", | |
| "sv", | |
| "bh^m", | |
| "qy^g^t", | |
| "qo^d^c", | |
| "qo^d", | |
| "nd^t", | |
| "aa^r", | |
| "sd^2", | |
| "sv;sd", | |
| "qy^c^r", | |
| "qw^m", | |
| "qy^g^r", | |
| "no^r", | |
| "qh(^q)", | |
| "sd;sv", | |
| "bf(^q)", | |
| "+", | |
| "qy^2", | |
| "qw^d", | |
| "qy^g", | |
| "qh^g", | |
| "nn^t", | |
| "ad^r", | |
| "oo^t", | |
| "co^c", | |
| "ng", | |
| "^q", | |
| "qw^d^c", | |
| "qrr^t", | |
| "^h", | |
| "aap^r", | |
| "bc^r", | |
| "sd^m", | |
| "bk^r", | |
| "qy^g^c", | |
| "qr(^q)", | |
| "ng^t", | |
| "arp", | |
| "h", | |
| "bh", | |
| "sd^c", | |
| "^g", | |
| "o^r", | |
| "qy^c", | |
| "sd^e", | |
| "fw", | |
| "ar^r", | |
| "qy^m", | |
| "bc", | |
| "sv^t", | |
| "aap^m", | |
| "sd;no", | |
| "ng^r", | |
| "bf^g", | |
| "sd^e^t", | |
| "o^c", | |
| "b^r", | |
| "b^m^g", | |
| "ba", | |
| "t1", | |
| "qy^d(^q)", | |
| "nn^m", | |
| "ny", | |
| "ba,fe", | |
| "aa^m", | |
| "qh", | |
| "na^m", | |
| "oo(^q)", | |
| "qw^t", | |
| "na^t", | |
| "qh^h", | |
| "qy^d^m", | |
| "ny^m", | |
| "fa", | |
| "qy^d", | |
| "fc^t", | |
| "sd(^q)", | |
| "qy^d^r", | |
| "bf^m", | |
| "sd(^q)^t", | |
| "ft^t", | |
| "^q^r", | |
| "sd^t", | |
| "sd(^q)^r", | |
| "ad^t", | |
| ] | |
| # Damsl dialogue act tags version - short version 43 dialogue acts labels. | |
| _DAMSL_ACT_TAGS = [ | |
| "ad", | |
| "qo", | |
| "qy", | |
| "arp_nd", | |
| "sd", | |
| "h", | |
| "bh", | |
| "no", | |
| "^2", | |
| "^g", | |
| "ar", | |
| "aa", | |
| "sv", | |
| "bk", | |
| "fp", | |
| "qw", | |
| "b", | |
| "ba", | |
| "t1", | |
| "oo_co_cc", | |
| "+", | |
| "ny", | |
| "qw^d", | |
| "x", | |
| "qh", | |
| "fc", | |
| 'fo_o_fw_"_by_bc', | |
| "aap_am", | |
| "%", | |
| "bf", | |
| "t3", | |
| "nn", | |
| "bd", | |
| "ng", | |
| "^q", | |
| "br", | |
| "qy^d", | |
| "fa", | |
| "^h", | |
| "b^m", | |
| "ft", | |
| "qrr", | |
| "na", | |
| ] | |
| class Swda(datasets.GeneratorBasedBuilder): | |
| """ | |
| This is the HuggingFace Dataset class for swda. | |
| Switchboard Dialog Act Corpus Hugging Face Dataset class. | |
| The Switchboard Dialog Act Corpus (SwDA) extends the Switchboard-1 Telephone Speech Corpus, Release 2, | |
| with turn/utterance-level dialog-act tags. The tags summarize syntactic, semantic, and pragmatic information | |
| about the associated turn. The SwDA project was undertaken at UC Boulder in the late 1990s. | |
| """ | |
| # Urls for each split train-dev-test. | |
| _URLS = { | |
| "train": "https://github.com/NathanDuran/Probabilistic-RNN-DA-Classifier/raw/master/data/train_split.txt", | |
| "dev": "https://github.com/NathanDuran/Probabilistic-RNN-DA-Classifier/raw/master/data/dev_split.txt", | |
| "test": "https://github.com/NathanDuran/Probabilistic-RNN-DA-Classifier/raw/master/data/test_split.txt", | |
| } | |
| def _info(self): | |
| """ | |
| Specify the datasets.DatasetInfo object which contains information and typings for the dataset. | |
| """ | |
| return datasets.DatasetInfo( | |
| # This is the description that will appear on the datasets page. | |
| description=_DESCRIPTION, | |
| # This defines the different columns of the dataset and their types. | |
| features=datasets.Features( | |
| { | |
| "swda_filename": datasets.Value("string"), | |
| "ptb_basename": datasets.Value("string"), | |
| "conversation_no": datasets.Value("int64"), | |
| "transcript_index": datasets.Value("int64"), | |
| "act_tag": datasets.ClassLabel(num_classes=217, names=_ACT_TAGS), | |
