Datasets:
Merge branch 'main' of hf.co:datasets/cfpark00/KoreanSAT
Browse files- README.md +11 -9
- data/{2024_math-00000-of-00001-589645d2d672c249.parquet โ 2022_math-00000-of-00001-b73cb6283dc02610.parquet} +2 -2
- data/2023_math-00000-of-00001-3ef9ab05717b4a30.parquet +3 -0
- data/2024_math-00000-of-00001.parquet +3 -0
- data/json/2023/math.json +49 -0
- data/json/2023/math_temp.json +336 -0
- data/json/2024/math.json +49 -0
- test_dataset.ipynb +0 -104
- to_parquet.ipynb +341 -0
README.md
CHANGED
@@ -15,10 +15,10 @@ tags:
|
|
15 |
configs:
|
16 |
- config_name: default
|
17 |
data_files:
|
|
|
|
|
18 |
- split: 2023_math
|
19 |
path: data/2023_math-*
|
20 |
-
- split: 2024_math
|
21 |
-
path: data/2024_math-*
|
22 |
dataset_info:
|
23 |
features:
|
24 |
- name: id
|
@@ -32,16 +32,18 @@ dataset_info:
|
|
32 |
- name: score
|
33 |
dtype: int64
|
34 |
- name: review
|
35 |
-
dtype:
|
|
|
|
|
36 |
splits:
|
37 |
-
- name:
|
38 |
-
num_bytes:
|
39 |
num_examples: 46
|
40 |
-
- name:
|
41 |
-
num_bytes:
|
42 |
num_examples: 46
|
43 |
-
download_size:
|
44 |
-
dataset_size:
|
45 |
---
|
46 |
|
47 |
# KoreanSAT Benchmark
|
|
|
15 |
configs:
|
16 |
- config_name: default
|
17 |
data_files:
|
18 |
+
- split: 2022_math
|
19 |
+
path: data/2022_math-*
|
20 |
- split: 2023_math
|
21 |
path: data/2023_math-*
|
|
|
|
|
22 |
dataset_info:
|
23 |
features:
|
24 |
- name: id
|
|
|
32 |
- name: score
|
33 |
dtype: int64
|
34 |
- name: review
|
35 |
+
dtype: string
|
36 |
+
- name: incomplete
|
37 |
+
dtype: bool
|
38 |
splits:
|
39 |
+
- name: 2022_math
|
40 |
+
num_bytes: 24028
|
41 |
num_examples: 46
|
42 |
+
- name: 2023_math
|
43 |
+
num_bytes: 22618
|
44 |
num_examples: 46
|
45 |
+
download_size: 31188
|
46 |
+
dataset_size: 46646
|
47 |
---
|
48 |
|
49 |
# KoreanSAT Benchmark
|
data/{2024_math-00000-of-00001-589645d2d672c249.parquet โ 2022_math-00000-of-00001-b73cb6283dc02610.parquet}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:17c8cd0b0c4f1db55d5806474c34a0c178195240e1b84dae6f34eb4edc3105d2
|
3 |
+
size 15937
|
data/2023_math-00000-of-00001-3ef9ab05717b4a30.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3aed6ddac55a89558bb52b5ce64b1ad7462b745f3777ed5f2cdac324c9c931cd
|
3 |
+
size 15251
|
data/2024_math-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81857574f303138b7a69049f1f7dbf1b87fd9af80891c33c3230c6378cb930f7
|
3 |
+
size 15701
|
data/json/2023/math.json
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
{"id": 1, "name": "1", "problem": "1. $\\left( \\frac{4}{2^{\\sqrt{2}}} \\right)^{2 + \\sqrt{2}}$ ์ ๊ฐ์? [2์ ] \\begin{itemize} \\item[1] $\\frac{1}{4}$ \\item[2] $\\frac{1}{2}$ \\item[3] $1$ \\item[4] $2$ \\item[5] $4$ \\end{itemize}", "answer": 5, "score": 2, "review": null, "incomplete": false}
|
2 |
{"id": 2, "name": "2", "problem": "2. $\\lim_{x \\to \\infty} \\frac{\\sqrt{x^2 - 2} + 3x}{x + 5}$ ์ ๊ฐ์? [2์ ] \\begin{itemize} \\item[1] 1 \\item[2] 2 \\item[3] 3 \\item[4] 4 \\item[5] 5 \\end{itemize}", "answer": 4, "score": 2, "review": null, "incomplete": false}
|
3 |
{"id": 3, "name": "3", "problem": "3. ๊ณต๋น๊ฐ ์์์ธ ๋ฑ๋น์์ด$\\{a_n\\}$์ด \\[ a_2 + a_4 = 30, \\quad a_4 + a_6 = \\frac{15}{2} \\] ๋ฅผ ๋ง์กฑ์ํฌ ๋, $a_1$ ์ ๊ฐ์? [3์ ] \\begin{itemize} \\item[1] 48 \\item[2] 56 \\item[3] 64 \\item[4] 72 \\item[5] 80 \\end{itemize}", "answer": 1, "score": 3, "review": null, "incomplete": false}
|
@@ -44,3 +45,51 @@
|
|
44 |
{"id": 44, "name": "28_geom", "problem": "28. ๋ ์ด์ ์ด $( \\mathrm{F}(c, 0) )$, $( \\mathrm{F'}(-c, 0) \\ (c > 0) )$์ธ ์๊ณก์ $( C )$์ $( y )$์ถ ์์ ์ $( \\mathrm{A} )$๊ฐ ์๋ค. ์๊ณก์ $( C )$๊ฐ ์ ๋ถ $( \\mathrm{AF} )$์ ๋ง๋๋ ์ ์ $( \\mathrm{P} )$, ์ ๋ถ $( \\mathrm{AF'} )$์ ๋ง๋๋ ์ ์ $( \\mathrm{P'} )$์ด๋ผ ํ์. ์ง์ $( \\mathrm{AF} )$๋ ์๊ณก์ $( C )$์ ํ ์ ๊ทผ์ ๊ณผ ํํํ๊ณ \n\n\\[ \\overline{\\mathrm{AP}}:\\overline{\\mathrm{PP'}} = 5:6, \\quad \\overline{\\mathrm{PF}} = 1 \\]\n\n์ผ ๋, ์๊ณก์ $( C )$์ ์ฃผ์ถ์ ๊ธธ์ด๋? [4์ ]\n\n\\begin{itemize} \\item[1] \\frac{13}{6} \\item[2] \\frac{9}{4} \\item[3] \\frac{7}{3} \\item[4] \\frac{29}{12} \\item[5] \\frac{5}{2} \\end{itemize}", "answer": 2, "score": 4, "review": "Removed figure.", "incomplete": false}
|
45 |
{"id": 45, "name": "29_geom", "problem": "29. ํ๋ฉด $\\alpha$ ์์ $\\overline{\\mathrm{AB}} = \\overline{\\mathrm{CD}} = \\overline{\\mathrm{AD}} = 2$, $\\angle \\mathrm{ABC} = \\angle \\mathrm{BCD} = \\frac{\\pi}{3}$ ์ธ ์ฌ๋ค๋ฆฌ๊ผด $\\mathrm{ABCD}$๊ฐ ์๋ค. ๋ค์ ์กฐ๊ฑด์ ๋ง์กฑ์ํค๋ ํ๋ฉด $\\alpha$ ์์ ๋ ์ $\\mathrm{P}$, $\\mathrm{Q}$์ ๋ํ์ฌ $\\overrightarrow{\\mathrm{CP}} \\cdot \\overrightarrow{\\mathrm{DQ}}$์ ๊ฐ์ ๊ตฌํ์์ค. [4์ ]\n\n\\begin{itemize} \\item[(๊ฐ)] $\\overrightarrow{\\mathrm{AC}} = 2 \\left( \\overrightarrow{\\mathrm{AD}} + \\overrightarrow{\\mathrm{BP}} \\right)$ \\item[(๋)] $\\overrightarrow{\\mathrm{AC}} \\cdot \\overrightarrow{\\mathrm{PQ}} = 6$ \\item[(๋ค)] $2 \\times \\angle \\mathrm{BQA} = \\angle \\mathrm{PBQ} < \\frac{\\pi}{2}$ \\end{itemize}", "answer": 12, "score": 4, "review": "Removed figure.", "incomplete": false}
|
46 |
{"id": 46, "name": "30_geom", "problem": "30. ์ขํ๊ณต๊ฐ์ ์ ์ฌ๋ฉด์ฒด $\\mathrm{ABCD}$๊ฐ ์๋ค. ์ ์ผ๊ฐํ $\\mathrm{BCD}$์ ์ธ์ฌ์ ์ค์ฌ์ผ๋ก ํ๊ณ ์ $\\mathrm{B}$๋ฅผ ์ง๋๋ ๊ตฌ๋ฅผ $S$๋ผ ํ์.\n\n๊ตฌ $S$์ ์ ๋ถ $\\mathrm{AB}$๊ฐ ๋ง๋๋ ์ ์ค $\\mathrm{B}$๊ฐ ์๋ ์ ์ $\\mathrm{P}$, ๊ตฌ $S$์ ์ ๋ถ $\\mathrm{AC}$๊ฐ ๋ง๋๋ ์ ์ค $\\mathrm{C}$๊ฐ ์๋ ์ ์ $\\mathrm{Q}$, ๊ตฌ $S$์ ์ ๋ถ $\\mathrm{AD}$๊ฐ ๋ง๋๋ ์ ์ค $\\mathrm{D}$๊ฐ ์๋ ์ ์ $\\mathrm{R}$๋ผ ํ๊ณ , ์ $\\mathrm{P}$์์ ๊ตฌ $S$์ ์ ํ๋ ํ๋ฉด์ $\\alpha$๋ผ ํ์.\n\n๊ตฌ $S$์ ๋ฐ์ง๋ฆ์ ๊ธธ์ด๊ฐ $6$์ผ ๋, ์ผ๊ฐํ $\\mathrm{PQR}$์ ํ๋ฉด $\\alpha$ ์๋ก์ ์ ์ฌ์์ ๋์ด๋ $k$์ด๋ค. $k^2$์ ๊ฐ์ ๊ตฌํ์์ค. [4์ ]", "answer": 24, "score": 4, "review": "Removed figure.", "incomplete": false}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<<<<<<< HEAD
|
2 |
{"id": 1, "name": "1", "problem": "1. $\\left( \\frac{4}{2^{\\sqrt{2}}} \\right)^{2 + \\sqrt{2}}$ ์ ๊ฐ์? [2์ ] \\begin{itemize} \\item[1] $\\frac{1}{4}$ \\item[2] $\\frac{1}{2}$ \\item[3] $1$ \\item[4] $2$ \\item[5] $4$ \\end{itemize}", "answer": 5, "score": 2, "review": null, "incomplete": false}
|
3 |
{"id": 2, "name": "2", "problem": "2. $\\lim_{x \\to \\infty} \\frac{\\sqrt{x^2 - 2} + 3x}{x + 5}$ ์ ๊ฐ์? [2์ ] \\begin{itemize} \\item[1] 1 \\item[2] 2 \\item[3] 3 \\item[4] 4 \\item[5] 5 \\end{itemize}", "answer": 4, "score": 2, "review": null, "incomplete": false}
|
4 |
{"id": 3, "name": "3", "problem": "3. ๊ณต๋น๊ฐ ์์์ธ ๋ฑ๋น์์ด$\\{a_n\\}$์ด \\[ a_2 + a_4 = 30, \\quad a_4 + a_6 = \\frac{15}{2} \\] ๋ฅผ ๋ง์กฑ์ํฌ ๋, $a_1$ ์ ๊ฐ์? [3์ ] \\begin{itemize} \\item[1] 48 \\item[2] 56 \\item[3] 64 \\item[4] 72 \\item[5] 80 \\end{itemize}", "answer": 1, "score": 3, "review": null, "incomplete": false}
|
|
|
45 |
{"id": 44, "name": "28_geom", "problem": "28. ๋ ์ด์ ์ด $( \\mathrm{F}(c, 0) )$, $( \\mathrm{F'}(-c, 0) \\ (c > 0) )$์ธ ์๊ณก์ $( C )$์ $( y )$์ถ ์์ ์ $( \\mathrm{A} )$๊ฐ ์๋ค. ์๊ณก์ $( C )$๊ฐ ์ ๋ถ $( \\mathrm{AF} )$์ ๋ง๋๋ ์ ์ $( \\mathrm{P} )$, ์ ๋ถ $( \\mathrm{AF'} )$์ ๋ง๋๋ ์ ์ $( \\mathrm{P'} )$์ด๋ผ ํ์. ์ง์ $( \\mathrm{AF} )$๋ ์๊ณก์ $( C )$์ ํ ์ ๊ทผ์ ๊ณผ ํํํ๊ณ \n\n\\[ \\overline{\\mathrm{AP}}:\\overline{\\mathrm{PP'}} = 5:6, \\quad \\overline{\\mathrm{PF}} = 1 \\]\n\n์ผ ๋, ์๊ณก์ $( C )$์ ์ฃผ์ถ์ ๊ธธ์ด๋? [4์ ]\n\n\\begin{itemize} \\item[1] \\frac{13}{6} \\item[2] \\frac{9}{4} \\item[3] \\frac{7}{3} \\item[4] \\frac{29}{12} \\item[5] \\frac{5}{2} \\end{itemize}", "answer": 2, "score": 4, "review": "Removed figure.", "incomplete": false}
|
46 |
{"id": 45, "name": "29_geom", "problem": "29. ํ๋ฉด $\\alpha$ ์์ $\\overline{\\mathrm{AB}} = \\overline{\\mathrm{CD}} = \\overline{\\mathrm{AD}} = 2$, $\\angle \\mathrm{ABC} = \\angle \\mathrm{BCD} = \\frac{\\pi}{3}$ ์ธ ์ฌ๋ค๋ฆฌ๊ผด $\\mathrm{ABCD}$๊ฐ ์๋ค. ๋ค์ ์กฐ๊ฑด์ ๋ง์กฑ์ํค๋ ํ๋ฉด $\\alpha$ ์์ ๋ ์ $\\mathrm{P}$, $\\mathrm{Q}$์ ๋ํ์ฌ $\\overrightarrow{\\mathrm{CP}} \\cdot \\overrightarrow{\\mathrm{DQ}}$์ ๊ฐ์ ๊ตฌํ์์ค. [4์ ]\n\n\\begin{itemize} \\item[(๊ฐ)] $\\overrightarrow{\\mathrm{AC}} = 2 \\left( \\overrightarrow{\\mathrm{AD}} + \\overrightarrow{\\mathrm{BP}} \\right)$ \\item[(๋)] $\\overrightarrow{\\mathrm{AC}} \\cdot \\overrightarrow{\\mathrm{PQ}} = 6$ \\item[(๋ค)] $2 \\times \\angle \\mathrm{BQA} = \\angle \\mathrm{PBQ} < \\frac{\\pi}{2}$ \\end{itemize}", "answer": 12, "score": 4, "review": "Removed figure.", "incomplete": false}
|
47 |
{"id": 46, "name": "30_geom", "problem": "30. ์ขํ๊ณต๊ฐ์ ์ ์ฌ๋ฉด์ฒด $\\mathrm{ABCD}$๊ฐ ์๋ค. ์ ์ผ๊ฐํ $\\mathrm{BCD}$์ ์ธ์ฌ์ ์ค์ฌ์ผ๋ก ํ๊ณ ์ $\\mathrm{B}$๋ฅผ ์ง๋๋ ๊ตฌ๋ฅผ $S$๋ผ ํ์.\n\n๊ตฌ $S$์ ์ ๋ถ $\\mathrm{AB}$๊ฐ ๋ง๋๋ ์ ์ค $\\mathrm{B}$๊ฐ ์๋ ์ ์ $\\mathrm{P}$, ๊ตฌ $S$์ ์ ๋ถ $\\mathrm{AC}$๊ฐ ๋ง๋๋ ์ ์ค $\\mathrm{C}$๊ฐ ์๋ ์ ์ $\\mathrm{Q}$, ๊ตฌ $S$์ ์ ๋ถ $\\mathrm{AD}$๊ฐ ๋ง๋๋ ์ ์ค $\\mathrm{D}$๊ฐ ์๋ ์ ์ $\\mathrm{R}$๋ผ ํ๊ณ , ์ $\\mathrm{P}$์์ ๊ตฌ $S$์ ์ ํ๋ ํ๋ฉด์ $\\alpha$๋ผ ํ์.\n\n๊ตฌ $S$์ ๋ฐ์ง๋ฆ์ ๊ธธ์ด๊ฐ $6$์ผ ๋, ์ผ๊ฐํ $\\mathrm{PQR}$์ ํ๋ฉด $\\alpha$ ์๋ก์ ์ ์ฌ์์ ๋์ด๋ $k$์ด๋ค. $k^2$์ ๊ฐ์ ๊ตฌํ์์ค. [4์ ]", "answer": 24, "score": 4, "review": "Removed figure.", "incomplete": false}
|
48 |
+
=======
|
49 |
+
{"id":1,"name":"1","problem":"1. \\left( \\frac{4}{2^{\\sqrt{2}}} \\right)^{2 + \\sqrt{2}} \\text{\uc758 \uac12\uc740? [2\uc810]}\n\n\\begin{itemize}\n \\item[1] $\\frac{1}{4}$\n \\item[2] $\\frac{1}{2}$\n \\item[3] $1$\n \\item[4] $2$\n \\item[5] $4$\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
|
50 |
+
{"id":2,"name":"2","problem":"2. \\lim_{x \\to \\infty} \\frac{\\sqrt{x^2 - 2 + 3x}}{x + 5} \\text{\uc758 \uac12\uc740? [2\uc810]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
|
51 |
+
{"id":3,"name":"3","problem":"3. \\text{\uacf5\ube44\uac00 \uc591\uc218\uc778 \ub4f1\ube44\uc218\uc5f4 } \\{a_n\\}\\text{\uc774}\n\n\\[ a_2 + a_4 = 30, \\quad a_4 + a_6 = \\frac{15}{2} \\]\n\\text{\ub97c \ub9cc\uc871\uc2dc\ud0ac \ub54c, } a_1 \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] 48\n \\item[2] 56\n \\item[3] 64\n \\item[4] 72\n \\item[5] 80\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
|
52 |
+
{"id":4,"name":"4","problem":"4. \\text{\ub2e4\ud56d\ud568\uc218 } f(x) \\text{\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 } g(x) \\text{\ub97c}\n\n\\[ g(x) = x^2 f(x) \\]\n\\text{\ub77c \ud558\uc790. } f(2) = 1, \\ f'(2) = 3 \\text{\uc77c \ub54c, } g'(2) \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] 12\n \\item[2] 14\n \\item[3] 16\n \\item[4] 18\n \\item[5] 20\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
|
53 |
+
{"id":5,"name":"5","problem":"5. \\tan \\theta < 0 \\text{\uc774\uace0} \\cos \\left( \\frac{\\pi}{2} + \\theta \\right) = \\frac{\\sqrt{5}}{5} \\text{\uc77c \ub54c, } \\cos \\theta \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] - \\frac{2 \\sqrt{5}}{5}\n \\item[2] - \\frac{\\sqrt{5}}{5}\n \\item[3] 0\n \\item[4] \\frac{\\sqrt{5}}{5}\n \\item[5] \\frac{2 \\sqrt{5}}{5}\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
|
54 |
+
{"id":6,"name":"6","problem":"6. \\text{\ud568\uc218 } f(x) = 2x^3 - 9x^2 + ax + 5 \\text{\ub294 } x = 1 \\text{\uc5d0\uc11c \uadf9\ub300\uc774\uace0, } x = b \\text{\uc5d0\uc11c \uadf9\uc18c\uc774\ub2e4. } a + b \\text{\uc758 \uac12\uc740? (\ub2e8, } a, b \\text{\ub294 \uc0c1\uc218\uc774\ub2e4.) [3\uc810]}\n\n\\begin{itemize}\n \\item[1] 12\n \\item[2] 14\n \\item[3] 16\n \\item[4] 18\n \\item[5] 20\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
|
55 |
+
{"id":7,"name":"7","problem":"7. \\text{\ubaa8\ub4e0 \ud56d\uc774 \uc591\uc218\uc774\uace0 \uccab\uc9f8\ud56d\uacfc \uacf5\ucc28\uac00 \uac19\uc740 \ub4f1\ucc28\uc218\uc5f4 } \\{a_n\\}\\text{\uc774}\n\n\\[ \\sum_{k=1}^{15} \\frac{1}{\\sqrt{a_k} + \\sqrt{a_{k+1}}} = 2 \\]\n\\text{\ub97c \ub9cc\uc871\uc2dc\ud0ac \ub54c, } a_4 \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] 6\n \\item[2] 7\n \\item[3] 8\n \\item[4] 9\n \\item[5] 10\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
|
56 |
+
{"id":8,"name":"8","problem":"8. \\text{\uc810 } (0, 4) \\text{\uc5d0\uc11c \uace1\uc120 } y = x^3 - x + 2 \\text{\uc5d0 \uadf8\uc740 \uc811\uc120\uc758 } x \\text{\uc808\ud3b8\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] -\\frac{1}{2}\n \\item[2] -1\n \\item[3] -\\frac{3}{2}\n \\item[4] -2\n \\item[5] -\\frac{5}{2}\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
|
57 |
+
{"id":9,"name":"9","problem":"9. \\text{\ud568\uc218}\n\n\\[ f(x) = a - \\sqrt{3} \\tan 2x \\]\n\\text{\uac00 \ub2eb\ud78c\uad6c\uac04} \\left[ -\\frac{\\pi}{6}, b \\right] \\text{\uc5d0\uc11c \ucd5c\ub300\uac12 7, \ucd5c\uc19f\uac12 3\uc744 \uac00\uc9c8 \ub54c, } a \\times b \\text{\uc758 \uac12\uc740? (\ub2e8, } a, b \\text{\ub294 \uc0c1\uc218\uc774\ub2e4.) [4\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{\\pi}{2}\n \\item[2] \\frac{5\\pi}{12}\n \\item[3] \\frac{\\pi}{3}\n \\item[4] \\frac{\\pi}{4}\n \\item[5] \\frac{\\pi}{6}\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
