Datasets:

Modalities:
Tabular
ArXiv:
Libraries:
Datasets
License:
cartoonset / cartoonset.py
cgarciae's picture
use binary
30797c9
raw
history blame
3.23 kB
"""Cartoonset-10k Data Set"""
import pickle
import numpy as np
import PIL.Image
import tarfile
import datasets
from datasets.tasks import ImageClassification
_CITATION = r"""
@article{DBLP:journals/corr/abs-1711-05139,
author = {Amelie Royer and
Konstantinos Bousmalis and
Stephan Gouws and
Fred Bertsch and
Inbar Mosseri and
Forrester Cole and
Kevin Murphy},
title = {{XGAN:} Unsupervised Image-to-Image Translation for many-to-many Mappings},
journal = {CoRR},
volume = {abs/1711.05139},
year = {2017},
url = {http://arxiv.org/abs/1711.05139},
eprinttype = {arXiv},
eprint = {1711.05139},
timestamp = {Mon, 13 Aug 2018 16:47:38 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1711-05139.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
_DESCRIPTION = """\
Cartoon Set is a collection of random, 2D cartoon avatar images. The cartoons vary in 10 artwork
categories, 4 color categories, and 4 proportion categories, with a total of ~1013 possible
combinations. We provide sets of 10k and 100k randomly chosen cartoons and labeled attributes.
"""
_DATA_URLS = {
"10k": "https://huggingface.co/datasets/cgarciae/cartoonset/resolve/1.0.0/data/cartoonset10k.tgz",
"100k": "https://huggingface.co/datasets/cgarciae/cartoonset/resolve/1.0.0/data/cartoonset100k.tgz",
}
class Cartoonset(datasets.GeneratorBasedBuilder):
"""Cartoonset-10k Data Set"""
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="10k",
version=datasets.Version("1.0.0", ""),
description="Loads the Cartoonset-10k Data Set",
),
datasets.BuilderConfig(
name="100k",
version=datasets.Version("1.0.0", ""),
description="Loads the Cartoonset-100k Data Set",
),
]
DEFAULT_CONFIG_NAME = "10k"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
# "img": datasets.Image(),
"img_bytes": datasets.Value("binary"),
}
),
supervised_keys=("img",),
homepage="https://www.cs.toronto.edu/~kriz/cifar.html",
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
url = _DATA_URLS[self.config.name]
archive = dl_manager.download(url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"files": dl_manager.iter_archive(archive),
"split": "train",
},
),
]
def _generate_examples(self, files, split):
"""This function returns the examples in the raw (text) form."""
path: str
file_obj: tarfile.ExFileObject
for path, file_obj in files:
if path.endswith(".png"):
image = file_obj.read()
yield path, {
"img_bytes": image,
}