| "damsl_act_tag": datasets.ClassLabel(num_classes=43, names=_DAMSL_ACT_TAGS), | |
| "caller": datasets.Value("string"), | |
| "utterance_index": datasets.Value("int64"), | |
| "subutterance_index": datasets.Value("int64"), | |
| "text": datasets.Value("string"), | |
| "pos": datasets.Value("string"), | |
| "trees": datasets.Value("string"), | |
| "ptb_treenumbers": datasets.Value("string"), | |
| "talk_day": datasets.Value("string"), | |
| "length": datasets.Value("int64"), | |
| "topic_description": datasets.Value("string"), | |
| "prompt": datasets.Value("string"), | |
| "from_caller": datasets.Value("int64"), | |
| "from_caller_sex": datasets.Value("string"), | |
| "from_caller_education": datasets.Value("int64"), | |
| "from_caller_birth_year": datasets.Value("int64"), | |
| "from_caller_dialect_area": datasets.Value("string"), | |
| "to_caller": datasets.Value("int64"), | |
| "to_caller_sex": datasets.Value("string"), | |
| "to_caller_education": datasets.Value("int64"), | |
| "to_caller_birth_year": datasets.Value("int64"), | |
| "to_caller_dialect_area": datasets.Value("string"), | |
| } | |
| ), | |
| supervised_keys=None, | |
| # Homepage of the dataset for documentation | |
| homepage=_HOMEPAGE, | |
| # License for the dataset if available | |
| license=_LICENSE, | |
| # Citation for the dataset | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """ | |
| Returns SplitGenerators. | |
| This method is tasked with downloading/extracting the data and defining the splits. | |
| Args: | |
| dl_manager (:obj:`datasets.utils.download_manager.DownloadManager`): | |
| Download manager to download and extract data files from urls. | |
| Returns: | |
| :obj:`list[str]`: | |
| List of paths to data. | |
| """ | |
| # Download extract and return path of data file. | |
| dl_dir = dl_manager.download_and_extract(_URL) | |
| # Use swda/ folder. | |
| data_dir = os.path.join(dl_dir, "swda") | |
| # Handle partitions files: download extract and return paths of split files. | |
| downloaded_files = dl_manager.download(self._URLS) | |
| return [ | |
| # Return whole data path and train splits file downloaded path. | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, gen_kwargs={"data_dir": data_dir, "split_file": downloaded_files["train"]} | |
| ), | |
| # Return whole data path and dev splits file downloaded path. | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={"data_dir": data_dir, "split_file": downloaded_files["dev"]}, | |
| ), | |
| # Return whole data path and train splits file downloaded path. | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, gen_kwargs={"data_dir": data_dir, "split_file": downloaded_files["test"]} | |
| ), | |
| ] | |
| def _generate_examples(self, data_dir, split_file): | |
| """ | |
| Yields examples. | |
| This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method. | |
| It is in charge of opening the given file and yielding (key, example) tuples from the dataset | |
| The key is not important, it's more here for legacy reason (legacy from tfds). | |
| Args: | |
| data_dir (:obj:`str`): | |
| Path where is downloaded dataset. | |
| split_file (:obj:`str`): | |
| Path of split file used for train-dev-test. | |
| Returns: | |
| :obj:`list[str]`: | |
| List of paths to data. | |
| """ | |
| # Read in the split file. | |
| with open(file=split_file, mode="r", encoding="utf-8") as f: | |
| split_file = f.read().splitlines() | |
| # Read in corpus data using split files. | |