|
58 |
+
{"id":10,"name":"10","problem":"10. \\text{\ub450 \uace1\uc120 } y = x^3 + x^2, \\ y = -x^2 + k \\text{\uc640 } y \\text{\ucd95\uc73c\ub85c \ub458\ub7ec\uc2f8\uc778 \ubd80\ubd84\uc758 \ub113\uc774\ub97c } A, \\text{ \ub450 \uace1\uc120 } y = x^3 + x^2, \\ y = -x^2 + k \\text{\uc640 \uc9c1\uc120 } x = 2 \\text{\ub85c \ub458\ub7ec\uc2f8\uc778 \ubd80\ubd84\uc758 \ub113\uc774\ub97c } B \\text{\ub77c \ud558\uc790.} A = B \\text{\uc77c \ub54c, \uc0c1\uc218 } k \\text{\uc758 \uac12\uc740? (\ub2e8, } 4 < k < 5) [4\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{25}{6}\n \\item[2] \\frac{13}{3}\n \\item[3] \\frac{9}{2}\n \\item[4] \\frac{14}{3}\n \\item[5] \\frac{29}{6}\n\\end{itemize}\n","answer":-1,"score":-1,"review":1.0}
|
59 |
+
{"id":11,"name":"11","problem":"11. \\text{\uadf8\ub9bc\uacfc \uac19\uc774 \uc0ac\uac01\ud615 } ABCD \\text{\uac00 \ud55c \uc6d0\uc5d0 \ub0b4\uc811\ud558\uace0}\n\n\\[ \\overline{AB} = 5, \\quad \\overline{AC} = 3 \\sqrt{5}, \\quad \\overline{AD} = 7, \\quad \\angle BAC = \\angle CAD \\]\n\\text{\uc77c \ub54c, \uc774 \uc6d0\uc758 \ubc18\uc9c0\ub984\uc758 \uae38\uc774\ub294? [4\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{5 \\sqrt{2}}{2}\n \\item[2] \\frac{8 \\sqrt{5}}{5}\n \\item[3] \\frac{5 \\sqrt{5}}{3}\n \\item[4] \\frac{8 \\sqrt{2}}{3}\n \\item[5] \\frac{9 \\sqrt{3}}{4}\n\\end{itemize}\n","answer":-1,"score":-1,"review":1.0}
|
60 |
+
{"id":12,"name":"12","problem":"12. \\text{\uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc5f0\uc18d\uc778 \ud568\uc218 } f(x) \\text{\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.}\n\n\\[ n - 1 \\leq x < n \\text{\uc77c \ub54c, } |f(x)| = |6(x - n + 1)(x - n)| \\text{\uc774\ub2e4. (\ub2e8, } n \\text{\uc740 \uc790\uc5f0\uc218\uc774\ub2e4.)} \\]\n\n\\text{\uc5f4\ub9b0\uad6c\uac04 } (0, 4) \\text{\uc5d0\uc11c \uc815\uc758\ub41c \ud568\uc218} \n\\[ g(x) = \\int_0^x f(t) dt - \\int_x^4 f(t) dt \\]\n\\text{\uac00 } x = 2 \\text{\uc5d0\uc11c \ucd5c\uc19f\uac12 0\uc744 \uac00\uc9c8 \ub54c, } \\int_{\\frac{1}{2}}^4 f(x) dx \\text{\uc758 \uac12\uc740? [4\uc810]}\n\n\\begin{itemize}\n \\item[1] -\\frac{3}{2}\n \\item[2] -\\frac{1}{2}\n \\item[3] \\frac{1}{2}\n \\item[4] \\frac{3}{2}\n \\item[5] \\frac{5}{2}\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
|
61 |
+
{"id":13,"name":"13","problem":"13. \\text{\uc790\uc5f0\uc218 } m(m \\geq 2) \\text{\uc5d0 \ub300\ud558\uc5ec } m^{12} \\text{\uc758 } n \\text{\uc81c\uacf1\uadfc \uc911\uc5d0\uc11c \uc815\uc218\uac00 \uc874\uc7ac\ud558\ub3c4\ub85d \ud558\ub294 2 \uc774\uc0c1\uc758 \uc790\uc5f0\uc218 } n \\text{\uc758 \uac1c\uc218\ub97c } f(m) \\text{\uc774\ub77c \ud560 \ub54c,} \n\\[ \\sum_{m=2}^{9} f(m) \\text{\uc758 \uac12\uc740? [4\uc810]} \\]\n\n\\begin{itemize}\n \\item[1] 37\n \\item[2] 42\n \\item[3] 47\n \\item[4] 52\n \\item[5] 57\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
|
62 |
+
{"id":14,"name":"14","problem":"14. \\text{\ub2e4\ud56d\ud568\uc218 } f(x) \\text{\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 } g(x) \\text{\ub97c \ub2e4\uc74c\uacfc \uac19\uc774 \uc815\uc758\ud55c\ub2e4.}\n\n\\[ g(x) = \\begin{cases} x & (x < -1 \\text{ \ub610\ub294 } x > 1) \\\\ f(x) & (-1 \\leq x \\leq 1) \\end{cases} \\]\n\\text{\ud568\uc218 } h(x) = \\lim_{t \\to 0^+} g(x+t) \\times \\lim_{t \\to 2^+} g(x+t) \\text{\uc5d0 \ub300\ud558\uc5ec} \n\\text{\ubcf4\uae30\uc5d0\uc11c \uc633\uc740 \uac83\ub9cc\uc744 \uc788\ub294 \ub300\ub85c \uace0\ub978 \uac83\uc740? [4\uc810]}\n\n\\<\ubcf4\uae30>\n\n\u3131. h(1) = 3 \n\n\u3134. \ud568\uc218 h(x)\ub294 \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc5f0\uc18d\uc774\ub2e4. \n\n\u3137. \ud568\uc218 g(x)\uac00 \ub2eb\ud78c\uad6c\uac04 \\([-1, 1]\\)\uc5d0\uc11c \uac10\uc18c\ud558\uace0 \\(g(-1) = -2\\)\uc774\uba74 \ud568\uc218 h(x)\ub294 \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \ucd5c\uc19f\uac12\uc744 \uac16\ub294\ub2e4.\n\n\\begin{itemize}\n \\item[1] \u3131\n \\item[2] \u3134\n \\item[3] \u3131, \u3134\n \\item[4] \u3131, \u3137\n \\item[5] \u3134, \u3137\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
|
63 |
+
{"id":15,"name":"15","problem":"15. \\text{\ubaa8\ub4e0 \ud56d\uc774 \uc790\uc5f0\uc218\uc774\uace0 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a4\ub294 \ubaa8\ub4e0 \uc218\uc5f4 } \\{a_n\\} \\text{\uc5d0 \ub300\ud558\uc5ec } a_9 \\text{\uc758 \ucd5c\ub300\uac12\uacfc \ucd5c\uc19f\uac12\uc744 \uac01\uac01 } M, m \\text{\uc774\ub77c \ud560 \ub54c, } M + m \\text{\uc758 \uac12\uc740? [4\uc810]}\n\n\\text{(\uac00) } a_7 = 40 \n\n\\text{(\ub098) \ubaa8\ub4e0 \uc790\uc5f0\uc218 } n \\text{\uc5d0 \ub300\ud558\uc5ec}\n\\[ a_{n+2} = \\begin{cases} a_{n+1} + a_n & (a_{n+1}\\text{\uc774 } 3 \\text{\uc758 \ubc30\uc218\uac00 \uc544\ub2cc \uacbd\uc6b0}) \\\\ \\frac{1}{3} a_{n+1} & (a_{n+1}\\text{\uc774 } 3 \\text{\uc758 \ubc30\uc218\uc778 \uacbd\uc6b0}) \\end{cases} \\]\n\n\\begin{itemize}\n \\item[1] 216\n \\item[2] 218\n \\item[3] 220\n \\item[4] 222\n \\item[5] 224\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
|
64 |
+
{"id":16,"name":"16","problem":"16. \\text{\ubc29\uc815\uc2dd}\n\n\\[ \\log_2(3x + 2) = 2 + \\log_2(x - 2) \\]\n\\text{\ub97c \ub9cc\uc871\uc2dc\ud0a4\ub294 \uc2e4\uc218 } x \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [3\uc810]}\n","answer":-1,"score":-1,"review":null}
|
65 |
+
{"id":17,"name":"17","problem":"17. \\text{\ud568\uc218 } f(x) \\text{\uc5d0 \ub300\ud558\uc5ec } f'(x) = 4x^3 - 2x \\text{\uc774\uace0 } f(0) = 3 \\text{\uc77c \ub54c, } f(2) \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [3\uc810]}\n","answer":-1,"score":-1,"review":null}
|
66 |
+
{"id":18,"name":"18","problem":"18. \\text{\ub450 \uc218\uc5f4 } \\{a_n\\}, \\{b_n\\} \\text{\uc5d0 \ub300\ud558\uc5ec}\n\n\\[ \\sum_{k=1}^{5} (3a_k + 5) = 55, \\quad \\sum_{k=1}^{5} (a_k + b_k) = 32 \\]\n\\text{\uc77c \ub54c, } \\sum_{k=1}^{5} b_k \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [3\uc810]}\n","answer":-1,"score":-1,"review":null}
|
67 |
+
{"id":19,"name":"19","problem":"19. \\text{\ubc29\uc815\uc2dd } 2x^3 - 6x^2 + k = 0 \\text{\uc758 \uc11c\ub85c \ub2e4\ub978 \uc591\uc758 \uc2e4\uadfc\uc758 \uac1c\uc218\uac00 2\uac00 \ub418\ub3c4\ub85d \ud558\ub294 \uc815\uc218 } k \\text{\uc758 \uac1c\uc218\ub97c \uad6c\ud558\uc2dc\uc624. [3\uc810]}\n","answer":-1,"score":-1,"review":null}
|
68 |
+
{"id":20,"name":"20","problem":"20. \\text{\uc218\uc9c1\uc120 \uc704\ub97c \uc6c0\uc9c1\uc774\ub294 \uc810 P\uc758 \uc2dc\uac01 } t(t \\geq 0) \\text{\uc5d0\uc11c\uc758 \uc18d\ub3c4 } v(t) \\text{\uc640 \uac00\uc18d\ub3c4 } a(t) \\text{\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.}\n\n\\text{(\uac00) } 0 \\leq t \\leq 2 \\text{\uc77c \ub54c, } v(t) = 2t^3 - 8t \\text{\uc774\ub2e4.}\n\\text{(\ub098) } t \\geq 2 \\text{\uc77c \ub54c, } a(t) = 6t + 4 \\text{\uc774\ub2e4.}\n\n\\text{\uc2dc\uac01 } t = 0 \\text{\uc5d0\uc11c } t = 3 \\text{\uae4c\uc9c0 \uc810 P\uac00 \uc6c0\uc9c1\uc778 \uac70\ub9ac\ub97c \uad6c\ud558\uc2dc\uc624. [4\uc810]}\n","answer":-1,"score":-1,"review":null}
|
69 |
+
{"id":21,"name":"21","problem":"21. \\text{\uc790\uc5f0\uc218 } n \\text{\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 } f(x) \\text{\ub97c}\n\n\\[ f(x) = \\begin{cases} |3^x + 2 - n| & (x < 0) \\\\ |\\log_2(x + 4) - n| & (x \\geq 0) \\end{cases} \\]\n\\text{\uc774\ub77c \ud558\uc790. \uc2e4\uc218 } t \\text{\uc5d0 \ub300\ud558\uc5ec } x \\text{\uc5d0 \ub300\ud55c \ubc29\uc815\uc2dd } f(x) = t \\text{\uc758 \uc11c\ub85c \ub2e4\ub978 \uc2e4\uadfc\uc758 \uac1c\uc218\ub97c } g(t) \\text{\ub77c \ud560 \ub54c, \ud568\uc218 } g(t) \\text{\uc758 \ucd5c\ub313\uac12\uc774 4\uac00 \ub418\ub3c4\ub85d \ud558\ub294 \ubaa8\ub4e0 \uc790\uc5f0\uc218 } n \\text{\uc758 \uac12\uc758 \ud569\uc744 \uad6c\ud558\uc2dc\uc624. [4\uc810]}\n","answer":-1,"score":-1,"review":null}
|
70 |
+
{"id":22,"name":"22","problem":"22. \\text{\ucd5c\uace0\ucc28\ud56d\uc758 \uacc4\uc218\uac00 1\uc778 \uc0bc\ucc28\ud568\uc218 } f(x) \\text{\uc640 \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc5f0\uc18d\uc778 \ud568\uc218 } g(x) \\text{\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0ac \ub54c, } f(4) \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [4\uc810]}\n\n\\text{(\uac00) \ubaa8\ub4e0 \uc2e4\uc218 } x \\text{\uc5d0 \ub300\ud558\uc5ec } f(x) = f(1) + (x - 1)f'(g(x)) \\text{\uc774\ub2e4.}\n\\text{(\ub098) \ud568\uc218 } g(x) \\text{\uc758 \ucd5c\uc19f\uac12\uc740 } \\frac{5}{2} \\text{\uc774\ub2e4.}\n\\text{(\ub2e4) } f(0) = -3, \\quad f(g(1)) = 6 \n","answer":-1,"score":-1,"review":null}
|
71 |
+
{"id":23,"name":"23_prob","problem":"23. \\( (x^3 + 3)^5 \\)\uc758 \uc804\uac1c\uc2dd\uc5d0\uc11c \\(x^9\\)\uc758 \uacc4\uc218\ub294? [2\uc810]\n\\begin{itemize}\n \\item[1] 30\n \\item[2] 60\n \\item[3] 90\n \\item[4] 120\n \\item[5] 150\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
|
72 |
+
{"id":24,"name":"24_prob","problem":"24. \\text{\uc22b\uc790 } 1, 2, 3, 4, 5 \\text{ \uc911\uc5d0\uc11c \uc911\ubcf5\uc744 \ud5c8\ub77d\ud558\uc5ec 4\uac1c\ub97c \ud0dd\ud574 \uc77c\ub82c\ub85c \ub098\uc5f4\ud558\uc5ec \ub9cc\ub4e4 \uc218 \uc788\ub294 \ub124 \uc790\ub9ac\uc758 \uc790\uc5f0\uc218 \uc911 4000 \uc774\uc0c1\uc778 \ud640\uc218\uc758 \uac1c\uc218\ub294? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] 125\n \\item[2] 150\n \\item[3] 175\n \\item[4] 200\n \\item[5] 225\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
|
73 |
+
{"id":25,"name":"25_prob","problem":"25. \\text{\ud770\uc0c9 \ub9c8\uc2a4\ud06c 5\uac1c, \uac80\uc740\uc0c9 \ub9c8\uc2a4\ud06c 9\uac1c\uac00 \ub4e4\uc5b4 \uc788\ub294 \uc0c1\uc790\uac00 \uc788\ub2e4. \uc774 \uc0c1\uc790\uc5d0\uc11c \uc784\uc758\ub85c 3\uac1c\uc758 \ub9c8\uc2a4\ud06c\ub97c \ub3d9\uc2dc\uc5d0 \uaebc\ub0bc \ub54c, \uaebc\ub0b8 3\uac1c\uc758 \ub9c8\uc2a4\ud06c \uc911\uc5d0\uc11c \uc801\uc5b4\ub3c4 \ud55c \uac1c\uac00 \ud770\uc0c9 \ub9c8\uc2a4\ud06c\uc77c \ud655\ub960\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{8}{13}\n \\item[2] \\frac{17}{26}\n \\item[3] \\frac{9}{13}\n \\item[4] \\frac{19}{26}\n \\item[5] \\frac{10}{13}\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
|
74 |
+
{"id":26,"name":"26_prob","problem":"26. \\text{\uc8fc\uba38\ub2c8\uc5d0 1\uc774 \uc801\ud78c \ud770 \uacf5 1\uac1c, 2\uac00 \uc801\ud78c \ud770 \uacf5 1\uac1c, 1\uc774 \uc801\ud78c \uac80\uc740 \uacf5 1\uac1c, 2\uac00 \uc801\ud78c \uac80\uc740 \uacf5 3\uac1c\uac00 \ub4e4\uc5b4 \uc788\ub2e4. \uc774 \uc8fc\uba38\ub2c8\uc5d0\uc11c \uc784\uc758\ub85c 3\uac1c\uc758 \uacf5\uc744 \ub3d9\uc2dc\uc5d0 \uaebc\ub0b4\ub294 \uc2dc\ud589\uc744 \ud55c\ub2e4. \uc774 \uc2dc\ud589\uc5d0\uc11c \uaebc\ub0b8 3\uac1c\uc758 \uacf5 \uc911\uc5d0\uc11c \ud770 \uacf5\uc774 1\uac1c\uc774\uace0 \uac80\uc740 \uacf5\uc774 2\uac1c\uc778 \uc0ac\uac74\uc744 } A, \\text{ \uaebc\ub0b8 3\uac1c\uc758 \uacf5\uc5d0 \uc801\ud600 \uc788\ub294 \uc218\ub97c \ubaa8\ub450 \uacf1\ud55c \uac12\uc774 8\uc778 \uc0ac\uac74\uc744 } B \\text{\ub77c \ud560 \ub54c, } P(A \\cup B) \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{11}{20}\n \\item[2] \\frac{3}{5}\n \\item[3] \\frac{13}{20}\n \\item[4] \\frac{7}{10}\n \\item[5] \\frac{3}{4}\n\\end{itemize}\n","answer":-1,"score":-1,"review":1.0}
|
75 |
+
{"id":27,"name":"27_prob","problem":"27. \\text{\uc5b4\ub290 \ud68c\uc0ac\uc5d0\uc11c \uc0dd\uc0b0\ud558\ub294 \uc0f4\ud478 1\uac1c\uc758 \uc6a9\ub7c9\uc740 \uc815\uaddc\ubd84\ud3ec } N(m, \\sigma^2) \\text{\uc744 \ub530\ub978\ub2e4\uace0 \ud55c\ub2e4. \uc774 \ud68c\uc0ac\uc5d0\uc11c \uc0dd\uc0b0\ud558\ub294 \uc0f4\ud478 \uc911\uc5d0\uc11c 16\uac1c\ub97c \uc784\uc758\ucd94\ucd9c\ud558\uc5ec \uc5bb\uc740 \ud45c\ubcf8\ud3c9\uade0\uc744 \uc774\uc6a9\ud558\uc5ec \uad6c\ud55c } m \\text{\uc5d0 \ub300\ud55c \uc2e0\ub8b0\ub3c4 95%\uc758 \uc2e0\ub8b0\uad6c\uac04\uc774 } 746.1 \\leq m \\leq 755.9 \\text{\uc774\ub2e4. \uc774 \ud68c\uc0ac\uc5d0\uc11c \uc0dd\uc0b0\ud558\ub294 \uc0f4\ud478 \uc911\uc5d0\uc11c } n \\text{\uac1c\ub97c \uc784\uc758\ucd94\ucd9c\ud558\uc5ec \uc5bb\uc740 \ud45c\ubcf8\ud3c9\uade0\uc744 \uc774\uc6a9\ud558\uc5ec \uad6c\ud558\ub294 } m \\text{\uc5d0 \ub300\ud55c \uc2e0\ub8b0\ub3c4 99%\uc758 \uc2e0\ub8b0\uad6c\uac04\uc774 } a \\leq m \\leq b \\text{\uc77c \ub54c, } b - a \\text{\uc758 \uac12\uc774 6 \uc774\ud558\uac00 \ub418\uae30 \uc704\ud55c \uc790\uc5f0\uc218 } n \\text{\uc758 \ucd5c\uc19f\uac12\uc740? (\ub2e8, \uc6a9\ub7c9\uc758 \ub2e8\uc704\ub294 mL\uc774\uace0, } Z \\text{\uac00 \ud45c\uc900\uc815\uaddc\ubd84\ud3ec\ub97c \ub530\ub974\ub294 \ud655\ub960\ubcc0\uc218\uc77c \ub54c, } P(|Z| \\leq 1.96) = 0.95, P(|Z| \\leq 2.58) = 0.99 \\text{\ub85c \uacc4\uc0b0\ud55c\ub2e4.) [3\uc810]}\n\n\\begin{itemize}\n \\item[1] 70\n \\item[2] 74\n \\item[3] 78\n \\item[4] 82\n \\item[5] 86\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
|
76 |
+
{"id":28,"name":"28_prob","problem":"28. \\text{\uc5f0\uc18d\ud655\ub960\ubcc0\uc218 } X \\text{\uac00 \uac16\ub294 \uac12\uc758 \ubc94\uc704\ub294 } 0 \\leq X \\leq a \\text{\uc774\uace0, } X \\text{\uc758 \ud655\ub960\ubc00\ub3c4\ud568\uc218\uc758 \uadf8\ub798\ud504\uac00 \uadf8\ub9bc\uacfc \uac19\ub2e4.}\n\n\\[ P(X \\leq b) - P(X \\geq b) = \\frac{1}{4}, \\quad P(X \\leq \\sqrt{5}) = \\frac{1}{2} \\]\n\\text{\uc77c \ub54c, } a + b + c \\text{\uc758 \uac12\uc740? (\ub2e8, } a, b, c \\text{\ub294 \uc0c1\uc218\uc774\ub2e4.) [4\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{11}{2}\n \\item[2] 6\n \\item[3] \\frac{13}{2}\n \\item[4] 7\n \\item[5] \\frac{15}{2}\n\\end{itemize}\n","answer":-1,"score":-1,"review":2.0}
|
77 |
+
{"id":29,"name":"29_prob","problem":"29. \\text{\uc55e\uba74\uc5d0\ub294 1\ubd80\ud130 6\uae4c\uc9c0\uc758 \uc790\uc5f0\uc218\uac00 \ud558\ub098\uc529 \uc801\ud600 \uc788\uace0, \ub4b7\uba74\uc5d0\ub294 \ubaa8\ub450 0\uc774 \ud558\ub098\uc529 \uc801\ud600 \uc788\ub294 6\uc7a5\uc758 \uce74\ub4dc\uac00 \uc788\ub2e4. \uc774 6\uc7a5\uc758 \uce74\ub4dc\uac00 \uadf8\ub9bc\uacfc \uac19\uc774 6 \uc774\ud558\uc758 \uc790\uc5f0\uc218 } k \\text{\uc5d0 \ub300\ud558\uc5ec } k \\text{\ubc88\uc9f8 \uc790\ub9ac\uc5d0 \uc790\uc5f0\uc218 } k \\text{\uac00 \ubcf4\uc774\ub3c4\ub85d \ub193\uc5ec \uc788\ub2e4.}\n\n\\text{\uc774 6\uc7a5\uc758 \uce74\ub4dc\uc640 \ud55c \uac1c\uc758 \uc8fc\uc0ac\uc704\ub97c \uc0ac\uc6a9\ud558\uc5ec \ub2e4\uc74c \uc2dc\ud589\uc744 \ud55c\ub2e4.}\n\n\\[ \\text{\uc8fc\uc0ac\uc704\ub97c \ud55c \ubc88 \ub358\uc838 \ub098\uc628 \ub208\uc758 \uc218\uac00 } k \\text{\uc774\uba74 } k \\text{\ubc88\uc9f8 \uc790\ub9ac\uc5d0 \ub193\uc5ec \uc788\ub294 \uce74\ub4dc\ub97c \ud55c \ubc88 \ub4a4\uc9d1\uc5b4 \uc81c\uc790\ub9ac\uc5d0 \ub193\ub294\ub2e4.} \\]\n\n\\text{\uc704\uc758 \uc2dc\ud589\uc744 3\ubc88 \ubc18\ubcf5\ud55c \ud6c4 6\uc7a5\uc758 \uce74\ub4dc\uc5d0 \ubcf4\uc774\ub294 \ubaa8\ub4e0 \uc218\uc758 \ud569\uc774 \uc9dd\uc218\uc77c \ub54c, \uc8fc\uc0ac\uc704\uc758 1\uc758 \ub208\uc774 \ud55c \ubc88\ub9cc \ub098\uc654\uc744 \ud655\ub960\uc740 } \\frac{q}{p} \\text{\uc774\ub2e4. } p + q \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. (\ub2e8, } p \\text{\uc640 } q \\text{\ub294 \uc11c\ub85c\uc18c\uc778 \uc790\uc5f0\uc218\uc774\ub2e4.) [4\uc810]}\n","answer":-1,"score":-1,"review":1.0}
|
78 |
+
{"id":30,"name":"30_prob","problem":"30. \\text{\uc9d1\ud569 } X = \\{x | x \\text{\ub294 10 \uc774\ud558\uc758 \uc790\uc5f0\uc218}\\} \\text{\uc5d0 \ub300\ud558\uc5ec \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a4\ub294 \ud568\uc218 } f: X \\to X \\text{\uc758 \uac1c\uc218\ub97c \uad6c\ud558\uc2dc\uc624. [4\uc810]}\n\n\\text{(\uac00) 9 \uc774\ud558\uc758 \ubaa8\ub4e0 \uc790\uc5f0\uc218 } x \\text{\uc5d0 \ub300\ud558\uc5ec } f(x) \\leq f(x+1) \\text{\uc774\ub2e4.}\n\\text{(\ub098) } 1 \\leq x \\leq 5 \\text{\uc77c \ub54c } f(x) \\leq x \\text{\uc774\uace0, } 6 \\leq x \\leq 10 \\text{\uc77c \ub54c } f(x) \\geq x \\text{\uc774\ub2e4.}\n\\text{(\ub2e4) } f(6) = f(5) + 6\n","answer":-1,"score":-1,"review":null}
|
79 |
+
{"id":31,"name":"23_calc","problem":"23. \\lim_{x \\to 0} \\frac{\\ln(x+1)}{\\sqrt{x+4} - 2} \\text{\uc758 \uac12\uc740? [2\uc810]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
|
80 |
+
{"id":32,"name":"24_calc","problem":"24. \\lim_{n \\to \\infty} \\frac{1}{n} \\sum_{k=1}^{n} \\sqrt{1 + \\frac{3k}{n}} \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{4}{3}\n \\item[2] \\frac{13}{9}\n \\item[3] \\frac{14}{9}\n \\item[4] \\frac{5}{3}\n \\item[5] \\frac{16}{9}\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
|
81 |
+
{"id":33,"name":"25_calc","problem":"25. \\text{\ub4f1\ube44\uc218\uc5f4 } \\{a_n\\} \\text{\uc5d0 \ub300\ud558\uc5ec } \\lim_{n \\to \\infty} \\frac{a_n + 1}{3^n + 2^{2n-1}} = 3 \\text{\uc77c \ub54c, } a_2 \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] 16\n \\item[2] 18\n \\item[3] 20\n \\item[4] 22\n \\item[5] 24\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
|
82 |
+
{"id":34,"name":"26_calc","problem":"26. \\text{\uadf8\ub9bc\uacfc \uac19\uc774 \uace1\uc120 } y = \\sqrt{\\sec^2 x} + \\tan x \\left(0 \\leq x \\leq \\frac{\\pi}{3}\\right) \\text{\uc640 } x \\text{\ucd95, } y \\text{\ucd95 \ubc0f \uc9c1\uc120 } x = \\frac{\\pi}{3} \\text{\ub85c \ub458\ub7ec\uc2f8\uc778 \ubd80\ubd84\uc744 \ubc11\uba74\uc73c\ub85c \ud558\ub294 \uc785\uccb4\ub3c4\ud615\uc774 \uc788\ub2e4. \uc774 \uc785\uccb4\ub3c4\ud615\uc744 } x \\text{\ucd95\uc5d0 \uc218\uc9c1\uc778 \ud3c9\uba74\uc73c\ub85c \uc790\ub978 \ub2e8\uba74\uc774 \ubaa8\ub450 \uc815\uc0ac\uac01\ud615\uc77c \ub54c, \uc774 \uc785\uccb4\ub3c4\ud615\uc758 \ubd80\ud53c\ub294? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{\\sqrt{3}}{2} + \\frac{\\ln 2}{2}\n \\item[2] \\frac{\\sqrt{3}}{2} + \\ln 2\n \\item[3] \\sqrt{3} + \\frac{\\ln 2}{2}\n \\item[4] \\sqrt{3} + \\ln 2\n \\item[5] \\sqrt{3} + 2\\ln 2\n\\end{itemize}\n","answer":-1,"score":-1,"review":1.0}
|
83 |
+
{"id":35,"name":"27_prob","problem":"27. \\text{\uadf8\ub9bc\uacfc \uac19\uc774 \uc911\uc2ec\uc774 } O, \\text{\ubc18\uc9c0\ub984\uc758 \uae38\uc774\uac00 1\uc774\uace0 \uc911\uc2ec\uac01\uc758 \ud06c\uae30\uac00 } \\frac{\\pi}{2} \\text{\uc778 \ubd80\ucc44\uaf34 } OA_1B_1 \\text{\uc774 \uc788\ub2e4. \ud638 } A_1B_1 \\text{ \uc704\uc5d0 \uc810 } P_1, \\text{\uc120\ubd84 } OA_1 \\text{ \uc704\uc5d0 \uc810 } C_1, \\text{\uc120\ubd84 } OB_1 \\text{ \uc704\uc5d0 \uc810 } D_1 \\text{\uc744 \uc0ac\uac01\ud615 } OC_1P_1D_1 \\text{\uc774 } OC_1 : OD_1 = 3:4 \\text{\uc778 \uc9c1\uc0ac\uac01\ud615\uc774 \ub418\ub3c4\ub85d \uc7a1\ub294\ub2e4.}\n\n\\text{\ubd80\ucc44\uaf34 } OA_1B_1 \\text{\uc758 \ub0b4\ubd80\uc5d0 \uc810 } Q_1 \\text{\uc744 } PQ_1 = AQ_1, \\angle PQ_1A_1 = \\frac{\\pi}{2} \\text{\uac00 \ub418\ub3c4\ub85d \uc7a1\uace0, \uc774\ub4f1\ubcc0\uc0bc\uac01\ud615 } P_1Q_1A_1 \\text{\uc5d0 \uc0c9\uce60\ud558\uc5ec \uc5bb\uc740 \uadf8\ub9bc\uc744 } R_1 \\text{\uc774\ub77c \ud558\uc790.}\n\\text{\uadf8\ub9bc } R_1 \\text{\uc5d0\uc11c \uc120\ubd84 } OA_1 \\text{ \uc704\uc758 \uc810 } A_2 \\text{\uc640 \uc120\ubd84 } OB_1 \\text{ \uc704\uc758 \uc810 } B_2 \\text{\ub97c } OQ_1 = OA_2 = OB_2 \\text{\uac00 \ub418\ub3c4\ub85d \uc7a1\uace0, \uc911\uc2ec\uc774 } O, \\text{\ubc18\uc9c0\ub984\uc758 \uae38\uc774\uac00 } OQ_1, \\text{\uc911\uc2ec\uac01\uc758 \ud06c\uae30\uac00 } \\frac{\\pi}{2} \\text{\uc778 \ubd80\ucc44\uaf34 } OA_2B_2 \\text{\ub97c \uadf8\ub9b0\ub2e4. \uadf8\ub9b0 } R_1 \\text{\uc744 \uc5bb\uc740 \uac83\uacfc \uac19\uc740 \ubc29\ubc95\uc73c\ub85c \ub124 \uc810 } P_2, C_2, D_2, Q_2 \\text{\ub97c \uc7a1\uace0, \uc774\ub4f1\ubcc0\uc0bc\uac01\ud615 } P_2Q_2A_2 \\text{\uc5d0 \uc0c9\uce60\ud558\uc5ec \uc5bb\uc740 \uadf8\ub9bc\uc744 } R_2 \\text{\ub77c \ud558\uc790. \uc774\uc640 \uac19\uc740 \uacfc\uc815\uc744 \uacc4\uc18d\ud558\uc5ec } n \\text{\ubc88\uc9f8 \uc5bb\uc740 \uadf8\ub9bc } R_n \\text{\uc5d0 \uc0c9\uce60\ub418\uc5b4 \uc788\ub294 \ubd80\ubd84\uc758 \ub113\uc774\ub97c } S_n \\text{\uc774\ub77c \ud560 \ub54c, } \\lim_{n \\to \\infty} S_n \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{9}{40}\n \\item[2] \\frac{1}{4}\n \\item[3] \\frac{11}{40}\n \\item[4] \\frac{3}{10}\n \\item[5] \\frac{13}{40}\n\\end{itemize}\n","answer":-1,"score":-1,"review":1.0}
|
84 |
+
{"id":36,"name":"28_prob","problem":"28. \\text{\uadf8\ub9bc\uacfc \uac19\uc774 \uc911\uc2ec\uc774 } O \\text{\uc774\uace0 \uae38\uc774\uac00 2\uc778 \uc120\ubd84 } AB \\text{\ub97c \uc9c0\ub984\uc73c\ub85c \ud558\ub294 \ubc18\uc6d0 \uc704\uc5d0 } \\angle AOC = \\frac{\\pi}{2} \\text{\uc778 \uc810 } C \\text{\uac00 \uc788\ub2e4.}\n\\text{\ud638 } BC \\text{ \uc704\uc5d0 \uc810 } P \\text{\uc640 \ud638 } CA \\text{ \uc704\uc5d0 \uc810 } Q \\text{\ub97c } PB = QC \\text{\uac00 \ub418\ub3c4\ub85d \uc7a1\uace0, \uc120\ubd84 } AP \\text{ \uc704\uc5d0 \uc810 } R \\text{\uc744 } \\angle CQR = \\frac{\\pi}{2} \\text{\uac00 \ub418\ub3c4\ub85d \uc7a1\ub294\ub2e4.}\n\\text{\uc120\ubd84 } AP \\text{\uc640 \uc120\ubd84 } CO \\text{\uc758 \uad50\uc810\uc744 } S \\text{\ub77c \ud558\uc790. } \\angle PAB = \\theta \\text{\uc77c \ub54c, \uc0bc\uac01\ud615 } POB \\text{\uc758 \ub113\uc774\ub97c } f(\\theta), \\text{\uc0ac\uac01\ud615 } CQRS \\text{\uc758 \ub113\uc774\ub97c } g(\\theta) \\text{\ub77c \ud558\uc790.}\n\n\\lim_{\\theta \\to 0^+} \\frac{3f(\\theta) - 2g(\\theta)}{\\theta^2} \\text{\uc758 \uac12\uc740? (\ub2e8, } 0 < \\theta < \\frac{\\pi}{4} \\text{) [4\uc810]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":-1,"score":-1,"review":1.0}
|
85 |
+
{"id":37,"name":"29_prob","problem":"29. \\text{\uc138 \uc0c1\uc218 } a, b, c \\text{\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 } f(x) = ae^{2x} + be^x + c \\text{\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.}\n\n\\text{(\uac00) } \\lim_{x \\to -\\infty} \\frac{f(x) + 6}{e^x} = 1\n\\text{(\ub098) } f(\\ln 2) = 0\n\n\\text{\ud568\uc218 } f(x) \\text{\uc758 \uc5ed\ud568\uc218\ub97c } g(x) \\text{\ub77c \ud560 \ub54c,}\n\\[ \\int_0^{14} g(x) dx = p + q \\ln 2 \\text{\uc774\ub2e4. } p + q \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624.}\n\\text{(\ub2e8, } p, q \\text{\ub294 \uc720\ub9ac\uc218\uc774\uace0, } \\ln 2 \\text{\ub294 \ubb34\ub9ac\uc218\uc774\ub2e4.) [4\uc810]}\n","answer":-1,"score":-1,"review":null}
|
86 |
+
{"id":38,"name":"30_prob","problem":"30. \\text{\ucd5c\uace0\ucc28\ud56d\uc758 \uacc4\uc218\uac00 \uc591\uc218\uc778 \uc0bc\ucc28\ud568\uc218 } f(x) \\text{\uc640 \ud568\uc218 } g(x) = e^{\\sin \\pi x} - 1 \\text{\uc5d0 \ub300\ud558\uc5ec \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc815\uc758\ub41c \ud569\uc131\ud568\uc218 } h(x) = g(f(x)) \\text{\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.}\n\n\\text{(\uac00) \ud568\uc218 } h(x) \\text{\ub294 } x = 0 \\text{\uc5d0\uc11c \uadf9\ub313\uac12 0\uc744 \uac16\ub294\ub2e4.}\n\\text{(\ub098) \uc5f4\ub9b0\uad6c\uac04 } (0, 3) \\text{\uc5d0\uc11c \ubc29\uc815\uc2dd } h(x) = 1 \\text{\uc758 \uc11c\ub85c \ub2e4\ub978 \uc2e4\uadfc\uc758 \uac1c\uc218\ub294 7\uc774\ub2e4.}\n\nf(3) = \\frac{1}{2}, f'(3) = 0 \\text{\uc77c \ub54c, } f(2) = \\frac{q}{p} \\text{\uc774\ub2e4. } p + q \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. (\ub2e8, } p \\text{\uc640 } q \\text{\ub294 \uc11c\ub85c\uc18c\uc778 \uc790\uc5f0\uc218\uc774\ub2e4.) [4\uc810]}\n","answer":-1,"score":-1,"review":null}
|
87 |
+
{"id":39,"name":"23_geom","problem":"23. \\text{\uc88c\ud45c\uacf5\uac04\uc758 \uc810 } A(2, 2, -1) \\text{\uc744 } x \\text{\ucd95\uc5d0 \ub300\ud558\uc5ec \ub300\uce6d\uc774\ub3d9\ud55c \uc810\uc744 } B \\text{\ub77c \ud558\uc790. \uc810 } C(-2, 1, 1) \\text{\uc5d0 \ub300\ud558\uc5ec \uc120\ubd84 BC\uc758 \uae38\uc774\ub294? [2\uc810]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
|
88 |
+
{"id":40,"name":"24_geom","problem":"24. \\text{\ucd08\uc810\uc774 } F\\left(\\frac{1}{3}, 0\\right) \\text{\uc774\uace0 \uc900\uc120\uc774 } x = -\\frac{1}{3} \\text{\uc778 \ud3ec\ubb3c\uc120\uc774 \uc810 } (a, 2) \\text{\ub97c \uc9c0\ub0a0 \ub54c, } a \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
|
89 |
+
{"id":41,"name":"25_geom","problem":"25. \\text{\ud0c0\uc6d0 } \\frac{x^2}{a^2} + \\frac{y^2}{b^2} = 1 \\text{ \uc704\uc758 \uc810 } (2, 1) \\text{\uc5d0\uc11c\uc758 \uc811\uc120\uc758 \uae30\uc6b8\uae30\uac00 } -\\frac{1}{2} \\text{\uc77c \ub54c, \uc774 \ud0c0\uc6d0\uc758 \ub450 \ucd08\uc810 \uc0ac\uc774\uc758 \uac70\ub9ac\ub294? (\ub2e8, } a, b \\text{\ub294 \uc591\uc218\uc774\ub2e4.) [3\uc810]}\n\n\\begin{itemize}\n \\item[1] 2\\sqrt{3}\n \\item[2] 4\n \\item[3] 2\\sqrt{5}\n \\item[4] 2\\sqrt{6}\n \\item[5] 2\\sqrt{7}\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
|
90 |
+
{"id":42,"name":"26_geom","problem":"26. \\text{\uc88c\ud45c\ud3c9\uba74\uc5d0\uc11c \uc138 \ubca1\ud130 } \\vec{a} = (2, 4), \\vec{b} = (2, 8), \\vec{c} = (1, 0) \\text{\uc5d0 \ub300\ud558\uc5ec \ub450 \ubca1\ud130 } \\vec{p}, \\vec{q} \\text{\uac00}\n\n(\\vec{p} - \\vec{a}) \\cdot (\\vec{p} - \\vec{b}) = 0, \\quad \\vec{q} = \\frac{1}{2} \\vec{a} + t \\vec{c} \\quad (t \\text{\ub294 \uc2e4\uc218}) \\text{\ub97c \ub9cc\uc871\uc2dc\ud0ac \ub54c, } |\\vec{p} - \\vec{q}| \\text{\uc758 \ucd5c\uc19f\uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{3}{2}\n \\item[2] 2\n \\item[3] \\frac{5}{2}\n \\item[4] 3\n \\item[5] \\frac{7}{2}\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
|
91 |
+