| corpus = CorpusReader(src_dirname=data_dir, split_file=split_file) | |
| # Generate examples. | |
| for i_trans, trans in enumerate(corpus.iter_transcripts()): | |
| for i_utt, utt in enumerate(trans.utterances): | |
| id_ = str(i_trans) + ":" + str(i_utt) | |
| yield id_, {feature: utt[feature] for feature in self.info.features.keys()} | |
| class CorpusReader: | |
| """Class for reading in the corpus and iterating through its values.""" | |
| def __init__(self, src_dirname, split_file=None): | |
| """ | |
| Reads in the data from `src_dirname` (should be the root of the | |
| corpus). Assumes that the metadata file `swda-metadata.csv` is | |
| in the main directory of the corpus, using that file to build | |
| the `Metadata` object used throughout. | |
| Args: | |
| src_dirname (:obj:`str`): | |
| Path where swda folder with all data. | |
| split_file (:obj:`list[str`, `optional`): | |
| List of file names used in a split (train, dev or test). This argument is optional and it will have a None value attributed inside the function. | |
| """ | |
| self.src_dirname = src_dirname | |
| metadata_filename = os.path.join(src_dirname, "swda-metadata.csv") | |
| self.metadata = Metadata(metadata_filename) | |
| self.split_file = split_file | |
| def iter_transcripts( | |
| self, | |
| ): | |
| """ | |
| Iterate through the transcripts. | |
| Returns: | |
| :obj:`Transcript`: | |
| Transcript instance. | |
| """ | |
| # All files names. | |
| filenames = glob.glob(os.path.join(self.src_dirname, "sw*", "*.csv")) | |
| # If no split files are mentioned just use all files. | |
| self.split_file = filenames if self.split_file is None else self.split_file | |
| # Filter out desired file names | |
| filenames = [ | |
| file for file in filenames if os.path.basename(file).split("_")[-1].split(".")[0] in self.split_file | |
| ] | |
| for filename in sorted(filenames): | |
| # Yield the Transcript instance: | |
| yield Transcript(filename, self.metadata) | |
| def iter_utterances( | |
| self, | |
| ): | |
| """ | |
| Iterate through the utterances. | |
| Returns: | |
| :obj:`Transcript.utterances`: | |
| Utterance instance object. | |
| """ | |
| for trans in self.iter_transcripts(): | |
| for utt in trans.utterances: | |
| # Yield the Utterance instance: | |
| yield utt | |
| class Metadata: | |
| """ | |
| Basically an internal method for organizing the tables of metadata | |
| from the original Switchboard transcripts and linking them with | |
| the dialog acts. | |
| """ | |
| def __init__(self, metadata_filename): | |
| """ | |
| Turns the CSV file into a dictionary mapping Switchboard | |
| conversation_no integers values to dictionaries of values. All | |
| the keys correspond to the column names in the original | |
| tables. | |
| Args: | |
| metadata_filename (:obj:`str`): | |
| The CSV file swda-metadata.csv (should be in the main | |
| folder of the swda directory). | |
| """ | |
| self.metadata_filename = metadata_filename | |
| self.metadata = {} | |
| self.get_metadata() | |
| def get_metadata(self): | |
| """ | |
| Build the dictionary self.metadata mapping conversation_no to | |
| dictionaries of values (str, int, or datatime, as | |
| appropriate). | |
| """ | |
| csvreader = csv.reader(open(self.metadata_filename)) | |
| header = next(csvreader) | |
| for row in csvreader: | |
| d = dict(list(zip(header, row))) | |
| # Add integer number features to metadata. | |
| for key in ( | |
| "conversation_no", | |
| "length", | |
| "from_caller", | |
| "to_caller", | |
| "from_caller_education", | |
| "to_caller_education", | |
| ): | |
| d[key] = int(d[key]) | |
| talk_day = d["talk_day"] | |
| talk_year = int("19" + talk_day[:2]) | |
| talk_month = int(talk_day[2:4]) | |
| talk_day = int(talk_day[4:]) | |
| # Make sure to convert date time to string to match PyArrow data formats. | |
| d["talk_day"] = datetime.datetime(year=talk_year, month=talk_month, day=talk_day).strftime("%m/%d/%Y") | |
| d["from_caller_birth_year"] = int(d["from_caller_birth_year"]) | |
| d["to_caller_birth_year"] = int(d["to_caller_birth_year"]) | |
| self.metadata[d["conversation_no"]] = d | |
| def __getitem__(self, val): | |
| """ | |
| Val should be a key in self.metadata; returns the | |
| corresponding value. | |
| Args: | |
| val (:obj:`str`): | |
| Key in self.metadata. | |
| Returns: | |
| :obj:: | |
| Corresponding value. | |
| """ | |
| return self.metadata[val] | |
| class Utterance: | |
| """ | |
| The central object of interest. The attributes correspond to the | |
| values of the class variable header: | |
| """ | |
| # Metadata header file. | |
| header = [ | |
| "swda_filename", | |
| "ptb_basename", | |
| "conversation_no", | |
| "transcript_index", | |
| "act_tag", | |
| "caller", | |
| "utterance_index", | |
| "subutterance_index", | |
| "text", | |
| "pos", | |
| "trees", | |
| "ptb_treenumbers", | |
| ] | |
| def __init__(self, row, transcript_metadata): | |
| """ | |
| Args: | |
| row (:obj:`list`): | |
| A row from one of the corpus CSV files. | |
| transcript_metadata (:obj:`dict`): | |
| A Metadata value based on the current `conversation_no`. | |
| """ | |
| # Utterance data: | |
| for i in range(len(Utterance.header)): | |
| att_name = Utterance.header[i] | |
| row_value = None | |
| if i < len(row): | |
| row_value = row[i].strip() | |
| # Special handling of non-string values. | |
| if att_name == "trees": | |
| if row_value: | |
| # Origianl code returned list of nltk.tree and used `[Tree.fromstring(t) for t in row_value.split("|||")]`. | |
| # Since we're returning str we don't need to make any mondifications to row_value. | |
| row_value = row_value | |
| else: | |
| row_value = "" # [] | |
| elif att_name == "ptb_treenumbers": | |
| if row_value: | |
| row_value = row_value # list(map(int, row_value.split("|||"))) | |
| else: | |
| row_value = "" # [] | |
| elif att_name == "act_tag": | |
| # I thought these conjoined tags were meant to be split. | |
| # The docs suggest that they are single tags, thought, | |
| # so skip this conditional and let it be treated as a str. | |
| # row_value = re.split(r"\s*[,;]\s*", row_value) | |
| # `` Transcription errors (typos, obvious mistranscriptions) are | |
| # marked with a "*" after the discourse tag.'' | |
| # These are removed for this version. | |
| row_value = row_value.replace("*", "") | |
| elif att_name in ("conversation_no", "transcript_index", "utterance_index", "subutterance_index"): | |
| row_value = int(row_value) | |
| # Add attribute. | |
| setattr(self, att_name, row_value) | |
| # Make sure conversation number matches. | |
| assert self.conversation_no == transcript_metadata["conversation_no"] | |
| # Add rest of missing metadata | |
| [setattr(self, key, value) for key, value in transcript_metadata.items()] | |
| # Add damsl tags. | |
| setattr(self, "damsl_act_tag", self.damsl_act_tag()) | |
| def __getitem__(self, feature): | |
| """ | |