{"id":43,"name":"27_geom","problem":"27. \\text{\uc88c\ud45c\uacf5\uac04\uc5d0 \uc9c1\uc120 AB\ub97c \ud3ec\ud568\ud558\ub294 \ud3c9\uba74 } \\alpha \\text{\uac00 \uc788\ub2e4. \ud3c9\uba74 } \\alpha \\text{ \uc704\uc5d0 \uc788\uc9c0 \uc54a\uc740 \uc810 C\uc5d0 \ub300\ud558\uc5ec \uc9c1\uc120 AB\uc640 \uc9c1\uc120 AC\uac00 \uc774\ub8e8\ub294 \uc608\uac01\uc758 \ud06c\uae30\ub97c } \\theta_1 \\text{\uc774\ub77c \ud560 \ub54c } \\sin \\theta_1 = \\frac{4}{5} \\text{\uc774\uace0, \uc9c1\uc120 AC\uc640 \ud3c9\uba74 } \\alpha \\text{\uac00 \uc774\ub8e8\ub294 \uc608\uac01\uc758 \ud06c\uae30\ub294 } \\frac{\\pi}{2} - \\theta_1 \\text{\uc774\ub2e4. \ud3c9\uba74 ABC\uc640 \ud3c9\uba74 } \\alpha \\text{\uac00 \uc774\ub8e8\ub294 \uc608\uac01\uc758 \ud06c\uae30\ub97c } \\theta_2 \\text{\ub77c \ud560 \ub54c, } \\cos \\theta_2 \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{\\sqrt{7}}{4}\n \\item[2] \\frac{\\sqrt{7}}{5}\n \\item[3] \\frac{\\sqrt{7}}{6}\n \\item[4] \\frac{\\sqrt{7}}{7}\n \\item[5] \\frac{\\sqrt{7}}{8}\n\\end{itemize}\n","answer":-1,"score":-1,"review":1.0}
|
92 |
+
{"id":44,"name":"28_geom","problem":"28. \\text{\ub450 \ucd08\uc810\uc774 } F(c, 0), F'(-c, 0) \\text{(} c > 0 \\text{)\uc778 \uc30d\uace1\uc120 } C \\text{\uc640 } y \\text{\ucd95 \uc704\uc758 \uc810 } A \\text{\uac00 \uc788\ub2e4. \uc30d\uace1\uc120 } C \\text{\uac00 \uc120\ubd84 } AF \\text{\uc640 \ub9cc\ub098\ub294 \uc810\uc744 } P, \\text{\uc120\ubd84 } AF' \\text{\uacfc \ub9cc\ub098\ub294 \uc810\uc744 } P' \\text{\uc774\ub77c \ud558\uc790. \uc9c1\uc120 } AF \\text{\ub294 \uc30d\uace1\uc120 } C \\text{\uc758 \ud55c \uc811\uadfc\uc120\uacfc \ud3c9\ud589\ud558\uace0 }\n\\frac{AP}{PP'} = \\frac{5}{6}, PF = 1 \\text{\uc77c \ub54c, \uc30d\uace1\uc120 } C \\text{\uc758 \uc8fc\ucd95\uc758 \uae38\uc774\ub294? [4\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{13}{6}\n \\item[2] \\frac{9}{4}\n \\item[3] \\frac{7}{3}\n \\item[4] \\frac{29}{12}\n \\item[5] \\frac{5}{2}\n\\end{itemize}\n","answer":-1,"score":-1,"review":1.0}
|
93 |
+
{"id":45,"name":"29_geom","problem":"29. \\text{\ud3c9\uba74 } \\alpha \\text{ \uc704\uc5d0 } \\overline{AB} = \\overline{CD} = \\overline{AD} = 2, \\quad \\angle ABC = \\angle BCD = \\frac{\\pi}{3} \\text{\uc778 \uc0ac\ub2e4\ub9ac\uaf34 ABCD\uac00 \uc788\ub2e4. \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a4\ub294 \ud3c9\uba74 } \\alpha \\text{ \uc704\uc758 \ub450 \uc810 P, Q\uc5d0 \ub300\ud558\uc5ec } \\overrightarrow{CP} \\cdot \\overrightarrow{DQ} \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [4\uc810]}\n\n\\text{(\uac00) } \\overrightarrow{AC} = 2(\\overrightarrow{AD} + \\overrightarrow{BP})\n\\text{(\ub098) } \\overrightarrow{AC} \\cdot \\overrightarrow{PQ} = 6\n\\text{(\ub2e4) } 2 \\times \\angle BQA = \\angle PBQ < \\frac{\\pi}{2}\n","answer":-1,"score":-1,"review":2.0}
|
94 |
+
{"id":46,"name":"30_geom","problem":"30. \\text{\uc88c\ud45c\uacf5\uac04\uc5d0 \uc815\uc0ac\uba74\uccb4 ABCD\uac00 \uc788\ub2e4. \uc815\uc0bc\uac01\ud615 BCD\uc758 \uc678\uc2ec\uc744 \uc911\uc2ec\uc73c\ub85c \ud558\uace0 \uc810 B\ub97c \uc9c0\ub098\ub294 \uad6c\ub97c } S \\text{\ub77c \ud558\uc790.}\n\\text{\uad6c } S \\text{\uc640 \uc120\ubd84 AB\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 B\uac00 \uc544\ub2cc \uc810\uc744 P,}\n\\text{\uad6c } S \\text{\uc640 \uc120\ubd84 AC\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 C\uac00 \uc544\ub2cc \uc810\uc744 Q,}\n\\text{\uad6c } S \\text{\uc640 \uc120\ubd84 AD\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 D\uac00 \uc544\ub2cc \uc810\uc744 R\ub77c \ud558\uace0, \uc810 P\uc5d0\uc11c \uad6c } S \\text{\uc5d0 \uc811\ud558\ub294 \ud3c9\uba74\uc744 } \\alpha \\text{\ub77c \ud558\uc790.}\n\\text{\uad6c } S \\text{\uc758 \ubc18\uc9c0\ub984\uc758 \uae38\uc774\uac00 6\uc77c \ub54c, \uc0bc\uac01\ud615 PQR\uc758 \ud3c9\uba74 } \\alpha \\text{\uc704\ub85c\uc758 \uc815\uc0ac\uc601\uc758 \ub113\uc774\ub294 } k \\alpha \\text{\uc774\ub2e4. } k^2 \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [4\uc810]}\n","answer":-1,"score":-1,"review":null}
|
95 |
+
>>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
|
data/json/2023/math_temp.json
ADDED
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"id": 1,
|
3 |
+
"name": "1",
|
4 |
+
"problem": "1. \\left( \\frac{4}{2^{\\sqrt{2}}} \\right)^{2 + \\sqrt{2}} \\text{์ ๊ฐ์? [2์ ]}\n\n\\begin{itemize}\n \\item[1] $\\frac{1}{4}$\n \\item[2] $\\frac{1}{2}$\n \\item[3] $1$\n \\item[4] $2$\n \\item[5] $4$\n\\end{itemize}\n",
|
5 |
+
"answer": -1,
|
6 |
+
"score": -1
|
7 |
+
}
|
8 |
+
{
|
9 |
+
"id": 2,
|
10 |
+
"name": "2",
|
11 |
+
"problem": "2. \\lim_{x \\to \\infty} \\frac{\\sqrt{x^2 - 2 + 3x}}{x + 5} \\text{์ ๊ฐ์? [2์ ]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n",
|
12 |
+
"answer": -1,
|
13 |
+
"score": -1
|
14 |
+
}
|
15 |
+
{
|
16 |
+
"id": 3,
|
17 |
+
"name": "3",
|
18 |
+
"problem": "3. \\text{๊ณต๋น๊ฐ ์์์ธ ๋ฑ๋น์์ด } \\{a_n\\}\\text{์ด}\n\n\\[ a_2 + a_4 = 30, \\quad a_4 + a_6 = \\frac{15}{2} \\]\n\\text{๋ฅผ ๋ง์กฑ์ํฌ ๋, } a_1 \\text{์ ๊ฐ์? [3์ ]}\n\n\\begin{itemize}\n \\item[1] 48\n \\item[2] 56\n \\item[3] 64\n \\item[4] 72\n \\item[5] 80\n\\end{itemize}\n",
|
19 |
+
"answer": -1,
|
20 |
+
"score": -1
|
21 |
+
}
|
22 |
+
{
|
23 |
+
"id": 4,
|
24 |
+
"name": "4",
|
25 |
+
"problem": "4. \\text{๋คํญํจ์ } f(x) \\text{์ ๋ํ์ฌ ํจ์ } g(x) \\text{๋ฅผ}\n\n\\[ g(x) = x^2 f(x) \\]\n\\text{๋ผ ํ์. } f(2) = 1, \\ f'(2) = 3 \\text{์ผ ๋, } g'(2) \\text{์ ๊ฐ์? [3์ ]}\n\n\\begin{itemize}\n \\item[1] 12\n \\item[2] 14\n \\item[3] 16\n \\item[4] 18\n \\item[5] 20\n\\end{itemize}\n",
|
26 |
+
"answer": -1,
|
27 |
+
"score": -1
|
28 |
+
}
|
29 |
+
{
|
30 |
+
"id": 5,
|
31 |
+
"name": "5",
|
32 |
+
"problem": "5. \\tan \\theta < 0 \\text{์ด๊ณ } \\cos \\left( \\frac{\\pi}{2} + \\theta \\right) = \\frac{\\sqrt{5}}{5} \\text{์ผ ๋, } \\cos \\theta \\text{์ ๊ฐ์? [3์ ]}\n\n\\begin{itemize}\n \\item[1] - \\frac{2 \\sqrt{5}}{5}\n \\item[2] - \\frac{\\sqrt{5}}{5}\n \\item[3] 0\n \\item[4] \\frac{\\sqrt{5}}{5}\n \\item[5] \\frac{2 \\sqrt{5}}{5}\n\\end{itemize}\n",
|
33 |
+
"answer": -1,
|
34 |
+
"score": -1
|
35 |
+
}
|
36 |
+
{
|
37 |
+
"id": 6,
|
38 |
+
"name": "6",
|
39 |
+
"problem": "6. \\text{ํจ์ } f(x) = 2x^3 - 9x^2 + ax + 5 \\text{๋ } x = 1 \\text{์์ ๊ทน๋์ด๊ณ , } x = b \\text{์์ ๊ทน์์ด๋ค. } a + b \\text{์ ๊ฐ์? (๋จ, } a, b \\text{๋ ์์์ด๋ค.) [3์ ]}\n\n\\begin{itemize}\n \\item[1] 12\n \\item[2] 14\n \\item[3] 16\n \\item[4] 18\n \\item[5] 20\n\\end{itemize}\n",
|
40 |
+
"answer": -1,
|
41 |
+
"score": -1
|
42 |
+
}
|
43 |
+
{
|
44 |
+
"id": 7,
|
45 |
+
"name": "7",
|
46 |
+
"problem": "7. \\text{๋ชจ๋ ํญ์ด ์์์ด๊ณ ์ฒซ์งธํญ๊ณผ ๊ณต์ฐจ๊ฐ ๊ฐ์ ๋ฑ์ฐจ์์ด } \\{a_n\\}\\text{์ด}\n\n\\[ \\sum_{k=1}^{15} \\frac{1}{\\sqrt{a_k} + \\sqrt{a_{k+1}}} = 2 \\]\n\\text{๋ฅผ ๋ง์กฑ์ํฌ ๋, } a_4 \\text{์ ๊ฐ์? [3์ ]}\n\n\\begin{itemize}\n \\item[1] 6\n \\item[2] 7\n \\item[3] 8\n \\item[4] 9\n \\item[5] 10\n\\end{itemize}\n",
|
47 |
+
"answer": -1,
|
48 |
+
"score": -1
|
49 |
+
}
|
50 |
+
{
|
51 |
+
"id": 8,
|
52 |
+
"name": "8",
|
53 |
+
"problem": "8. \\text{์ } (0, 4) \\text{์์ ๊ณก์ } y = x^3 - x + 2 \\text{์ ๊ทธ์ ์ ์ ์ } x \\text{์ ํธ์? [3์ ]}\n\n\\begin{itemize}\n \\item[1] -\\frac{1}{2}\n \\item[2] -1\n \\item[3] -\\frac{3}{2}\n \\item[4] -2\n \\item[5] -\\frac{5}{2}\n\\end{itemize}\n",
|
54 |
+
"answer": -1,
|
55 |
+
"score": -1
|
56 |
+
}
|
57 |
+
{
|
58 |
+
"id": 9,
|
59 |
+
"name": "9",
|
60 |
+
"problem": "9. \\text{ํจ์}\n\n\\[ f(x) = a - \\sqrt{3} \\tan 2x \\]\n\\text{๊ฐ ๋ซํ๊ตฌ๊ฐ} \\left[ -\\frac{\\pi}{6}, b \\right] \\text{์์ ์ต๋๊ฐ 7, ์ต์๊ฐ 3์ ๊ฐ์ง ๋, } a \\times b \\text{์ ๊ฐ์? (๋จ, } a, b \\text{๋ ์์์ด๋ค.) [4์ ]}\n\n\\begin{itemize}\n \\item[1] \\frac{\\pi}{2}\n \\item[2] \\frac{5\\pi}{12}\n \\item[3] \\frac{\\pi}{3}\n \\item[4] \\frac{\\pi}{4}\n \\item[5] \\frac{\\pi}{6}\n\\end{itemize}\n",
|
61 |
+
"answer": -1,
|
62 |
+
"score": -1
|
63 |
+
}
|
64 |
+
{
|
65 |
+
"id": 10,
|
66 |
+
"name": "10",
|
67 |
+
"problem": "10. \\text{๋ ๊ณก์ } y = x^3 + x^2, \\ y = -x^2 + k \\text{์ } y \\text{์ถ์ผ๋ก ๋๋ฌ์ธ์ธ ๋ถ๋ถ์ ๋์ด๋ฅผ } A, \\text{ ๋ ๊ณก์ } y = x^3 + x^2, \\ y = -x^2 + k \\text{์ ์ง์ } x = 2 \\text{๋ก ๋๋ฌ์ธ์ธ ๋ถ๋ถ์ ๋์ด๋ฅผ } B \\text{๋ผ ํ์.} A = B \\text{์ผ ๋, ์์ } k \\text{์ ๊ฐ์? (๋จ, } 4 < k < 5) [4์ ]}\n\n\\begin{itemize}\n \\item[1] \\frac{25}{6}\n \\item[2] \\frac{13}{3}\n \\item[3] \\frac{9}{2}\n \\item[4] \\frac{14}{3}\n \\item[5] \\frac{29}{6}\n\\end{itemize}\n",
|
68 |
+
"answer": -1,
|
69 |
+
"score": -1,
|
70 |
+
"review": 1
|
71 |
+
}
|
72 |
+
{
|
73 |
+
"id": 11,
|
74 |
+
"name": "11",
|
75 |
+
"problem": "11. \\text{๊ทธ๋ฆผ๊ณผ ๊ฐ์ด ์ฌ๊ฐํ } ABCD \\text{๊ฐ ํ ์์ ๋ด์ ํ๊ณ }\n\n\\[ \\overline{AB} = 5, \\quad \\overline{AC} = 3 \\sqrt{5}, \\quad \\overline{AD} = 7, \\quad \\angle BAC = \\angle CAD \\]\n\\text{์ผ ๋, ์ด ์์ ๋ฐ์ง๋ฆ์ ๊ธธ์ด๋? [4์ ]}\n\n\\begin{itemize}\n \\item[1] \\frac{5 \\sqrt{2}}{2}\n \\item[2] \\frac{8 \\sqrt{5}}{5}\n \\item[3] \\frac{5 \\sqrt{5}}{3}\n \\item[4] \\frac{8 \\sqrt{2}}{3}\n \\item[5] \\frac{9 \\sqrt{3}}{4}\n\\end{itemize}\n",
|
76 |
+
"answer": -1,
|
77 |
+
"score": -1,
|
78 |
+
"review": 1
|
79 |
+
}
|
80 |
+
{
|
81 |
+
"id": 12,
|
82 |
+
"name": "12",
|
83 |
+
"problem": "12. \\text{์ค์ ์ ์ฒด์ ์งํฉ์์ ์ฐ์์ธ ํจ์ } f(x) \\text{๊ฐ ๋ค์ ์กฐ๊ฑด์ ๋ง์กฑ์ํจ๋ค.}\n\n\\[ n - 1 \\leq x < n \\text{์ผ ๋, } |f(x)| = |6(x - n + 1)(x - n)| \\text{์ด๋ค. (๋จ, } n \\text{์ ์์ฐ์์ด๋ค.)} \\]\n\n\\text{์ด๋ฆฐ๊ตฌ๊ฐ } (0, 4) \\text{์์ ์ ๏ฟฝ๏ฟฝ๋ ํจ์} \n\\[ g(x) = \\int_0^x f(t) dt - \\int_x^4 f(t) dt \\]\n\\text{๊ฐ } x = 2 \\text{์์ ์ต์๊ฐ 0์ ๊ฐ์ง ๋, } \\int_{\\frac{1}{2}}^4 f(x) dx \\text{์ ๊ฐ์? [4์ ]}\n\n\\begin{itemize}\n \\item[1] -\\frac{3}{2}\n \\item[2] -\\frac{1}{2}\n \\item[3] \\frac{1}{2}\n \\item[4] \\frac{3}{2}\n \\item[5] \\frac{5}{2}\n\\end{itemize}\n",
|
84 |
+
"answer": -1,
|
85 |
+
"score": -1
|
86 |
+
}
|
87 |
+
{
|
88 |
+
"id": 13,
|
89 |
+
"name": "13",
|
90 |
+
"problem": "13. \\text{์์ฐ์ } m(m \\geq 2) \\text{์ ๋ํ์ฌ } m^{12} \\text{์ } n \\text{์ ๊ณฑ๊ทผ ์ค์์ ์ ์๊ฐ ์กด์ฌํ๋๋ก ํ๋ 2 ์ด์์ ์์ฐ์ } n \\text{์ ๊ฐ์๋ฅผ } f(m) \\text{์ด๋ผ ํ ๋,} \n\\[ \\sum_{m=2}^{9} f(m) \\text{์ ๊ฐ์? [4์ ]} \\]\n\n\\begin{itemize}\n \\item[1] 37\n \\item[2] 42\n \\item[3] 47\n \\item[4] 52\n \\item[5] 57\n\\end{itemize}\n",
|
91 |
+
"answer": -1,
|
92 |
+
"score": -1
|
93 |
+
}
|
94 |
+
{
|
95 |
+
"id": 14,
|
96 |
+
"name": "14",
|
97 |
+
"problem": "14. \\text{๋คํญํจ์ } f(x) \\text{์ ๋ํ์ฌ ํจ์ } g(x) \\text{๋ฅผ ๋ค์๊ณผ ๊ฐ์ด ์ ์ํ๋ค.}\n\n\\[ g(x) = \\begin{cases} x & (x < -1 \\text{ ๋๋ } x > 1) \\\\ f(x) & (-1 \\leq x \\leq 1) \\end{cases} \\]\n\\text{ํจ์ } h(x) = \\lim_{t \\to 0^+} g(x+t) \\times \\lim_{t \\to 2^+} g(x+t) \\text{์ ๋ํ์ฌ} \n\\text{๋ณด๊ธฐ์์ ์ณ์ ๊ฒ๋ง์ ์๋ ๋๋ก ๊ณ ๋ฅธ ๊ฒ์? [4์ ]}\n\n\\<๋ณด๊ธฐ>\n\nใฑ. h(1) = 3 \n\nใด. ํจ์ h(x)๋ ์ค์ ์ ์ฒด์ ์งํฉ์์ ์ฐ์์ด๋ค. \n\nใท. ํจ์ g(x)๊ฐ ๋ซํ๊ตฌ๊ฐ \\([-1, 1]\\)์์ ๊ฐ์ํ๊ณ \\(g(-1) = -2\\)์ด๋ฉด ํจ์ h(x)๋ ์ค์ ์ ์ฒด์ ์งํฉ์์ ์ต์๊ฐ์ ๊ฐ๋๋ค.\n\n\\begin{itemize}\n \\item[1] ใฑ\n \\item[2] ใด\n \\item[3] ใฑ, ใด\n \\item[4] ใฑ, ใท\n \\item[5] ใด, ใท\n\\end{itemize}\n",
|
98 |
+
"answer": -1,
|
99 |
+
"score": -1
|
100 |
+
}
|
101 |
+
{
|
102 |
+
"id": 15,
|
103 |
+
"name": "15",
|
104 |
+
"problem": "15. \\text{๋ชจ๋ ํญ์ด ์์ฐ์์ด๊ณ ๋ค์ ์กฐ๊ฑด์ ๋ง์กฑ์ํค๋ ๋ชจ๋ ์์ด } \\{a_n\\} \\text{์ ๋ํ์ฌ } a_9 \\text{์ ์ต๋๊ฐ๊ณผ ์ต์๊ฐ์ ๊ฐ๊ฐ } M, m \\text{์ด๋ผ ํ ๋, } M + m \\text{์ ๊ฐ์? [4์ ]}\n\n\\text{(๊ฐ) } a_7 = 40 \n\n\\text{(๋) ๋ชจ๋ ์์ฐ์ } n \\text{์ ๋ํ์ฌ}\n\\[ a_{n+2} = \\begin{cases} a_{n+1} + a_n & (a_{n+1}\\text{์ด } 3 \\text{์ ๋ฐฐ์๊ฐ ์๋ ๊ฒฝ์ฐ}) \\\\ \\frac{1}{3} a_{n+1} & (a_{n+1}\\text{์ด } 3 \\text{์ ๋ฐฐ์์ธ ๊ฒฝ์ฐ}) \\end{cases} \\]\n\n\\begin{itemize}\n \\item[1] 216\n \\item[2] 218\n \\item[3] 220\n \\item[4] 222\n \\item[5] 224\n\\end{itemize}\n",
|
105 |
+
"answer": -1,
|
106 |
+
"score": -1
|
107 |
+
}
|
108 |
+
{
|
109 |
+
"id": 16,
|
110 |
+
"name": "16",
|
111 |
+
"problem": "16. \\text{๋ฐฉ์ ์}\n\n\\[ \\log_2(3x + 2) = 2 + \\log_2(x - 2) \\]\n\\text{๋ฅผ ๋ง์กฑ์ํค๋ ์ค์ } x \\text{์ ๊ฐ์ ๊ตฌํ์์ค. [3์ ]}\n",
|
112 |
+
"answer": -1,
|
113 |
+
"score": -1
|
114 |
+
}
|
115 |
+
{
|
116 |
+
"id": 17,
|
117 |
+
"name": "17",
|
118 |
+
"problem": "17. \\text{ํจ์ } f(x) \\text{์ ๋ํ์ฌ } f'(x) = 4x^3 - 2x \\text{์ด๊ณ } f(0) = 3 \\text{์ผ ๋, } f(2) \\text{์ ๊ฐ์ ๊ตฌํ์์ค. [3์ ]}\n",
|
119 |
+
"answer": -1,
|
120 |
+
"score": -1
|
121 |
+
}
|
122 |
+
{
|
123 |
+
"id": 18,
|
124 |
+
"name": "18",
|
125 |
+
"problem": "18. \\text{๋ ์์ด } \\{a_n\\}, \\{b_n\\} \\text{์ ๋ํ์ฌ}\n\n\\[ \\sum_{k=1}^{5} (3a_k + 5) = 55, \\quad \\sum_{k=1}^{5} (a_k + b_k) = 32 \\]\n\\text{์ผ ๋, } \\sum_{k=1}^{5} b_k \\text{์ ๊ฐ์ ๊ตฌํ์์ค. [3์ ]}\n",
|
126 |
+
"answer": -1,
|
127 |
+
"score": -1
|
128 |
+
}
|
129 |
+
{
|
130 |
+
"id": 19,
|
131 |
+
"name": "19",
|
132 |
+
"problem": "19. \\text{๋ฐฉ์ ์ } 2x^3 - 6x^2 + k = 0 \\text{์ ์๋ก ๋ค๋ฅธ ์์ ์ค๊ทผ์ ๊ฐ์๊ฐ 2๊ฐ ๋๋๋ก ํ๋ ์ ์ } k \\text{์ ๊ฐ์๋ฅผ ๊ตฌํ์์ค. [3์ ]}\n",
|
133 |
+
"answer": -1,
|
134 |
+
"score": -1
|
135 |
+
}
|
136 |
+
{
|
137 |
+
"id": 20,
|
138 |
+
"name": "20",
|
139 |
+
"problem": "20. \\text{์์ง์ ์๋ฅผ ์์ง์ด๋ ์ P์ ์๊ฐ } t(t \\geq 0) \\text{์์์ ์๋ } v(t) \\text{์ ๊ฐ์๋ } a(t) \\text{๊ฐ ๋ค์ ์กฐ๊ฑด์ ๋ง์กฑ์ํจ๋ค.}\n\n\\text{(๊ฐ) } 0 \\leq t \\leq 2 \\text{์ผ ๋, } v(t) = 2t^3 - 8t \\text{์ด๋ค.}\n\\text{(๋) } t \\geq 2 \\text{์ผ ๋, } a(t) = 6t + 4 \\text{์ด๋ค.}\n\n\\text{์๊ฐ } t = 0 \\text{์์ } t = 3 \\text{๊น์ง ์ P๊ฐ ์์ง์ธ ๊ฑฐ๋ฆฌ๋ฅผ ๊ตฌํ์์ค. [4์ ]}\n",
|
140 |
+
"answer": -1,
|
141 |
+
"score": -1
|
142 |
+
}
|
143 |
+
{
|
144 |
+
"id": 21,
|
145 |
+
"name": "21",
|
146 |
+
"problem": "21. \\text{์์ฐ์ } n \\text{์ ๋ํ์ฌ ํจ์ } f(x) \\text{๋ฅผ}\n\n\\[ f(x) = \\begin{cases} |3^x + 2 - n| & (x < 0) \\\\ |\\log_2(x + 4) - n| & (x \\geq 0) \\end{cases} \\]\n\\text{์ด๋ผ ํ์. ์ค์ } t \\text{์ ๋ํ์ฌ } x \\text{์ ๋ํ ๋ฐฉ์ ์ } f(x) = t \\text{์ ์๋ก ๋ค๋ฅธ ์ค๊ทผ์ ๊ฐ์๋ฅผ } g(t) \\text{๋ผ ํ ๋, ํจ์ } g(t) \\text{์ ์ต๋๊ฐ์ด 4๊ฐ ๋๋๋ก ํ๋ ๋ชจ๋ ์์ฐ์ } n \\text{์ ๊ฐ์ ํฉ์ ๊ตฌํ์์ค. [4์ ]}\n",
|
147 |
+
"answer": -1,
|
148 |
+
"score": -1
|
149 |
+
}
|
150 |
+
{
|
151 |
+
"id": 22,
|
152 |
+
"name": "22",
|
153 |
+
"problem": "22. \\text{์ต๊ณ ์ฐจํญ์ ๊ณ์๊ฐ 1์ธ ์ผ์ฐจํจ์ } f(x) \\text{์ ์ค์ ์ ์ฒด์ ์งํฉ์์ ์ฐ์์ธ ํจ์ } g(x) \\text{๊ฐ ๋ค์ ์กฐ๊ฑด์ ๋ง์กฑ์ํฌ ๋, } f(4) \\text{์ ๊ฐ์ ๊ตฌํ์์ค. [4์ ]}\n\n\\text{(๊ฐ) ๋ชจ๋ ์ค์ } x \\text{์ ๋ํ์ฌ } f(x) = f(1) + (x - 1)f'(g(x)) \\text{์ด๋ค.}\n\\text{(๋) ํจ์ } g(x) \\text{์ ์ต์๊ฐ์ } \\frac{5}{2} \\text{์ด๋ค.}\n\\text{(๋ค) } f(0) = -3, \\quad f(g(1)) = 6 \n",
|
154 |
+
"answer": -1,
|
155 |
+
"score": -1
|
156 |
+
}
|
157 |
+
|
158 |
+
{
|
159 |
+
"id": 23,
|
160 |
+
"name": "23_prob",
|
161 |
+
"problem": "23. \\( (x^3 + 3)^5 \\)์ ์ ๊ฐ์์์ \\(x^9\\)์ ๊ณ์๋? [2์ ]\n\\begin{itemize}\n \\item[1] 30\n \\item[2] 60\n \\item[3] 90\n \\item[4] 120\n \\item[5] 150\n\\end{itemize}\n",
|
162 |
+
"answer": -1,
|
163 |
+
"score": -1
|
164 |
+
}
|
165 |
+
{
|
166 |
+
"id": 24,
|
167 |
+
"name": "24_prob",
|
168 |
+
"problem": "24. \\text{์ซ์ } 1, 2, 3, 4, 5 \\text{ ์ค์์ ์ค๋ณต์ ํ๋ฝํ์ฌ 4๊ฐ๋ฅผ ํํด ์ผ๋ ฌ๋ก ๋์ดํ์ฌ ๋ง๋ค ์ ์๋ ๋ค ์๋ฆฌ์ ์์ฐ์ ์ค 4000 ์ด์์ธ ํ์์ ๊ฐ์๋? [3์ ]}\n\n\\begin{itemize}\n \\item[1] 125\n \\item[2] 150\n \\item[3] 175\n \\item[4] 200\n \\item[5] 225\n\\end{itemize}\n",
|
169 |
+
"answer": -1,
|
170 |
+
"score": -1
|
171 |
+
}
|
172 |
+
{
|
173 |
+
"id": 25,
|
174 |
+
"name": "25_prob",
|
175 |
+
"problem": "25. \\text{ํฐ์ ๋ง์คํฌ 5๊ฐ, ๊ฒ์์ ๋ง์คํฌ 9๊ฐ๊ฐ ๋ค์ด ์๋ ์์๊ฐ ์๋ค. ์ด ์์์์ ์์๋ก 3๊ฐ์ ๋ง์คํฌ๋ฅผ ๋์์ ๊บผ๋ผ ๋, ๊บผ๋ธ 3๊ฐ์ ๋ง์คํฌ ์ค์์ ์ ์ด๋ ํ ๊ฐ๊ฐ ํฐ์ ๋ง์คํฌ์ผ ํ๋ฅ ์? [3์ ]}\n\n\\begin{itemize}\n \\item[1] \\frac{8}{13}\n \\item[2] \\frac{17}{26}\n \\item[3] \\frac{9}{13}\n \\item[4] \\frac{19}{26}\n \\item[5] \\frac{10}{13}\n\\end{itemize}\n",
|
176 |
+
"answer": -1,
|
177 |
+
"score": -1
|
178 |
+
}
|
179 |
+
{
|
180 |
+
"id": 26,
|
181 |
+
"name": "26_prob",
|
182 |
+
"problem": "26. \\text{์ฃผ๋จธ๋์ 1์ด ์ ํ ํฐ ๊ณต 1๊ฐ, 2๊ฐ ์ ํ ํฐ ๊ณต 1๊ฐ, 1์ด ์ ํ ๊ฒ์ ๊ณต 1๊ฐ, 2๊ฐ ์ ํ ๊ฒ์ ๊ณต 3๊ฐ๊ฐ ๋ค์ด ์๋ค. ์ด ์ฃผ๋จธ๋์์ ์์๋ก 3๊ฐ์ ๊ณต์ ๋์์ ๊บผ๋ด๋ ์ํ์ ํ๋ค. ์ด ์ํ์์ ๊บผ๋ธ 3๊ฐ์ ๊ณต ์ค์์ ํฐ ๊ณต์ด 1๊ฐ์ด๊ณ ๊ฒ์ ๊ณต์ด 2๊ฐ์ธ ์ฌ๊ฑด์ } A, \\text{ ๊บผ๋ธ 3๊ฐ์ ๊ณต์ ์ ํ ์๋ ์๋ฅผ ๋ชจ๋ ๊ณฑํ ๊ฐ์ด 8์ธ ์ฌ๊ฑด์ } B \\text{๋ผ ํ ๋, } P(A \\cup B) \\text{์ ๊ฐ์? [3์ ]}\n\n\\begin{itemize}\n \\item[1] \\frac{11}{20}\n \\item[2] \\frac{3}{5}\n \\item[3] \\frac{13}{20}\n \\item[4] \\frac{7}{10}\n \\item[5] \\frac{3}{4}\n\\end{itemize}\n",
|
183 |
+
"answer": -1,
|
184 |
+
"score": -1,
|
185 |
+
"review": 1
|
186 |
+
}
|
187 |
+
{
|
188 |
+
"id": 27,
|
189 |
+
"name": "27_prob",
|
190 |
+
"problem": "27. \\text{์ด๋ ํ์ฌ์์ ์์ฐํ๋ ์ดํธ 1๊ฐ์ ์ฉ๋์ ์ ๊ท๋ถํฌ } N(m, \\sigma^2) \\text{์ ๋ฐ๋ฅธ๋ค๊ณ ํ๋ค. ์ด ํ์ฌ์์ ์์ฐํ๋ ์ดํธ ์ค์์ 16๊ฐ๋ฅผ ์์์ถ์ถํ์ฌ ์ป์ ํ๋ณธํ๊ท ์ ์ด์ฉํ์ฌ ๊ตฌํ } m \\text{์ ๋ํ ์ ๋ขฐ๋ 95%์ ์ ๋ขฐ๊ตฌ๊ฐ์ด } 746.1 \\leq m \\leq 755.9 \\text{์ด๋ค. ์ด ํ์ฌ์์ ์์ฐํ๋ ์ดํธ ์ค์์ } n \\text{๊ฐ๋ฅผ ์์์ถ์ถํ์ฌ ์ป์ ํ๋ณธํ๊ท ์ ์ด์ฉํ์ฌ ๊ตฌํ๋ } m \\text{์ ๋ํ ์ ๋ขฐ๋ 99%์ ์ ๋ขฐ๊ตฌ๊ฐ์ด } a \\leq m \\leq b \\text{์ผ ๋, } b - a \\text{์ ๊ฐ์ด 6 ์ดํ๊ฐ ๋๊ธฐ ์ํ ์์ฐ์ } n \\text{์ ์ต์๊ฐ์? (๋จ, ์ฉ๋์ ๋จ์๋ mL์ด๊ณ , } Z \\text{๊ฐ ํ์ค์ ๊ท๋ถํฌ๋ฅผ ๋ฐ๋ฅด๋ ํ๋ฅ ๋ณ์์ผ ๋, } P(|Z| \\leq 1.96) = 0.95, P(|Z| \\leq 2.58) = 0.99 \\text{๋ก ๊ณ์ฐํ๋ค.) [3์ ]}\n\n\\begin{itemize}\n \\item[1] 70\n \\item[2] 74\n \\item[3] 78\n \\item[4] 82\n \\item[5] 86\n\\end{itemize}\n",
|
191 |
+
"answer": -1,
|
192 |
+
"score": -1
|
193 |
+
}
|
194 |
+
{
|
195 |
+
"id": 28,
|
196 |
+
"name": "28_prob",
|
197 |
+
"problem": "28. \\text{์ฐ์ํ๋ฅ ๋ณ์ } X \\text{๊ฐ ๊ฐ๋ ๊ฐ์ ๋ฒ์๋ } 0 \\leq X \\leq a \\text{์ด๊ณ , } X \\text{์ ํ๋ฅ ๋ฐ๋ํจ์์ ๊ทธ๋ํ๊ฐ ๊ทธ๋ฆผ๊ณผ ๊ฐ๋ค.}\n\n\\[ P(X \\leq b) - P(X \\geq b) = \\frac{1}{4}, \\quad P(X \\leq \\sqrt{5}) = \\frac{1}{2} \\]\n\\text{์ผ ๋, } a + b + c \\text{์ ๊ฐ์? (๋จ, } a, b, c \\text{๋ ์์์ด๋ค.) [4์ ]}\n\n\\begin{itemize}\n \\item[1] \\frac{11}{2}\n \\item[2] 6\n \\item[3] \\frac{13}{2}\n \\item[4] 7\n \\item[5] \\frac{15}{2}\n\\end{itemize}\n",
|
198 |
+
"answer": -1,
|
199 |
+
"score": -1,
|
200 |
+
"review": 2
|
201 |
+
}
|
202 |
+
{
|
203 |
+
"id": 29,
|
204 |
+
"name": "29_prob",
|
205 |
+
"problem": "29. \\text{์๋ฉด์๋ 1๋ถํฐ 6๊น์ง์ ์์ฐ์๊ฐ ํ๋์ฉ ์ ํ ์๊ณ , ๋ท๋ฉด์๋ ๋ชจ๋ 0์ด ํ๋์ฉ ์ ํ ์๋ 6์ฅ์ ์นด๋๊ฐ ์๋ค. ์ด 6์ฅ์ ์นด๋๊ฐ ๊ทธ๋ฆผ๊ณผ ๊ฐ์ด 6 ์ดํ์ ์์ฐ์ } k \\text{์ ๋ํ์ฌ } k \\text{๋ฒ์งธ ์๋ฆฌ์ ์์ฐ์ } k \\text{๊ฐ ๋ณด์ด๋๋ก ๋์ฌ ์๋ค.}\n\n\\text{์ด 6์ฅ์ ์นด๋์ ํ ๊ฐ์ ์ฃผ์ฌ์๋ฅผ ์ฌ์ฉํ์ฌ ๋ค์ ์ํ์ ํ๋ค.}\n\n\\[ \\text{์ฃผ์ฌ์๋ฅผ ํ ๋ฒ ๋์ ธ ๋์จ ๋์ ์๊ฐ } k \\text{์ด๋ฉด } k \\text{๋ฒ์งธ ์๋ฆฌ์ ๋์ฌ ์๋ ์นด๋๋ฅผ ํ ๋ฒ ๋ค์ง์ด ์ ์๋ฆฌ์ ๋๋๋ค.} \\]\n\n\\text{์์ ์ํ์ 3๋ฒ ๋ฐ๋ณตํ ํ 6์ฅ์ ์นด๋์ ๋ณด์ด๋ ๋ชจ๋ ์์ ํฉ์ด ์ง์์ผ ๋, ์ฃผ์ฌ์์ 1์ ๋์ด ํ ๋ฒ๋ง ๋์์ ํ๋ฅ ์ } \\frac{q}{p} \\text{์ด๋ค. } p + q \\text{์ ๊ฐ์ ๊ตฌํ์์ค. (๋จ, } p \\text{์ } q \\text{๋ ์๋ก์์ธ ์์ฐ์์ด๋ค.) [4์ ]}\n",
|
206 |
+
"answer": -1,
|
207 |
+
"score": -1,
|
208 |
+
"review": 1
|
209 |
+
}
|
210 |
+
{
|
211 |
+
"id": 30,
|
212 |
+
"name": "30_prob",
|
213 |
+
"problem": "30. \\text{์งํฉ } X = \\{x | x \\text{๋ 10 ์ดํ์ ์์ฐ์}\\} \\text{์ ๋ํ์ฌ ๋ค์ ์กฐ๊ฑด์ ๋ง์กฑ์ํค๋ ํจ์ } f: X \\to X \\text{์ ๊ฐ์๋ฅผ ๊ตฌํ์์ค. [4์ ]}\n\n\\text{(๊ฐ) 9 ์ดํ์ ๋ชจ๋ ์์ฐ์ } x \\text{์ ๋ํ์ฌ } f(x) \\leq f(x+1) \\text{์ด๋ค.}\n\\text{(๋) } 1 \\leq x \\leq 5 \\text{์ผ ๋ } f(x) \\leq x \\text{์ด๊ณ , } 6 \\leq x \\leq 10 \\text{์ผ ๋ } f(x) \\geq x \\text{์ด๋ค.}\n\\text{(๋ค) } f(6) = f(5) + 6\n",
|
214 |
+
"answer": -1,
|
215 |
+
"score": -1
|
216 |
+
}
|
217 |
+
|
218 |
+
{
|
219 |
+
"id": 31,
|
220 |
+
"name": "23_calc",
|
221 |
+
"problem": "23. \\lim_{x \\to 0} \\frac{\\ln(x+1)}{\\sqrt{x+4} - 2} \\text{์ ๊ฐ์? [2์ ]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n",
|
222 |
+
"answer": -1,
|
223 |
+
"score": -1
|
224 |
+
}
|
225 |
+
{
|
226 |
+
"id": 32,
|
227 |
+
"name": "24_calc",
|
228 |
+
"problem": "24. \\lim_{n \\to \\infty} \\frac{1}{n} \\sum_{k=1}^{n} \\sqrt{1 + \\frac{3k}{n}} \\text{์ ๊ฐ์? [3์ ]}\n\n\\begin{itemize}\n \\item[1] \\frac{4}{3}\n \\item[2] \\frac{13}{9}\n \\item[3] \\frac{14}{9}\n \\item[4] \\frac{5}{3}\n \\item[5] \\frac{16}{9}\n\\end{itemize}\n",
|
229 |
+
"answer": -1,
|
230 |
+
"score": -1
|
231 |
+
}
|
232 |
+
{
|
233 |
+
"id": 33,
|
234 |
+
"name": "25_calc",
|
235 |
+
"problem": "25. \\text{๋ฑ๋น์์ด } \\{a_n\\} \\text{์ ๋ํ์ฌ } \\lim_{n \\to \\infty} \\frac{a_n + 1}{3^n + 2^{2n-1}} = 3 \\text{์ผ ๋, } a_2 \\text{์ ๊ฐ์? [3์ ]}\n\n\\begin{itemize}\n \\item[1] 16\n \\item[2] 18\n \\item[3] 20\n \\item[4] 22\n \\item[5] 24\n\\end{itemize}\n",
|
236 |
+
"answer": -1,
|
237 |
+
"score": -1
|
238 |
+
}
|
239 |
+
{
|
240 |
+
"id": 34,
|
241 |
+
"name": "26_calc",
|
242 |
+
"problem": "26. \\text{๊ทธ๋ฆผ๊ณผ ๊ฐ์ด ๊ณก์ } y = \\sqrt{\\sec^2 x} + \\tan x \\left(0 \\leq x \\leq \\frac{\\pi}{3}\\right) \\text{์ } x \\text{์ถ, } y \\text{์ถ ๋ฐ ์ง์ } x = \\frac{\\pi}{3} \\text{๋ก ๋๋ฌ์ธ์ธ ๋ถ๋ถ์ ๋ฐ๋ฉด์ผ๋ก ํ๋ ์
์ฒด๋ํ์ด ์๋ค. ์ด ์
์ฒด๋ํ์ } x \\text{์ถ์ ์์ง์ธ ํ๋ฉด์ผ๋ก ์๋ฅธ ๋จ๋ฉด์ด ๋ชจ๋ ์ ์ฌ๊ฐํ์ผ ๋, ์ด ์
์ฒด๋ํ์ ๋ถํผ๋? [3์ ]}\n\n\\begin{itemize}\n \\item[1] \\frac{\\sqrt{3}}{2} + \\frac{\\ln 2}{2}\n \\item[2] \\frac{\\sqrt{3}}{2} + \\ln 2\n \\item[3] \\sqrt{3} + \\frac{\\ln 2}{2}\n \\item[4] \\sqrt{3} + \\ln 2\n \\item[5] \\sqrt{3} + 2\\ln 2\n\\end{itemize}\n",
|
243 |
+
"answer": -1,
|
244 |
+
"score": -1,
|
245 |
+
"review": 1
|
246 |
+
}
|
247 |
+
{
|
248 |
+
"id": 35,
|
249 |
+
"name": "27_prob",
|
250 |
+
"problem": "27. \\text{๊ทธ๋ฆผ๊ณผ ๊ฐ์ด ์ค์ฌ์ด } O, \\text{๋ฐ์ง๋ฆ์ ๊ธธ์ด๊ฐ 1์ด๊ณ ์ค์ฌ๊ฐ์ ํฌ๊ธฐ๊ฐ } \\frac{\\pi}{2} \\text{์ธ ๋ถ์ฑ๊ผด } OA_1B_1 \\text{์ด ์๋ค. ํธ } A_1B_1 \\text{ ์์ ์ } P_1, \\text{์ ๋ถ } OA_1 \\text{ ์์ ์ } C_1, \\text{์ ๋ถ } OB_1 \\text{ ์์ ์ } D_1 \\text{์ ์ฌ๊ฐํ } OC_1P_1D_1 \\text{์ด } OC_1 : OD_1 = 3:4 \\text{์ธ ์ง์ฌ๊ฐํ์ด ๋๋๋ก ์ก๋๋ค.}\n\n\\text{๋ถ์ฑ๊ผด } OA_1B_1 \\text{์ ๋ด๋ถ์ ์ } Q_1 \\text{์ } PQ_1 = AQ_1, \\angle PQ_1A_1 = \\frac{\\pi}{2} \\text{๊ฐ ๋๋๋ก ์ก๊ณ , ์ด๋ฑ๋ณ์ผ๊ฐํ } P_1Q_1A_1 \\text{์ ์์น ํ์ฌ ์ป์ ๊ทธ๋ฆผ์ } R_1 \\text{์ด๋ผ ํ์.}\n\\text{๊ทธ๋ฆผ } R_1 \\text{์์ ์ ๋ถ } OA_1 \\text{ ์์ ์ } A_2 \\text{์ ์ ๋ถ } OB_1 \\text{ ์์ ์ } B_2 \\text{๋ฅผ } OQ_1 = OA_2 = OB_2 \\text{๊ฐ ๋๋๋ก ์ก๊ณ , ์ค์ฌ์ด } O, \\text{๋ฐ์ง๋ฆ์ ๊ธธ์ด๊ฐ } OQ_1, \\text{์ค์ฌ๊ฐ์ ํฌ๊ธฐ๊ฐ } \\frac{\\pi}{2} \\text{์ธ ๋ถ์ฑ๊ผด } OA_2B_2 \\text{๋ฅผ ๊ทธ๋ฆฐ๋ค. ๊ทธ๋ฆฐ } R_1 \\text{์ ์ป์ ๊ฒ๊ณผ ๊ฐ์ ๋ฐฉ๋ฒ์ผ๋ก ๋ค ์ } P_2, C_2, D_2, Q_2 \\text{๋ฅผ ์ก๊ณ , ์ด๋ฑ๋ณ์ผ๊ฐํ } P_2Q_2A_2 \\text{์ ์์น ํ์ฌ ์ป์ ๊ทธ๋ฆผ์ } R_2 \\text{๋ผ ํ์. ์ด์ ๊ฐ์ ๊ณผ์ ์ ๊ณ์ํ์ฌ } n \\text{๋ฒ์งธ ์ป์ ๊ทธ๋ฆผ } R_n \\text{์ ์์น ๋์ด ์๋ ๋ถ๋ถ์ ๋์ด๋ฅผ } S_n \\text{์ด๋ผ ํ ๋, } \\lim_{n \\to \\infty} S_n \\text{์ ๊ฐ์? [3์ ]}\n\n\\begin{itemize}\n \\item[1] \\frac{9}{40}\n \\item[2] \\frac{1}{4}\n \\item[3] \\frac{11}{40}\n \\item[4] \\frac{3}{10}\n \\item[5] \\frac{13}{40}\n\\end{itemize}\n",
|
251 |
+
"answer": -1,
|
252 |
+
"score": -1,
|
253 |
+
"review": 1
|
254 |
+
}
|
255 |
+
{
|
256 |
+
"id": 36,
|
257 |
+
"name": "28_prob",
|
258 |
+
"problem": "28. \\text{๊ทธ๋ฆผ๊ณผ ๊ฐ์ด ์ค์ฌ์ด } O \\text{์ด๊ณ ๊ธธ์ด๊ฐ 2์ธ ์ ๋ถ } AB \\text{๋ฅผ ์ง๋ฆ์ผ๋ก ํ๋ ๋ฐ์ ์์ } \\angle AOC = \\frac{\\pi}{2} \\text{์ธ ์ } C \\text{๊ฐ ์๋ค.}\n\\text{ํธ } BC \\text{ ์์ ์ } P \\text{์ ํธ } CA \\text{ ์์ ์ } Q \\text{๋ฅผ } PB = QC \\text{๊ฐ ๋๋๋ก ์ก๊ณ , ์ ๋ถ } AP \\text{ ์์ ์ } R \\text{์ } \\angle CQR = \\frac{\\pi}{2} \\text{๊ฐ ๋๋๋ก ์ก๋๋ค.}\n\\text{์ ๋ถ } AP \\text{์ ์ ๋ถ } CO \\text{์ ๊ต์ ์ } S \\text{๋ผ ํ์. } \\angle PAB = \\theta \\text{์ผ ๋, ์ผ๊ฐํ } POB \\text{์ ๋์ด๋ฅผ } f(\\theta), \\text{์ฌ๊ฐํ } CQRS \\text{์ ๋์ด๋ฅผ } g(\\theta) \\text{๋ผ ํ์.}\n\n\\lim_{\\theta \\to 0^+} \\frac{3f(\\theta) - 2g(\\theta)}{\\theta^2} \\text{์ ๊ฐ์? (๋จ, } 0 < \\theta < \\frac{\\pi}{4} \\text{) [4์ ]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n",
|
259 |
+
"answer": -1,
|
260 |
+
"score": -1,
|
261 |
+
"review": 1
|
262 |
+
}
|
263 |
+
{
|
264 |
+
"id": 37,
|
265 |
+
"name": "29_prob",
|
266 |
+
"problem": "29. \\text{์ธ ์์ } a, b, c \\text{์ ๋ํ์ฌ ํจ์ } f(x) = ae^{2x} + be^x + c \\text{๊ฐ ๋ค์ ์กฐ๊ฑด์ ๋ง์กฑ์ํจ๋ค.}\n\n\\text{(๊ฐ) } \\lim_{x \\to -\\infty} \\frac{f(x) + 6}{e^x} = 1\n\\text{(๋) } f(\\ln 2) = 0\n\n\\text{ํจ์ } f(x) \\text{์ ์ญํจ์๋ฅผ } g(x) \\text{๋ผ ํ ๋,}\n\\[ \\int_0^{14} g(x) dx = p + q \\ln 2 \\text{์ด๋ค. } p + q \\text{์ ๊ฐ๏ฟฝ๏ฟฝ๏ฟฝ ๊ตฌํ์์ค.}\n\\text{(๋จ, } p, q \\text{๋ ์ ๋ฆฌ์์ด๊ณ , } \\ln 2 \\text{๋ ๋ฌด๋ฆฌ์์ด๋ค.) [4์ ]}\n",
|
267 |
+
"answer": -1,
|
268 |
+
"score": -1
|
269 |
+
}
|
270 |
+
{
|
271 |
+
"id": 38,
|
272 |
+
"name": "30_prob",
|
273 |
+
"problem": "30. \\text{์ต๊ณ ์ฐจํญ์ ๊ณ์๊ฐ ์์์ธ ์ผ์ฐจํจ์ } f(x) \\text{์ ํจ์ } g(x) = e^{\\sin \\pi x} - 1 \\text{์ ๋ํ์ฌ ์ค์ ์ ์ฒด์ ์งํฉ์์ ์ ์๋ ํฉ์ฑํจ์ } h(x) = g(f(x)) \\text{๊ฐ ๋ค์ ์กฐ๊ฑด์ ๋ง์กฑ์ํจ๋ค.}\n\n\\text{(๊ฐ) ํจ์ } h(x) \\text{๋ } x = 0 \\text{์์ ๊ทน๋๊ฐ 0์ ๊ฐ๋๋ค.}\n\\text{(๋) ์ด๋ฆฐ๊ตฌ๊ฐ } (0, 3) \\text{์์ ๋ฐฉ์ ์ } h(x) = 1 \\text{์ ์๋ก ๋ค๋ฅธ ์ค๊ทผ์ ๊ฐ์๋ 7์ด๋ค.}\n\nf(3) = \\frac{1}{2}, f'(3) = 0 \\text{์ผ ๋, } f(2) = \\frac{q}{p} \\text{์ด๋ค. } p + q \\text{์ ๊ฐ์ ๊ตฌํ์์ค. (๋จ, } p \\text{์ } q \\text{๋ ์๋ก์์ธ ์์ฐ์์ด๋ค.) [4์ ]}\n",
|
274 |
+
"answer": -1,
|
275 |
+
"score": -1
|
276 |
+
}
|
277 |
+
|
278 |
+
{
|
279 |
+
"id": 39,
|
280 |
+
"name": "23_geom",
|
281 |
+
"problem": "23. \\text{์ขํ๊ณต๊ฐ์ ์ } A(2, 2, -1) \\text{์ } x \\text{์ถ์ ๋ํ์ฌ ๋์นญ์ด๋ํ ์ ์ } B \\text{๋ผ ํ์. ์ } C(-2, 1, 1) \\text{์ ๋ํ์ฌ ์ ๋ถ BC์ ๊ธธ์ด๋? [2์ ]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n",
|
282 |
+
"answer": -1,
|
283 |
+
"score": -1
|
284 |
+
}
|
285 |
+
{
|
286 |
+
"id": 40,
|
287 |
+
"name": "24_geom",
|
288 |
+
"problem": "24. \\text{์ด์ ์ด } F\\left(\\frac{1}{3}, 0\\right) \\text{์ด๊ณ ์ค์ ์ด } x = -\\frac{1}{3} \\text{์ธ ํฌ๋ฌผ์ ์ด ์ } (a, 2) \\text{๋ฅผ ์ง๋ ๋, } a \\text{์ ๊ฐ์? [3์ ]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n",
|
289 |
+
"answer": -1,
|
290 |
+
"score": -1
|
291 |
+
}
|
292 |
+
{
|
293 |
+
"id": 41,
|
294 |
+
"name": "25_geom",
|
295 |
+
"problem": "25. \\text{ํ์ } \\frac{x^2}{a^2} + \\frac{y^2}{b^2} = 1 \\text{ ์์ ์ } (2, 1) \\text{์์์ ์ ์ ์ ๊ธฐ์ธ๊ธฐ๊ฐ } -\\frac{1}{2} \\text{์ผ ๋, ์ด ํ์์ ๋ ์ด์ ์ฌ์ด์ ๊ฑฐ๋ฆฌ๋? (๋จ, } a, b \\text{๋ ์์์ด๋ค.) [3์ ]}\n\n\\begin{itemize}\n \\item[1] 2\\sqrt{3}\n \\item[2] 4\n \\item[3] 2\\sqrt{5}\n \\item[4] 2\\sqrt{6}\n \\item[5] 2\\sqrt{7}\n\\end{itemize}\n",
|
296 |
+
"answer": -1,
|
297 |
+
"score": -1
|
298 |
+
}