| Return utterance features as dictionary. It allows us to call an utterance object as a dictionary. | |
| It contains same keys as attributes. | |
| Args: | |
| feature (:obj:`str`): | |
| Feature value of utterance that is part of attributes. | |
| Returns: | |
| :obj: | |
| Value of feature from utterance. Value type can vary. | |
| """ | |
| return vars(self)[feature] | |
| def damsl_act_tag( | |
| self, | |
| ): | |
| """ | |
| Seeks to duplicate the tag simplification described at the | |
| Coders' Manual: http://www.stanford.edu/~jurafsky/ws97/manual.august1.html | |
| """ | |
| d_tags = [] | |
| tags = re.split(r"\s*[,;]\s*", self.act_tag) | |
| for tag in tags: | |
| if tag in ("qy^d", "qw^d", "b^m"): | |
| pass | |
| elif tag == "nn^e": | |
| tag = "ng" | |
| elif tag == "ny^e": | |
| tag = "na" | |
| else: | |
| tag = re.sub(r"(.)\^.*", r"\1", tag) | |
| tag = re.sub(r"[\(\)@*]", "", tag) | |
| if tag in ("qr", "qy"): | |
| tag = "qy" | |
| elif tag in ("fe", "ba"): | |
| tag = "ba" | |
| elif tag in ("oo", "co", "cc"): | |
| tag = "oo_co_cc" | |
| elif tag in ("fx", "sv"): | |
| tag = "sv" | |
| elif tag in ("aap", "am"): | |
| tag = "aap_am" | |
| elif tag in ("arp", "nd"): | |
| tag = "arp_nd" | |
| elif tag in ("fo", "o", "fw", '"', "by", "bc"): | |
| tag = 'fo_o_fw_"_by_bc' | |
| d_tags.append(tag) | |
| # Dan J says (p.c.) that it makes sense to take the first; | |
| # there are only a handful of examples with 2 tags here. | |
| return d_tags[0] | |
| class Transcript: | |
| """ | |
| Transcript instances are basically just containers for lists of | |
| utterances and transcript-level metadata, accessible via | |
| attributes. | |
| """ | |
| def __init__(self, swda_filename, metadata): | |
| """ | |
| Sets up all the attribute values: | |
| Args: | |
| swda_filename (:obj:`str`): | |
| The filename for this transcript. | |
| metadata (:obj:`str` or `Metadata`): | |
| If a string, then assumed to be the metadata filename, and | |
| the metadata is created from that filename. If a `Metadata` | |
| object, then used as the needed metadata directly. | |
| """ | |
| self.swda_filename = swda_filename | |
| # If the supplied value is a filename: | |
| if isinstance(metadata, str) or isinstance(metadata, str): | |
| self.metadata = Metadata(metadata) | |
| else: # Where the supplied value is already a Metadata object. | |
| self.metadata = metadata | |
| # Get the file rows: | |
| rows = list(csv.reader(open(self.swda_filename, "rt"))) | |
| # Ge the header and remove it from the rows: | |
| self.header = rows[0] | |
| rows.pop(0) | |
| # Extract the conversation_no to get the meta-data. Use the | |
| # header for this in case the column ordering is ever changed: | |
| row0dict = dict(list(zip(self.header, rows[1]))) | |
| self.conversation_no = int(row0dict["conversation_no"]) | |
| # The ptd filename in the right format for the current OS: | |
| self.ptd_basename = os.sep.join(row0dict["ptb_basename"].split("/")) | |
| # The dictionary of metadata for this transcript: | |
| transcript_metadata = self.metadata[self.conversation_no] | |
| for key, val in transcript_metadata.items(): | |
| setattr(self, key, transcript_metadata[key]) | |
| # Create the utterance list: | |
| self.utterances = [Utterance(x, transcript_metadata) for x in rows] | |
| # Coder's Manual: ``We also removed any line with a "@" | |
| # (since @ marked slash-units with bad segmentation).'' | |
| self.utterances = [u for u in self.utterances if not re.search(r"[@]", u.act_tag)] | |