|
299 |
+
{
|
300 |
+
"id": 42,
|
301 |
+
"name": "26_geom",
|
302 |
+
"problem": "26. \\text{์ขํํ๋ฉด์์ ์ธ ๋ฒกํฐ } \\vec{a} = (2, 4), \\vec{b} = (2, 8), \\vec{c} = (1, 0) \\text{์ ๋ํ์ฌ ๋ ๋ฒกํฐ } \\vec{p}, \\vec{q} \\text{๊ฐ}\n\n(\\vec{p} - \\vec{a}) \\cdot (\\vec{p} - \\vec{b}) = 0, \\quad \\vec{q} = \\frac{1}{2} \\vec{a} + t \\vec{c} \\quad (t \\text{๋ ์ค์}) \\text{๋ฅผ ๋ง์กฑ์ํฌ ๋, } |\\vec{p} - \\vec{q}| \\text{์ ์ต์๊ฐ์? [3์ ]}\n\n\\begin{itemize}\n \\item[1] \\frac{3}{2}\n \\item[2] 2\n \\item[3] \\frac{5}{2}\n \\item[4] 3\n \\item[5] \\frac{7}{2}\n\\end{itemize}\n",
|
303 |
+
"answer": -1,
|
304 |
+
"score": -1
|
305 |
+
}
|
306 |
+
{
|
307 |
+
"id": 43,
|
308 |
+
"name": "27_geom",
|
309 |
+
"problem": "27. \\text{์ขํ๊ณต๊ฐ์ ์ง์ AB๋ฅผ ํฌํจํ๋ ํ๋ฉด } \\alpha \\text{๊ฐ ์๋ค. ํ๋ฉด } \\alpha \\text{ ์์ ์์ง ์์ ์ C์ ๋ํ์ฌ ์ง์ AB์ ์ง์ AC๊ฐ ์ด๋ฃจ๋ ์๊ฐ์ ํฌ๊ธฐ๋ฅผ } \\theta_1 \\text{์ด๋ผ ํ ๋ } \\sin \\theta_1 = \\frac{4}{5} \\text{์ด๊ณ , ์ง์ AC์ ํ๋ฉด } \\alpha \\text{๊ฐ ์ด๋ฃจ๋ ์๊ฐ์ ํฌ๊ธฐ๋ } \\frac{\\pi}{2} - \\theta_1 \\text{์ด๋ค. ํ๋ฉด ABC์ ํ๋ฉด } \\alpha \\text{๊ฐ ์ด๋ฃจ๋ ์๊ฐ์ ํฌ๊ธฐ๋ฅผ } \\theta_2 \\text{๋ผ ํ ๋, } \\cos \\theta_2 \\text{์ ๊ฐ์? [3์ ]}\n\n\\begin{itemize}\n \\item[1] \\frac{\\sqrt{7}}{4}\n \\item[2] \\frac{\\sqrt{7}}{5}\n \\item[3] \\frac{\\sqrt{7}}{6}\n \\item[4] \\frac{\\sqrt{7}}{7}\n \\item[5] \\frac{\\sqrt{7}}{8}\n\\end{itemize}\n",
|
310 |
+
"answer": -1,
|
311 |
+
"score": -1,
|
312 |
+
"review": 1
|
313 |
+
}
|
314 |
+
{
|
315 |
+
"id": 44,
|
316 |
+
"name": "28_geom",
|
317 |
+
"problem": "28. \\text{๋ ์ด์ ์ด } F(c, 0), F'(-c, 0) \\text{(} c > 0 \\text{)์ธ ์๊ณก์ } C \\text{์ } y \\text{์ถ ์์ ์ } A \\text{๊ฐ ์๋ค. ์๊ณก์ } C \\text{๊ฐ ์ ๋ถ } AF \\text{์ ๋ง๋๋ ์ ์ } P, \\text{์ ๋ถ } AF' \\text{๊ณผ ๋ง๋๋ ์ ์ } P' \\text{์ด๋ผ ํ์. ์ง์ } AF \\text{๋ ์๊ณก์ } C \\text{์ ํ ์ ๊ทผ์ ๊ณผ ํํํ๊ณ }\n\\frac{AP}{PP'} = \\frac{5}{6}, PF = 1 \\text{์ผ ๋, ์๊ณก์ } C \\text{์ ์ฃผ์ถ์ ๊ธธ์ด๋? [4์ ]}\n\n\\begin{itemize}\n \\item[1] \\frac{13}{6}\n \\item[2] \\frac{9}{4}\n \\item[3] \\frac{7}{3}\n \\item[4] \\frac{29}{12}\n \\item[5] \\frac{5}{2}\n\\end{itemize}\n",
|
318 |
+
"answer": -1,
|
319 |
+
"score": -1,
|
320 |
+
"review": 1
|
321 |
+
}
|
322 |
+
{
|
323 |
+
"id": 45,
|
324 |
+
"name": "29_geom",
|
325 |
+
"problem": "29. \\text{ํ๋ฉด } \\alpha \\text{ ์์ } \\overline{AB} = \\overline{CD} = \\overline{AD} = 2, \\quad \\angle ABC = \\angle BCD = \\frac{\\pi}{3} \\text{์ธ ์ฌ๋ค๋ฆฌ๊ผด ABCD๊ฐ ์๋ค. ๋ค์ ์กฐ๊ฑด์ ๋ง์กฑ์ํค๋ ํ๋ฉด } \\alpha \\text{ ์์ ๋ ์ P, Q์ ๋ํ์ฌ } \\overrightarrow{CP} \\cdot \\overrightarrow{DQ} \\text{์ ๊ฐ์ ๊ตฌํ์์ค. [4์ ]}\n\n\\text{(๊ฐ) } \\overrightarrow{AC} = 2(\\overrightarrow{AD} + \\overrightarrow{BP})\n\\text{(๋) } \\overrightarrow{AC} \\cdot \\overrightarrow{PQ} = 6\n\\text{(๋ค) } 2 \\times \\angle BQA = \\angle PBQ < \\frac{\\pi}{2}\n",
|
326 |
+
"answer": -1,
|
327 |
+
"score": -1,
|
328 |
+
"review": 2
|
329 |
+
}
|
330 |
+
{
|
331 |
+
"id": 46,
|
332 |
+
"name": "30_geom",
|
333 |
+
"problem": "30. \\text{์ขํ๊ณต๊ฐ์ ์ ์ฌ๋ฉด์ฒด ABCD๊ฐ ์๋ค. ์ ์ผ๊ฐํ BCD์ ์ธ์ฌ์ ์ค์ฌ์ผ๋ก ํ๊ณ ์ B๋ฅผ ์ง๋๋ ๊ตฌ๋ฅผ } S \\text{๋ผ ํ์.}\n\\text{๊ตฌ } S \\text{์ ์ ๋ถ AB๊ฐ ๋ง๋๋ ์ ์ค B๊ฐ ์๋ ์ ์ P,}\n\\text{๊ตฌ } S \\text{์ ์ ๋ถ AC๊ฐ ๋ง๋๋ ์ ์ค C๊ฐ ์๋ ์ ์ Q,}\n\\text{๊ตฌ } S \\text{์ ์ ๋ถ AD๊ฐ ๋ง๋๋ ์ ์ค D๊ฐ ์๋ ์ ์ R๋ผ ํ๊ณ , ์ P์์ ๊ตฌ } S \\text{์ ์ ํ๋ ํ๋ฉด์ } \\alpha \\text{๋ผ ํ์.}\n\\text{๊ตฌ } S \\text{์ ๋ฐ์ง๋ฆ์ ๊ธธ์ด๊ฐ 6์ผ ๋, ์ผ๊ฐํ PQR์ ํ๋ฉด } \\alpha \\text{์๋ก์ ์ ์ฌ์์ ๋์ด๋ } k \\alpha \\text{์ด๋ค. } k^2 \\text{์ ๊ฐ์ ๊ตฌํ์์ค. [4์ ]}\n",
|
334 |
+
"answer": -1,
|
335 |
+
"score": -1
|
336 |
+
}
|
data/json/2024/math.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"id":1,"name":"1","problem":"1. \\left( \\frac{4}{2 ^{\\sqrt{2}}} \\right)^{2 + \\sqrt{2}} \\text{\uc758 \uac12\uc740? [2\uc810]}\n\n\\begin{itemize}\n \\item[1] $\\frac{1}{4}$\n \\item[2] $\\frac{1}{2}$\n \\item[3] $1$\n \\item[4] $2$\n \\item[5] $4$\n\\end{itemize}\n","answer":"1","score":2}
|
2 |
+
{"id":2,"name":"2","problem":"2. \\lim_{x \\to \\infty} \\frac{\\sqrt{x^2 - 2} + 3x}{x+5} \\text{\uc758 \uac12\uc740? [2\uc810]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":"4","score":2}
|
3 |
+
{"id":3,"name":"3","problem":"3. \uacf5\ube44\uac00 \uc591\uc218\uc778 \ub4f1\ube44\uc218\uc5f4 $\\{a_n\\}$\uc774\n\\[\na_2 + a_4 = 30, \\quad a_4 + a_6 = \\frac{15}{2}\n\\]\n\ub97c \ub9cc\uc871\uc2dc\ud0ac \ub54c, $a_1$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] 48\n \\item[2] 56\n \\item[3] 64\n \\item[4] 72\n \\item[5] 80\n\\end{itemize}\n","answer":"2","score":3}
|
4 |
+
{"id":4,"name":"4","problem":"4. \ub2e4\ud56d\ud568\uc218 $f(x)$\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 $g(x)$\ub97c\n\\[\ng(x) = x^2 f(x)\n\\]\n\ub77c \ud558\uc790. $f(2) = 1$, $f'(2) = 3$\uc77c \ub54c, $g'(2)$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] 12\n \\item[2] 14\n \\item[3] 16\n \\item[4] 18\n \\item[5] 20\n\\end{itemize}\n","answer":"1","score":3}
|
5 |
+
{"id":5,"name":"5","problem":"5. \\(\\tan \\theta < 0\\)\uc774\uace0 \\(\\cos \\left(\\frac{\\pi}{2} + \\theta \\right) = \\frac{\\sqrt{5}}{5}\\)\uc77c \ub54c, \\(\\cos \\theta\\)\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] \\(- \\frac{2\\sqrt{5}}{5}\\)\n \\item[2] \\(- \\frac{\\sqrt{5}}{5}\\)\n \\item[3] 0\n \\item[4] \\(\\frac{\\sqrt{5}}{5}\\)\n \\item[5] \\(\\frac{2\\sqrt{5}}{5}\\)\n\\end{itemize}\n","answer":"4","score":3}
|
6 |
+
{"id":6,"name":"6","problem":"6. \ud568\uc218 \\( f(x) = 2x^3 - 9x^2 + ax + 5 \\)\ub294 \\( x = 1 \\)\uc5d0\uc11c \uadf9\ub300\uc774\uace0, \\( x = b \\)\uc5d0\uc11c \uadf9\uc18c\uc774\ub2e4. \\( a + b \\)\uc758 \uac12\uc740? (\ub2e8, \\( a, b \\)\ub294 \uc0c1\uc218\uc774\ub2e4.) [3\uc810]\n\\begin{itemize}\n \\item[1] 12\n \\item[2] 14\n \\item[3] 16\n \\item[4] 18\n \\item[5] 20\n\\end{itemize}\n","answer":"4","score":3}
|
7 |
+
{"id":7,"name":"7","problem":"7. \ubaa8\ub4e0 \ud56d\uc774 \uc591\uc218\uc774\uace0 \uccab\uc9f8\ud56d\uacfc \uacf5\ucc28\uac00 \uac19\uc740 \ub4f1\ucc28\uc218\uc5f4 $\\{a_n\\}$\uc774 \n\\[\n\\sum_{k=1}^{15} \\frac{1}{\\sqrt{a_k} + \\sqrt{a_{k+1}}} = 2\n\\]\n\ub97c \ub9cc\uc871\uc2dc\ud0ac \ub54c, $a_4$\uc758 \uac12\uc740? \\textbf{[3\uc810]}\n\\begin{itemize}\n \\item[1] 6\n \\item[2] 7\n \\item[3] 8\n \\item[4] 9\n \\item[5] 10\n\\end{itemize}\n","answer":"5","score":3}
|
8 |
+
{"id":8,"name":"8","problem":"8. \uc810 $(0, 4)$\uc5d0\uc11c \uace1\uc120 $y = x^3 - x + 2$\uc5d0 \uadf8\uc740 \uc811\uc120\uc758 $x$\uc808\ud3b8\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] $-\\frac{1}{2}$\n \\item[2] $-1$\n \\item[3] $-\\frac{3}{2}$\n \\item[4] $-2$\n \\item[5] $-\\frac{5}{2}$\n\\end{itemize}\n","answer":"2","score":3}
|
9 |
+
{"id":9,"name":"9","problem":"9. \ud568\uc218\n\\[\nf(x) = a - \\sqrt{3} \\tan 2x\n\\]\n\uac00 \ub2eb\ud78c\uad6c\uac04 \\(\\left[ -\\frac{\\pi}{6}, b \\right]\\) \uc5d0\uc11c \ucd5c\ub313\uac12 7, \ucd5c\uc19f\uac12 3\uc744 \uac00\uc9c8 \ub54c, \\(a \\times b\\)\uc758 \uac12\uc740? (\ub2e8, \\(a, b\\)\ub294 \uc0c1\uc218\uc774\ub2e4.) [4\uc810]\n\\begin{itemize}\n \\item[1] \\(\\frac{\\pi}{2}\\)\n \\item[2] \\(\\frac{5\\pi}{12}\\)\n \\item[3] \\(\\frac{\\pi}{3}\\)\n \\item[4] \\(\\frac{\\pi}{4}\\)\n \\item[5] \\(\\frac{\\pi}{6}\\)\n\\end{itemize}\n","answer":"4","score":4}
|
10 |
+
{"id":10,"name":"10","problem":"10. \ub450 \uace1\uc120 \\(y = x^3 + x^2\\), \\(y = -x^2 + k\\)\uc640 \\(y\\) \ucd95\uc73c\ub85c \ub458\ub7ec\uc2f8\uc778 \ubd80\ubd84\uc758 \ub113\uc774\ub97c \\(A\\), \ub450 \uace1\uc120 \\(y = x^3 + x^2\\), \\(y = -x^2 + k\\)\uc640 \uc9c1\uc120 \\(x = 2\\)\ub85c \ub458\ub7ec\uc2f8\uc778 \ubd80\ubd84\uc758 \ub113\uc774\ub97c \\(B\\)\ub77c \ud558\uc790. \\(A = B\\)\uc77c \ub54c, \uc0c1\uc218 \\(k\\)\uc758 \uac12\uc740? (\ub2e8, \\(4 < k < 5\\)) [4\uc810]\n\\begin{itemize}\n \\item[1] \\(\\frac{25}{6}\\)\n \\item[2] \\(\\frac{13}{3}\\)\n \\item[3] \\(\\frac{9}{2}\\)\n \\item[4] \\(\\frac{14}{3}\\)\n \\item[5] \\(\\frac{29}{6}\\)\n\\end{itemize}\n","answer":"2","score":4}
|
11 |
+
{"id":11,"name":"11","problem":"11. \uadf8\ub9bc\uacfc \uac19\uc774 \uc0ac\uac01\ud615 ABCD\uac00 \ud55c \uc6d0\uc5d0 \ub0b4\uc811\ud558\uace0 \\\\\n\\[\n\\overline{AB} = 5, \\quad \\overline{AC} = 3\\sqrt{5}, \\quad \\overline{AD} = 7, \\quad \\angle BAC = \\angle CAD\n\\]\n\uc77c \ub54c, \uc774 \uc6d0\uc758 \ubc18\uc9c0\ub984\uc758 \uae38\uc774\ub294? \\textbf{[4\uc810]}\\\\\n\\begin{itemize}\n \\item[1] \\(\\frac{5\\sqrt{2}}{2}\\)\n \\item[2] \\(\\frac{8\\sqrt{5}}{5}\\)\n \\item[3] \\(\\frac{5\\sqrt{5}}{3}\\)\n \\item[4] \\(\\frac{8\\sqrt{2}}{3}\\)\n \\item[5] \\(\\frac{9\\sqrt{3}}{4}\\)\n\\end{itemize}\n","answer":"1","score":4}
|
12 |
+
{"id":12,"name":"12","problem":"12. \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc5f0\uc18d\uc778 \ud568\uc218 \\( f(x) \\)\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.\n\\[\n\\boxed{\nn-1 \\leq x < n \\text{\uc77c \ub54c}, \\, |f(x)| = |6(x-n+1)(x-n)| \\, \\text{\uc774\ub2e4}. \\, (\\text{\ub2e8}, n \\, \\text{\uc740 \uc790\uc5f0\uc218\uc774\ub2e4.})\n}\n\\]\n\uc5f4\ub9b0\uad6c\uac04 \\( (0, 4) \\)\uc5d0\uc11c \uc815\uc758\ub41c \ud568\uc218\n\\[\ng(x) = \\int_0^x f(t)dt - \\int_x^4 f(t)dt\n\\]\n\uac00 \\( x = 2 \\)\uc5d0\uc11c \ucd5c\uc19f\uac12 0\uc744 \uac00\uc9c8 \ub54c, \\( \\int_\\frac{1}{2}^4 f(x)dx \\)\uc758 \uac12\uc740? [4\uc810]\n\\begin{itemize}\n \\item[1] \\( -\\frac{3}{2} \\)\n \\item[2] \\( -\\frac{1}{2} \\)\n \\item[3] \\( \\frac{1}{2} \\)\n \\item[4] \\( \\frac{3}{2} \\)\n \\item[5] \\( \\frac{5}{2} \\)\n\\end{itemize}\n","answer":"3","score":4}
|
13 |
+
{"id":13,"name":"13","problem":"13. \uc790\uc5f0\uc218 $m(m \\geq 2)$\uc5d0 \ub300\ud558\uc5ec $m^{12}$\uc758 $n$\uc81c\uacf1\uadfc \uc911\uc5d0\uc11c \uc815\uc218\uac00 \uc874\uc7ac\ud558\ub3c4\ub85d \ud558\ub294 2 \uc774\uc0c1\uc758 \uc790\uc5f0\uc218 $n$\uc758 \uac1c\uc218\ub97c $f(m)$\uc774\ub77c \ud560 \ub54c,\n\\[\n\\sum_{m=2}^{9} f(m) \\text{\uc758 \uac12\uc740? [4\uc810]} \n\\]\n\\begin{itemize}\n \\item[1] 37\n \\item[2] 42\n \\item[3] 47\n \\item[4] 52\n \\item[5] 57\n\\end{itemize}\n","answer":"1","score":4}
|
14 |
+
{"id":14,"name":"14","problem":"14. \ub2e4\ud56d\ud568\uc218 $f(x)$\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 $g(x)$\ub97c \ub2e4\uc74c\uacfc \uac19\uc774 \uc815\uc758\ud55c\ub2e4.\n\\[\ng(x) = \\begin{cases} \nx & (x < -1 \\text{ \ub610\ub294 } x > 1) \\\\\nf(x) & (-1 \\leq x \\leq 1)\n\\end{cases}\n\\]\n\ud568\uc218 $h(x) = \\lim_{t \\to 0^+} g(x + t) \\times \\lim_{t \\to 2^+} g(x + t)$\uc5d0 \ub300\ud558\uc5ec \\\\\n\\textless \ubcf4\uae30\\textgreater \uc5d0\uc11c \uc633\uc740 \uac83\ub9cc\uc744 \uc788\ub294 \ub300\ub85c \uace0\ub978 \uac83\uc740? [4\uc810]\n\\textless \ubcf4\uae30\\textgreater \\\\\n\\fbox{\n \\parbox{\\textwidth}{\n \u3131. $h(1) = 3$ \\\\\n \u3134. \ud568\uc218 $h(x)$\ub294 \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc5f0\uc18d\uc774\ub2e4. \\\\\n \u3137. \ud568\uc218 $g(x)$\uac00 \ub2eb\ud78c\uad6c\uac04 $[-1, 1]$\uc5d0\uc11c \uac10\uc18c\ud558\uace0 $g(-1) = -2$\uc774\uba74 \ud568\uc218 $h(x)$\ub294 \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \ucd5c\uc19f\uac12\uc744 \uac16\ub294\ub2e4.\n }\n}\n\\begin{itemize}\n\\item[1] \u3131\n\\item[2] \u3134\n\\item[3] \u3131, \u3134\n\\item[4] \u3131, \u3137\n\\item[5] \u3134, \u3137\n\\end{itemize}\n","answer":"1","score":4}
|
15 |
+
{"id":15,"name":"15","problem":"15. \ubaa8\ub4e0 \ud56d\uc774 \uc790\uc5f0\uc218\uc774\uace0 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a4\ub294 \ubaa8\ub4e0 \uc218\uc5f4 $\\{a_n\\}$\uc5d0 \ub300\ud558\uc5ec $a_9$\uc758 \ucd5c\ub313\uac12\uacfc \ucd5c\uc19f\uac12\uc744 \uac01\uac01 $M, m$\uc774\ub77c \ud560 \ub54c, $M+m$\uc758 \uac12\uc740? \\textbf{[4\uc810]}\n\\[\n\\text{(\uac00)} \\quad a_7 = 40\n\\]\n\\text{(\ub098)} \\quad \ubaa8\ub4e0 \uc790\uc5f0\uc218 $n$\uc5d0 \ub300\ud558\uc5ec \n\\[\na_{n+2} = \n\\begin{cases} \na_{n+1} + a_n & \\text{(}a_{n+1}\\text{\uc774 3\uc758 \ubc30\uc218\uac00 \uc544\ub2cc \uacbd\uc6b0)}\\\\\n\\frac{1}{3} a_{n+1} & \\text{(}a_{n+1}\\text{\uc774 3\uc758 \ubc30\uc218\uc778 \uacbd\uc6b0)}\n\\end{cases}\n\\]\n\\begin{itemize}\n \\item[1] 216\n \\item[2] 218\n \\item[3] 220\n \\item[4] 222\n \\item[5] 224\n\\end{itemize}\n","answer":"3","score":4}
|
16 |
+
{"id":16,"name":"16","problem":"16. \ubc29\uc815\uc2dd\n\\[\n\\log_2{(3x+2)} = 2 + \\log_2{(x-2)}\n\\]\n\\text{\ub97c \ub9cc\uc871\uc2dc\ud0a4\ub294 \uc2e4\uc218 } \\( x \\) \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [3\uc810]}\n","answer":"2","score":3}
|
17 |
+
{"id":17,"name":"17","problem":"17. \ud568\uc218 $f(x)$\uc5d0 \ub300\ud558\uc5ec $f'(x) = 4x^3 - 2x$\uc774\uace0 $f(0) = 3$\uc77c \ub54c, $f(2)$\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [3\uc810]\n","answer":"8","score":3}
|
18 |
+
{"id":18,"name":"18","problem":"18. \ub450 \uc218\uc5f4 $\\{a_n\\}$, $\\{b_n\\}$\uc5d0 \ub300\ud558\uc5ec\n\\[\n\\sum_{k=1}^{5} (3a_k + 5) = 55, \\quad \\sum_{k=1}^{5} (a_k + b_k) = 32\n\\]\n\uc77c \ub54c, $\\sum_{k=1}^{5} b_k$\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [3\uc810]\n","answer":"9","score":3}
|
19 |
+
{"id":19,"name":"19","problem":"19. \ubc29\uc815\uc2dd $2x^3 - 6x^2 + k = 0$\uc758 \uc11c\ub85c \ub2e4\ub978 \uc591\uc758 \uc2e4\uadfc\uc758 \uac1c\uc218\uac00 2\uac00 \ub418\ub3c4\ub85d \ud558\ub294 \uc815\uc218 $k$\uc758 \uac1c\uc218\ub97c \uad6c\ud558\uc2dc\uc624. [3\uc810]\n","answer":"32","score":3}
|
20 |
+
{"id":20,"name":"20","problem":"20. \uc218\uc9c1\uc120 \uc704\ub97c \uc6c0\uc9c1\uc774\ub294 \uc810 P\uc758 \uc2dc\uac01 \\(t(t\\geq0)\\)\uc5d0\uc11c\uc758 \uc18d\ub3c4 \\(v(t)\\)\uc640 \uac00\uc18d\ub3c4 \\(a(t)\\)\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.\n\\[\n\\text{(\uac00)} \\quad 0 \\leq t \\leq 2 \\text{\uc77c \ub54c}, \\quad v(t) = 2t^3 - 8t \\text{\uc774\ub2e4.}\n\\]\n\\[\n\\text{(\ub098)} \\quad t \\geq 2 \\text{\uc77c \ub54c}, \\quad a(t) = 6t + 4\\text{\uc774\ub2e4.}\n\\]\n\uc2dc\uac01 \\( t=0 \\)\uc5d0\uc11c \\( t=3 \\)\uae4c\uc9c0 \uc810 P\uac00 \uc6c0\uc9c1\uc778 \uac70\ub9ac\ub97c \uad6c\ud558\uc2dc\uc624. \\hfill [4\uc810]\n","answer":"25","score":4}
|
21 |
+
{"id":21,"name":"21","problem":"21. \uc790\uc5f0\uc218 \\(n\\)\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 \\(f(x)\\)\ub97c\n\\[\nf(x) =\n\\begin{cases} \n |3^{x+2}-n| & (x<0) \\\\ \n | \\log_2 (x+4) -n| & (x \\geq 0)\n\\end{cases}\n\\]\n\uc774\ub77c \ud558\uc790. \uc2e4\uc218 \\(t\\)\uc5d0 \ub300\ud558\uc5ec \\(x\\)\uc5d0 \ub300\ud55c \ubc29\uc815\uc2dd \\(f(x) = t\\)\uc758 \uc11c\ub85c \ub2e4\ub978 \uc2e4\uadfc\uc758 \uac1c\uc218\ub97c \\(g(t)\\)\ub77c \ud560 \ub54c, \ud568\uc218 \\(g(t)\\)\uc758 \ucd5c\ub313\uac12\uc774 4\uac00 \ub418\ub3c4\ub85d \ud558\ub294 \ubaa8\ub4e0 \uc790\uc5f0\uc218 \\(n\\)\uc758 \uac12\uc758 \ud569\uc744 \uad6c\ud558\uc2dc\uc624. [4\uc810]\n","answer":"10","score":4}
|
22 |
+
{"id":22,"name":"22","problem":"22. \ucd5c\uace0\ucc28\ud56d\uc758 \uacc4\uc218\uac00 1\uc778 \uc0bc\ucc28\ud568\uc218 \\( f(x) \\)\uc640 \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc5f0\uc18d\uc778 \ud568\uc218 \\( g(x) \\)\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0ac \ub54c, \\( f(4) \\)\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [4\uc810]\n\\[\n\\begin{aligned}\n\\text{(\uac00)} & \\quad \\text{\ubaa8\ub4e0 \uc2e4\uc218 } x \\text{\uc5d0 \ub300\ud558\uc5ec} \\\\\n& \\quad f(x) = f(1) + (x - 1)f'(g(x)) \\text{\uc774\ub2e4.} \\\\\n\\text{(\ub098)} & \\quad \\text{\ud568\uc218 } g(x) \\text{\uc758 \ucd5c\uc19f\uac12\uc740 } \\frac{5}{2} \\text{\uc774\ub2e4.} \\\\\n\\text{(\ub2e4)} & \\quad f(0) = -3, \\, f(g(1)) = 6\n\\end{aligned}\n\\]\n","answer":"483","score":4}
|
23 |
+
|
24 |
+
{"id":23,"name":"23_prob","problem":"23. \ub2e4\ud56d\uc2dd $(x^3 + 3)^5$ \uc758 \uc804\uac1c\uc2dd\uc5d0\uc11c $x^9$\uc758 \uacc4\uc218\ub294? [2\uc810]\n\\begin{itemize}\n \\item[1] 30\n \\item[2] 60\n \\item[3] 90\n \\item[4] 120\n \\item[5] 150\n\\end{itemize}\n","answer":"3","score":2}
|
25 |
+
{"id":24,"name":"24_prob","problem":"24. \uc22b\uc790 1, 2, 3, 4, 5 \uc911\uc5d0\uc11c \uc911\ubcf5\uc744 \ud5c8\ub77d\ud558\uc5ec 4\uac1c\ub97c \ud0dd\ud574 \uc77c\ub82c\ub85c \ub098\uc5f4\ud558\uc5ec \ub9cc\ub4e4 \uc218 \uc788\ub294 \ub124 \uc790\ub9ac\uc758 \uc790\uc5f0\uc218 \uc911 4000 \uc774\uc0c1\uc778 \ud640\uc218\uc758 \uac1c\uc218\ub294? [3\uc810]\n\\begin{itemize}\n \\item[1] 125\n \\item[2] 150\n \\item[3] 175\n \\item[4] 200\n \\item[5] 225\n\\end{itemize}\n","answer":"4","score":3}
|
26 |
+
{"id":25,"name":"25_prob","problem":"25. \ud770\uc0c9 \ub9c8\uc2a4\ud06c 5\uac1c, \uac80\uc740\uc0c9 \ub9c8\uc2a4\ud06c 9\uac1c\uac00 \ub4e4\uc5b4 \uc788\ub294 \uc0c1\uc790\uac00 \uc788\ub2e4. \uc774 \uc0c1\uc790\uc5d0\uc11c \uc784\uc758\ub85c 3\uac1c\uc758 \ub9c8\uc2a4\ud06c\ub97c \ub3d9\uc2dc\uc5d0 \uaebc\ub0bc \ub54c, \uaebc\ub0b8 3\uac1c\uc758 \ub9c8\uc2a4\ud06c \uc911\uc5d0\uc11c \uc801\uc5b4\ub3c4 \ud55c \uac1c\uac00 \ud770\uc0c9 \ub9c8\uc2a4\ud06c\uc77c \ud655\ub960\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{8}{13}$\n \\item[2] $\\frac{17}{26}$\n \\item[3] $\\frac{9}{13}$\n \\item[4] $\\frac{19}{26}$\n \\item[5] $\\frac{10}{13}$\n\\end{itemize}\n","answer":"5","score":3}
|
27 |
+
{"id":26,"name":"26_prob","problem":"26. \uc8fc\uba38\ub2c8\uc5d0 1\uc774 \uc801\ud78c \ud770 \uacf5 1\uac1c, 2\uac00 \uc801\ud78c \ud770 \uacf5 1\uac1c, 1\uc774 \uc801\ud78c \uac80\uc740 \uacf5 1\uac1c, 2\uac00 \uc801\ud78c \uac80\uc740 \uacf5 3\uac1c\uac00 \ub4e4\uc5b4 \uc788\ub2e4. \n\uc774 \uc8fc\uba38\ub2c8\uc5d0\uc11c \uc784\uc758\ub85c 3\uac1c\uc758 \uacf5\uc744 \ub3d9\uc2dc\uc5d0 \uaebc\ub0b4\ub294 \uc2dc\ud589\uc744 \ud55c\ub2e4. \n\uc774 \uc2dc\ud589\uc5d0\uc11c \uaebc\ub0b8 3\uac1c\uc758 \uacf5 \uc911\uc5d0\uc11c \ud770 \uacf5\uc774 1\uac1c\uc774\uace0 \uac80\uc740 \uacf5\uc774 2\uac1c\uc778 \uc0ac\uac74\uc744 A, \uaebc\ub0b8 3\uac1c\uc758 \uacf5\uc5d0 \uc801\ud600 \uc788\ub294 \uc218\ub97c \ubaa8\ub450 \uacf1\ud55c \uac12\uc774 8\uc778 \uc0ac\uac74\uc744 B\ub77c \ud560 \ub54c, $P(A \\cup B)$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{11}{20}$\n \\item[2] $\\frac{3}{5}$\n \\item[3] $\\frac{13}{20}$\n \\item[4] $\\frac{7}{10}$\n \\item[5] $\\frac{3}{4}$\n\\end{itemize}\n","answer":"2","score":3}
|
28 |
+
{"id":27,"name":"27_prob","problem":"27. \uc5b4\ub290 \ud68c\uc0ac\uc5d0\uc11c \uc0dd\uc0b0\ud558\ub294 \uc0d8\ud50c 1\uac1c\uc758 \uc6a9\ub7c9\uc740 \uc815\uaddc\ubd84\ud3ec \\( N(\\mu, \\sigma^2) \\) \ub97c \ub530\ub978\ub2e4\uace0 \ud55c\ub2e4. \uc774 \ud68c\uc0ac\uc5d0\uc11c \uc0dd\uc0b0\ud558\ub294 \uc0d8\ud50c \uc911\uc5d0\uc11c 16\uac1c\ub97c \uc784\uc758\ucd94\ucd9c\ud558\uc5ec \uc5bb\uc740 \ud45c\ubcf8\ud3c9\uade0\uc744 \uc774\uc6a9\ud558\uc5ec \uad6c\ud55c \\( m \\) \uc5d0 \ub300\ud55c \uc2e0\ub8b0\ub3c4 95\\%\uc758 \uc2e0\ub8b0\uad6c\uac04\uc774 \\( 746.1 \\leq m \\leq 755.9 \\)\uc774\ub2e4. \uc774 \ud68c\uc0ac\uc5d0\uc11c \uc0dd\uc0b0\ud558\ub294 \uc0d8\ud50c \uc911\uc5d0\uc11c \\( n \\) \uac1c\ub97c \uc784\uc758\ucd94\ucd9c\ud558\uc5ec \uc5bb\uc740 \ud45c\ubcf8\ud3c9\uade0\uc744 \uc774\uc6a9\ud558\uc5ec \uad6c\ud558\ub294 \\( m \\) \uc5d0 \ub300\ud55c \uc2e0\ub8b0\ub3c4 99\\%\uc758 \uc2e0\ub8b0\uad6c\uac04\uc774 \\( a \\leq m \\leq b \\)\uc77c \ub54c, \\( b-a \\)\uc758 \uac12\uc774 6 \uc774\ud558\uac00 \ub418\uae30 \uc704\ud55c \uc790\uc5f0\uc218 \\( n \\)\uc758 \ucd5c\uc18c\uac12\uc740? (\ub2e8, \uc6a9\ub7c9\uc758 \ub2e8\uc704\ub294 mL\uc774\uace0, \\( Z \\)\uac00 \ud45c\uc900\uc815\uaddc\ubd84\ud3ec\ub97c \ub530\ub974\ub294 \ud655\ub960\ubcc0\uc218\uc77c \ub54c, \\( P(|Z| \\leq 1.96) = 0.95, P(|Z| \\leq 2.58) = 0.99 \\) \ub85c \uacc4\uc0b0\ud55c\ub2e4.) [3\uc810]\n\\begin{itemize}\n \\item[1] 70\n \\item[2] 74\n \\item[3] 78\n \\item[4] 82\n \\item[5] 86\n\\end{itemize}\n","answer":"2","score":3}
|
29 |
+
{"id":28,"name":"28_prob","problem":"28. \uc5f0\uc18d\ud655\ub960\ubcc0\uc218 \\( X \\) \uac00 \uac16\ub294 \uac12\uc758 \ubc94\uc704\ub294 \\( 0 \\leq X \\leq a \\) \uc774\uace0, \\( X \\)\uc758 \ud655\ub960\ubc00\ub3c4\ud568\uc218\uc758 \uadf8\ub798\ud504\uac00 \uadf8\ub9bc\uacfc \uac19\ub2e4.\\\\\n\\begin{center}\n\\begin{tikzpicture}\n % Draw axes\n \\draw[->] (0,0) -- (5,0) node[right] {$x$};\n \\draw[->] (0,0) -- (0,4) node[above] {$y$};\n % Label points\n \\node at (1,-0.3) {$O$};\n \\node at (3,-0.3) {$b$};\n \\node at (5,-0.3) {$a$};\n \\node at (-0.3,3) {$c$};\n % Draw the function\n \\draw[thick] (0,0) -- (3,3) -- (5,0);\n % Dotted lines for the heights\n \\draw[dashed] (3,0) -- (3,3);\n \\draw[dashed] (5,0) -- (5,0);\n\\end{tikzpicture}\n\\end{center}\n\\( P(X \\leq b) - P(X \\geq b) = \\frac{1}{4}, \\quad P(X \\leq \\sqrt{5}) = \\frac{1}{2} \\)\uc77c \ub54c,\\\\\n\\( a + b + c \\)\uc758 \uac12\uc740? (\ub2e8, \\(a, b, c\\)\ub294 \uc0c1\uc218\uc774\ub2e4.) [4\uc810] \n\\begin{itemize}\n \\item[1] \\(\\frac{11}{2}\\)\n \\item[2] 6\n \\item[3] \\(\\frac{13}{2}\\)\n \\item[4] 7\n \\item[5] \\(\\frac{15}{2}\\)\n\\end{itemize}\n","answer":"4","score":4}
|
30 |
+
{"id":29,"name":"29_prob","problem":"29. \uc55e\uba74\uc5d0\ub294 1\ubd80\ud130 6\uae4c\uc9c0\uc758 \uc790\uc5f0\uc218\uac00 \ud558\ub098\uc529 \uc801\ud600 \uc788\uace0 \ub4b7\uba74\uc5d0\ub294 \ubaa8\ub450 0\uc774 \ud558\ub098\uc529 \uc801\ud600 \uc788\ub294 6\uc7a5\uc758 \uce74\ub4dc\uac00 \uc788\ub2e4. \uc774 6\uc7a5\uc758 \uce74\ub4dc\ub97c \uadf8\ub9bc\uacfc \uac19\uc774 6 \uc774\ud558\uc758 \uc790\uc5f0\uc218 $k$\uc5d0 \ub300\ud558\uc5ec $k$\ubc88\uc9f8 \uc790\ub9ac\uc5d0 \uc790\uc5f0\uc218 $k$\uac00 \ubcf4\uc774\ub3c4\ub85d \ub193\uc5ec \uc788\ub2e4. \\\\\n\\[\n\\begin{array}{|c|c|c|c|c|c|}\n\\hline\n\\text{1\ubc88\uc9f8 \uc790\ub9ac} & \\text{2\ubc88\uc9f8 \uc790\ub9ac} & \\text{3\ubc88\uc9f8 \uc790\ub9ac} & \\text{4\ubc88\uc9f8 \uc790\ub9ac} & \\text{5\ubc88\uc9f8 \uc790\ub9ac} & \\text{6\ubc88\uc9f8 \uc790\ub9ac} \\\\\n\\hline\n1 & 2 & 3 & 4 & 5 & 6 \\\\\n\\hline\n\\end{array}\n\\]\n\uc774 6\uc7a5\uc758 \uce74\ub4dc\uc640 \ud55c \uac1c\uc758 \uc8fc\uc0ac\uc704\ub97c \uc0ac\uc6a9\ud558\uc5ec \ub2e4\uc74c \uc2dc\ud589\uc744 \ud55c\ub2e4. \\\\\n\\framebox{\n\\parbox{\\textwidth}{\n\uc8fc\uc0ac\uc704\ub97c \ud55c \ubc88 \ub358\uc838 \ub098\uc628 \ub208\uc758 \uc218\uac00 $k$\uc774\uba74 $k$\ubc88\uc9f8 \uc790\ub9ac\uc5d0 \ub193\uc5ec \uc788\ub294 \uce74\ub4dc\ub97c \ud55c \ubc88 \ub4a4\uc9d1\uc5b4 \uc81c\uc790\ub9ac\uc5d0 \ub193\ub294\ub2e4.\n}\n} \\\\\n\uc704\uc758 \uc2dc\ud589\uc744 3\ubc88 \ubc18\ubcf5\ud55c \ud6c4 6\uc7a5\uc758 \uce74\ub4dc\uc5d0 \ubcf4\uc774\ub294 \ubaa8\ub4e0 \uc218\uc758 \ud569\uc774 \uc9dd\uc218\uc77c \ub54c, \uc8fc\uc0ac\uc704\uc758 1\uc758 \ub208\uc774 \ud55c \ubc88\ub9cc \ub098\uc654\uc744 \ud655\ub960\uc744 $\\frac{p}{q}$\uc774\ub2e4. $p+q$\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. (\ub2e8, $p$\uc640 $q$\ub294 \uc11c\ub85c\uc18c\uc778 \uc790\uc5f0\uc218\uc774\ub2e4.) [4\uc810]\n","answer":"196","score":4}
|
31 |
+
{"id":30,"name":"30_prob","problem":"30. \uc9d1\ud569 $X=\\{x \\mid x \\text{\ub294 10 \uc774\ud558\uc758 \uc790\uc5f0\uc218}\\}$\uc5d0 \ub300\ud558\uc5ec \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a4\ub294 \ud568\uc218 $f: X \\rightarrow X$\uc758 \uac1c\uc218\ub97c \uad6c\ud558\uc2dc\uc624. [4\uc810]\n\\begin{quote}\n\\textbf{(\uac00)} 9 \uc774\ud558\uc758 \ubaa8\ub4e0 \uc790\uc5f0\uc218 $x$\uc5d0 \ub300\ud558\uc5ec $f(x) \\leq f(x+1)$ \uc774\ub2e4.\n\\textbf{(\ub098)} $1 \\leq x \\leq 5$\uc77c \ub54c $f(x) \\leq x$\uc774\uace0, \\\\\n$6 \\leq x \\leq 10$\uc77c \ub54c $f(x) \\geq x$\uc774\ub2e4.\n\\textbf{(\ub2e4)} $f(6) = f(5) + 6$\n\\end{quote}\n","answer":"673","score":4}
|
32 |
+
|
33 |
+
{"id":31,"name":"23_calc","problem":"23. \\lim_{x \\to 0} \\frac{\\ln(x+1)}{\\sqrt{x+4} - 2} \\text{\uc758 \uac12\uc740? [2\uc810]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":"3","score":2}
|
34 |
+
{"id":32,"name":"24_calc","problem":"24. \\lim_{n \\to \\infty} \\frac{1}{n} \\sum_{k=1}^{n} \\sqrt{1 + \\frac{3k}{n}} \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] $\\frac{4}{3}$\n \\item[2] $\\frac{13}{9}$\n \\item[3] $\\frac{14}{9}$\n \\item[4] $\\frac{5}{3}$\n \\item[5] $\\frac{16}{9}$\n\\end{itemize}\n","answer":"2","score":3}
|
35 |
+
{"id":33,"name":"25_calc","problem":"25. \ub4f1\ube44\uc218\uc5f4 $\\{a_n\\}$\uc5d0 \ub300\ud558\uc5ec $\\lim_{n \\to \\infty} \\frac{a_{n+1}}{3^n + 2^{2n-1}} = 3$\uc77c \ub54c, $a_2$\uc758 \uac12\uc740? \\hspace{3mm}[3\uc810]\n\\begin{itemize}\n \\item[1] 16\n \\item[2] 18\n \\item[3] 20\n \\item[4] 22\n \\item[5] 24\n\\end{itemize}\n","answer":"4","score":3}
|
36 |
+
{"id":34,"name":"26_calc","problem":"26. \uadf8\ub9bc\uacfc \uac19\uc774 \uace1\uc120 $y=\\sqrt{\\sec^2x + \\tan x} \\ \\left( 0 \\leq x \\leq \\frac{\\pi}{3} \\right)$ \uc640 $x$\ucd95, $y$\ucd95 \ubc0f \uc9c1\uc120 $x=\\frac{\\pi}{3}$\ub85c \ub458\ub7ec\uc2f8\uc778 \ubd80\ubd84\uc744 \ubc11\uba74\uc73c\ub85c \ud558\ub294 \uc785\uccb4\ub3c4\ud615\uc774 \uc788\ub2e4. \uc774 \uc785\uccb4\ub3c4\ud615\uc744 $x$\ucd95\uc5d0 \uc218\uc9c1\uc778 \ud3c9\uba74\uc73c\ub85c \uc790\ub978 \ub2e8\uba74\uc774 \ubaa8\ub450 \uc815\uc0ac\uac01\ud615\uc77c \ub54c, \uc774 \uc785\uccb4\ub3c4\ud615\uc758 \ubd80\ud53c\ub294? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{\\sqrt{3}}{2} + \\frac{\\ln 2}{2}$\n \\item[2] $\\frac{\\sqrt{3}}{2} + \\ln 2$\n \\item[3] $\\sqrt{3} + \\frac{\\ln 2}{2}$\n \\item[4] $\\sqrt{3} + \\ln 2$\n \\item[5] $\\frac{\\sqrt{3}}{2} + 2 \\ln 2$\n\\end{itemize}\n","answer":"3","score":3}
|
37 |
+
{"id":35,"name":"27_calc","problem":"27. \uadf8\ub9bc\uacfc \uac19\uc774 \uc911\uc2ec\uc774 $O$, \ubc18\uc9c0\ub984\uc758 \uae38\uc774\uac00 $1$\uc774\uace0 \uc911\uc2ec\uac01\uc758 \ud06c\uae30\uac00 $\\frac{\\pi}{2}$\uc778 \ubd80\ucc44\uaf34 $OA_1B_1$\uc774 \uc788\ub2e4. \ud638 $A_1B_1$ \uc704\uc5d0 \uc810 $P_1$, \uc120\ubd84 $OA_1$ \uc704\uc5d0 \uc810 $C_1$, \uc120\ubd84 $OB_1$ \uc704\uc5d0 \uc810 $D_1$\uc744 \uc0ac\uac01\ud615 $OC_1P_1D_1$\uc774 $OC_1 : OD_1 = 3:4$\uc778 \uc9c1\uc0ac\uac01\ud615\uc774 \ub418\ub3c4\ub85d \uc7a1\ub294\ub2e4.\n\ubd80\ucc44\uaf34 $OA_1B_1$\uc758 \ub0b4\ubd80\uc5d0 \uc810 $Q_1$\uc744 $P_1Q_1 = A_1Q_1$, $\\angle P_1Q_1A_1 = \\frac{\\pi}{2}$\uac00 \ub418\ub3c4\ub85d \uc7a1\uace0, \uc774\ub4f1\ubcc0\uc0bc\uac01\ud615 $P_1Q_1A_1$\uc5d0 \uc0c9\uce60\ud558\uc5ec \uc5bb\uc740 \uadf8\ub9bc\uc744 $R_1$\uc774\ub77c \ud558\uc790.\n\uadf8\ub9bc $R_1$\uc5d0\uc11c \uc120\ubd84 $OA_1$ \uc704\uc758 \uc810 $A_2$\uc640 \uc120\ubd84 $OB_1$ \uc704\uc758 \uc810 $B_2$\ub97c $OQ_1 = OA_2 = OB_2$\uac00 \ub418\ub3c4\ub85d \uc7a1\uace0, \uc911\uc2ec\uc774 $O$, \ubc18\uc9c0\ub984\uc758 \uae38\uc774\uac00 $OQ_1$, \uc911\uc2ec\uac01\uc758 \ud06c\uae30\uac00 $\\frac{\\pi}{2}$\uc778 \ubd80\ucc44\uaf34 $OA_2B_2$\ub97c \uadf8\ub9b0\ub2e4. \uadf8\ub9bc $R_1$\uc744 \uc5bb\uc740 \uac83\uacfc \uac19\uc740 \ubc29\ubc95\uc73c\ub85c \ub124 \uc810 $P_2, C_2, D_2, Q_2$\ub97c \uc7a1\uace0, \uc774\ub4f1\ubcc0\uc0bc\uac01\ud615 $P_2Q_2A_2$\uc5d0 \uc0c9\uce60\ud558\uc5ec \uc5bb\uc740 \uadf8\ub9bc\uc744 $R_2$\ub77c \ud558\uc790.\n\uc774\uc640 \uac19\uc740 \uacfc\uc815\uc744 \uacc4\uc18d\ud558\uc5ec $n$\ubc88\uc9f8 \uc5bb\uc740 \uadf8\ub9bc $R_n$\uc5d0 \uc0c9\uce60\ub418\uc5b4 \uc788\ub294 \ubd80\ubd84\uc758 \ub113\uc774\ub97c $S_n$\uc774\ub77c \ud560 \ub54c, $\\lim_{n \\to \\infty} S_n$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{9}{40}$\n \\item[2] $\\frac{1}{4}$\n \\item[3] $\\frac{11}{40}$\n \\item[4] $\\frac{3}{10}$\n \\item[5] $\\frac{13}{40}$\n\\end{itemize}\n","answer":"1","score":3}
|
38 |
+
{"id":36,"name":"28_calc","problem":"28. \uadf8\ub9bc\uacfc \uac19\uc774 \uc911\uc2ec\uc774 $O$\uc774\uace0 \uae38\uc774\uac00 2\uc778 \uc120\ubd84 $AB$\ub97c \uc9c0\ub984\uc73c\ub85c \ud558\ub294 \ubc18\uc6d0 \uc704\uc5d0 $\\angle AOC = \\frac{\\pi}{2}$\uc778 \uc810 $C$\uac00 \uc788\ub2e4. \ud638 $BC$ \uc704\uc5d0 \uc810 $P$\uc640 \ud638 $CA$ \uc704\uc5d0 \uc810 $Q$\ub97c $PB = QC$\uac00 \ub418\ub3c4\ub85d \uc7a1\uace0, \uc120\ubd84 $AP$ \uc704\uc5d0 \uc810 $R$\uc744 $\\angle CQR = \\frac{\\pi}{2}$\uac00 \ub418\ub3c4\ub85d \uc7a1\ub294\ub2e4.\\\\\n\uc120\ubd84 $AP$\uc640 \uc120\ubd84 $CO$\uc758 \uad50\uc810\uc744 $S$\ub77c \ud558\uc790. $\\angle PAB = \\theta$\uc77c \ub54c, \uc0bc\uac01\ud615 $POB$\uc758 \ub113\uc774\ub97c $f(\\theta)$, \uc0ac\uac01\ud615 $CQRS$\uc758 \ub113\uc774\ub97c $g(\\theta)$\ub77c \ud558\uc790. \\\\\n\\[\n\\lim_{\\theta \\to 0^{+}} \\frac{3f(\\theta) - 2g(\\theta)}{\\theta^2}\n\\]\n\uc758 \uac12\uc740? (\ub2e8, $0 < \\theta < \\frac{\\pi}{4}$) [4\uc810] \n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":"2","score":4}
|
39 |
+
{"id":37,"name":"29_calc","problem":"29. \uc138 \uc0c1\uc218 \\(a, b, c\\)\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 \\(f(x) = ae^{2x} + be^x + c\\)\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.\n\\[\n(\uac00)\\ \\lim_{x \\to -\\infty} \\frac{f(x) + 6}{e^x} = 1\n\\]\n\\[\n(\ub098)\\ f(\\ln 2) = 0\n\\]\n\ud568\uc218 \\(f(x)\\)\uc758 \uc5ed\ud568\uc218\ub97c \\(g(x)\\)\ub77c \ud560 \ub54c,\n\\[\n\\int_0^{14} g(x) dx = p + q \\ln 2 \uc774\ub2e4. \\ p+q\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624.\n\\]\n(\ub2e8, \\(p, q\\)\ub294 \uc720\ub9ac\uc218\uc774\uace0, \\(\\ln 2\\)\ub294 \ubb34\ub9ac\uc218\uc774\ub2e4.) [4\uc810]\n","answer":"162","score":4}
|
40 |
+
{"id":38,"name":"30_calc","problem":"30. \ucd5c\uace0\ucc28\ud56d\uc758 \uacc4\uc218\uac00 \uc591\uc218\uc778 \uc0bc\ucc28\ud568\uc218 $f(x)$\uc640\\\\\n\ud568\uc218 $g(x) = e^{\\sin \\pi x} - 1$\uc5d0 \ub300\ud558\uc5ec \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc815\uc758\ub41c \ud569\uc131\ud568\uc218 $h(x) = g(f(x))$\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.\n\\begin{itemize}\n \\item[(\uac00)] \ud568\uc218 $h(x)$\ub294 $x = 0$\uc5d0\uc11c \uadf9\ub313\uac12 $0$\uc744 \uac16\ub294\ub2e4.\n \\item[(\ub098)] \uc5f4\ub9b0\uad6c\uac04 $(0, 3)$\uc5d0\uc11c \ubc29\uc815\uc2dd $h(x) = 1$\uc758 \uc11c\ub85c \ub2e4\ub978 \uc2e4\uadfc\uc758 \uac1c\uc218\ub294 7\uc774\ub2e4.\n\\end{itemize}\n$f(3) = \\frac{1}{2}, f'(3) = 0$\uc77c \ub54c, $f(2) = \\frac{q}{p}$\uc774\ub2e4. $p + q$\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. (\ub2e8, $p$\uc640 $q$\ub294 \uc11c\ub85c\uc18c\uc778 \uc790\uc5f0\uc218\uc774\ub2e4.) [4\uc810]\n","answer":"125","score":4}
|
41 |
+
|
42 |
+
{"id":39,"name":"23_geom","problem":"23. \uc88c\ud45c\uacf5\uac04\uc758 \uc810 A(2, 2, -1)\uc744 \\(x\\)\ucd95\uc5d0 \ub300\ud558\uc5ec \ub300\uce6d\uc774\ub3d9\ud55c \uc810\uc744 B\ub77c \ud558\uc790. \uc810 C(-2, 1, 1)\uc5d0 \ub300\ud558\uc5ec \uc120\ubd84 BC\uc758 \uae38\uc774\ub294? \\hfill [2\uc810]\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":"4","score":2}
|
43 |
+
{"id":40,"name":"24_geom","problem":"24. \ucd08\uc810\uc774 $F\\left(\\frac{1}{3}, 0\\right)$\uc774\uace0 \uc900\uc120\uc774 $x = -\\frac{1}{3}$\uc778 \ud3ec\ubb3c\uc120\uc774 \uc810 $(a, 2)$\ub97c \uc9c0\ub0a0 \ub54c, $a$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":"3","score":3}
|
44 |
+
{"id":41,"name":"25_geom","problem":"25. \ud0c0\uc6d0 $\\dfrac{x^2}{a^2} + \\dfrac{y^2}{b^2} = 1$ \uc704\uc758 \uc810 $(2, 1)$\uc5d0\uc11c\uc758 \uc811\uc120\uc758 \uae30\uc6b8\uae30\uac00 $-\\dfrac{1}{2}$\uc77c \ub54c, \uc774 \ud0c0\uc6d0\uc758 \ub450 \ucd08\uc810 \uc0ac\uc774\uc758 \uac70\ub9ac\ub294?\\\\\n(\ub2e8, $a$, $b$\ub294 \uc591\uc218\uc774\ub2e4.) [3\uc810]\n\\begin{itemize}\n \\item[1] $2 \\sqrt{3}$\n \\item[2] $4$\n \\item[3] $2 \\sqrt{5}$\n \\item[4] $2 \\sqrt{6}$\n \\item[5] $2 \\sqrt{7}$\n\\end{itemize}\n","answer":"2","score":3}
|
45 |
+
{"id":42,"name":"26_geom","problem":"26. \uc88c\ud45c\ud3c9\uba74\uc5d0\uc11c \uc138 \ubca1\ud130\n\\[\n\\vec{a} = (2, 4), \\quad \\vec{b} = (2, 8), \\quad \\vec{c} = (1, 0)\n\\]\n\uc5d0 \ub300\ud558\uc5ec \ub450 \ubca1\ud130 \\(\\vec{p}, \\vec{q}\\)\uac00\n\\[\n(\\vec{p} - \\vec{a}) \\cdot (\\vec{p} - \\vec{b}) = 0, \\quad \\vec{q} = \\frac{1}{2} \\vec{a} + t \\vec{c} \\quad (t\ub294 \\, \uc2e4\uc218)\n\\]\n\ub97c \ub9cc\uc871\uc2dc\ud0ac \ub54c, \\(\\left| \\vec{p} - \\vec{q} \\right|\\)\uc758 \ucd5c\uc18c\uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] \\(\\frac{3}{2}\\)\n \\item[2] 2\n \\item[3] \\(\\frac{5}{2}\\)\n \\item[4] 3\n \\item[5] \\(\\frac{7}{2}\\)\n\\end{itemize}\n","answer":"5","score":3}
|
46 |
+
{"id":43,"name":"27_geom","problem":"27. \uc88c\ud45c\uacf5\uac04\uc5d0 \uc9c1\uc120 AB\ub97c \ud3ec\ud568\ud558\ub294 \ud3c9\uba74 $\\alpha$\uac00 \uc788\ub2e4. \ud3c9\uba74 $\\alpha$ \uc704\uc5d0 \uc788\uc9c0 \uc54a\uc740 \uc810 C\uc5d0 \ub300\ud558\uc5ec \uc9c1\uc120 AB\uc640 \uc9c1\uc120 AC\uac00 \uc774\ub8e8\ub294 \uc608\uac01\uc758 \ud06c\uae30\ub97c $\\theta_1$\uc774\ub77c \ud560 \ub54c $\\sin \\theta_1 = \\frac{4}{5}$\uc774\uace0, \uc9c1\uc120 AC\uc640 \ud3c9\uba74 $\\alpha$\uac00 \uc774\ub8e8\ub294 \uc608\uac01\uc758 \ud06c\uae30\ub294 $\\frac{\\pi}{2} - \\theta_1$\uc774\ub2e4. \ud3c9\uba74 ABC\uc640 \ud3c9\uba74 $\\alpha$\uac00 \uc774\ub8e8\ub294 \uc608\uac01\uc758 \ud06c\uae30\ub97c $\\theta_2$\ub77c \ud560 \ub54c, $\\cos \\theta_2$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{\\sqrt{7}}{4}$\n \\item[2] $\\frac{\\sqrt{7}}{5}$\n \\item[3] $\\frac{\\sqrt{7}}{6}$\n \\item[4] $\\frac{\\sqrt{7}}{7}$\n \\item[5] $\\frac{\\sqrt{7}}{8}$\n\\end{itemize}\n","answer":"3","score":3}
|
47 |
+
{"id":44,"name":"28_geom","problem":"28. \ub450 \ucd08\uc810\uc774 $F(c,0), F'(-c,0)(c>0)$\uc778 \uc30d\uace1\uc120 $C$\uc640 y\ucd95 \uc704\uc758 \uc810 $A$\uac00 \uc788\ub2e4. \uc30d\uace1\uc120 $C$\uac00 \uc120\ubd84 $AF$\uc640 \ub9cc\ub098\ub294 \uc810\uc744 $P$, \uc120\ubd84 $AF'$\uacfc \ub9cc\ub098\ub294 \uc810\uc744 $P'$\uc774\ub77c \ud558\uc790. \\\\\n\uc9c1\uc120 $AF$\ub294 \uc30d\uace1\uc120 $C$\uc758 \ud55c \uc810\uadfc\uc120\uacfc \ud3c9\ud589\ud558\uace0 \\\\\n\\[\n\\frac{AP}{PP'} = \\frac{5}{6}, \\quad PF = 1\n\\]\n\uc77c \ub54c, \uc30d\uace1\uc120 $C$\uc758 \uc8fc\ucd95\uc758 \uae38\uc774\ub294? \\textbf{[4\uc810]} \\\\\n\\begin{itemize}\n \\item[1] $\\frac{13}{6}$\n \\item[2] $9\/4$\n \\item[3] $7\/3$\n \\item[4] $\\frac{29}{12}$\n \\item[5] $\\frac{5}{2}$\n\\end{itemize}\n","answer":"5","score":4}
|
48 |
+
{"id":45,"name":"29_geom","problem":"29.\\ \ud3c9\uba74\\ \\(\\alpha\\) \uc704\uc5d0\\ \\(\\overline{AB} = \\overline{CD} = \\overline{AD} = 2\\),\\ \\(\\angle ABC = \\angle BCD = \\frac{\\pi}{3}\\)\\ \uc778\\ \uc0ac\ub2e4\ub9ac\uaf34\\ \\(ABCD\\)\\ \uac00\\ \uc788\ub2e4.\\ \ub2e4\uc74c\\ \uc870\uac74\uc744\\ \ub9cc\uc871\uc2dc\ud0a4\ub294\\ \ud3c9\uba74\\ \\(\\alpha\\) \uc704\uc758\\ \ub450\\ \uc810\\ \\(P, Q\\)\uc5d0\\ \ub300\ud558\uc5ec\\ \\(CP \\cdot DQ\\)\uc758\\ \uac12\uc744\\ \uad6c\ud558\uc2dc\uc624.\\ [4\uc810]\n\\begin{itemize}\n \\item[(\uac00)] \\(\\overrightarrow{AC} = 2(\\overrightarrow{AD} + \\overrightarrow{BP})\\)\n \\item[(\ub098)] \\(\\overrightarrow{AC} \\cdot \\overrightarrow{PQ} = 6\\)\n \\item[(\ub2e4)] \\(2 \\times \\angle BQA = \\angle PBQ < \\frac{\\pi}{2}\\)\n\\end{itemize}\n\\begin{center}\n\\begin{tikzpicture}\n \\draw (0,0) -- (2,0) -- (2.5,1.5) -- (-0.5,1.5) -- cycle;\n \\node[below] at (0,0) {B};\n \\node[below] at (2,0) {C};\n \\node[above] at (2.5,1.5) {D};\n \\node[above] at (-0.5,1.5) {A};\n\\end{tikzpicture}\n\\end{center}\n","answer":"11","score":4}
|
49 |
+
{"id":46,"name":"30_geom","problem":"30. \uc88c\ud45c\uacf5\uac04\uc5d0 \uc815\uc0ac\uba74\uccb4 $ABCD$ \uac00 \uc788\ub2e4. \uc815\uc0bc\uac01\ud615 $BCD$ \uc758 \uc678\uc2ec\uc744 \uc911\uc2ec\uc73c\ub85c \ud558\uace0 \uc810 $B$\ub97c \uc9c0\ub098\ub294 \uad6c\ub97c $S$\ub77c \ud558\uc790. \\\\\n\uad6c $S$\uc640 \uc120\ubd84 $AB$\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 $B$\uac00 \uc544\ub2cc \uc810\uc744 $P$, \\\\\n\uad6c $S$\uc640 \uc120\ubd84 $AC$\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 $C$\uac00 \uc544\ub2cc \uc810\uc744 $Q$, \\\\\n\uad6c $S$\uc640 \uc120\ubd84 $AD$\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 $D$\uac00 \uc544\ub2cc \uc810\uc744 $R$ \ud558\uace0, \\\\\n\uc810 $P$\uc5d0\uc11c \uad6c $S$\uc5d0 \uc811\ud558\ub294 \ud3c9\uba74\uc744 $\\alpha$\ub77c \ud558\uc790. \\\\\n\uad6c $S$\uc758 \ubc18\uc9c0\ub984\uc758 \uae38\uc774\uac00 6\uc77c \ub54c, \uc0bc\uac01\ud615 $PQR$\uc758 \ud3c9\uba74 $\\alpha$ \uc704\ub85c\uc758 \uc815\uc0ac\uc601\uc758 \ub113\uc774\ub294 $k$\uc774\ub2e4. $k^2$\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. \\hfill [4\uc810]\n","answer":"147","score":4}
|
test_dataset.ipynb
DELETED
@@ -1,104 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": null,
|
6 |
-
"metadata": {},
|
7 |
-
"outputs": [],
|
8 |
-
"source": [
|
9 |
-
"from datasets import load_dataset\n",
|
10 |
-
"\n",
|
11 |
-
"ds = load_dataset(\"cfpark00/KoreanSAT\")"
|
12 |
-
]
|
13 |
-
},
|
14 |
-
{
|
15 |
-
"cell_type": "code",
|
16 |
-
"execution_count": 9,
|
17 |
-
"metadata": {},
|
18 |
-
"outputs": [
|
19 |
-
{
|
20 |
-
"data": {
|
21 |
-
"text/plain": [
|
22 |
-
"DatasetDict({\n",
|
23 |
-
" 2023_math: Dataset({\n",
|
24 |
-
" features: ['id', 'name', 'problem', 'answer', 'score', 'review'],\n",
|
25 |
-
" num_rows: 46\n",
|
26 |
-
" })\n",
|
27 |
-
" 2024_math: Dataset({\n",
|
28 |
-
" features: ['id', 'name', 'problem', 'answer', 'score', 'review'],\n",
|
29 |
-
" num_rows: 46\n",
|
30 |
-
" })\n",
|
31 |
-
"})"
|
32 |
-
]
|
33 |
-
},
|
34 |
-
"execution_count": 9,
|
35 |
-
"metadata": {},
|
36 |
-
"output_type": "execute_result"
|
37 |
-
}
|
38 |
-
],
|
39 |
-
"source": [
|
40 |
-
"ds"
|
41 |
-
]
|
42 |
-
},
|
43 |
-
{
|
44 |
-
"cell_type": "code",
|
45 |
-
"execution_count": 13,
|
46 |
-
"metadata": {},
|
47 |
-
"outputs": [
|
48 |
-
{
|
49 |
-
"data": {
|
50 |
-
"text/plain": [
|
51 |
-
"{'id': 31,\n",
|
52 |
-
" 'name': '23_calc',\n",
|
53 |
-
" 'problem': '23. \\\\lim_{x \\\\to 0} \\\\frac{\\\\ln(x+1)}{\\\\sqrt{x+4} - 2} \\\\text{์ ๊ฐ์? [2์ ]}\\n\\n\\\\begin{itemize}\\n \\\\item[1] 1\\n \\\\item[2] 2\\n \\\\item[3] 3\\n \\\\item[4] 4\\n \\\\item[5] 5\\n\\\\end{itemize}\\n',\n",
|
54 |
-
" 'answer': 3,\n",
|
55 |
-
" 'score': 2,\n",
|
56 |
-
" 'review': None}"
|
57 |
-
]
|
58 |
-
},
|
59 |
-
"execution_count": 13,
|
60 |
-
"metadata": {},
|
61 |
-
"output_type": "execute_result"
|
62 |
-
}
|
63 |
-
],
|
64 |
-
"source": [
|
65 |
-
"ds[\"2024_math\"][30]"
|
66 |
-
]
|
67 |
-
},
|
68 |
-
{
|
69 |
-
"cell_type": "code",
|
70 |
-
"execution_count": null,
|
71 |
-
"metadata": {},
|
72 |
-
"outputs": [],
|
73 |
-
"source": []
|
74 |
-
},
|
75 |
-
{
|
76 |
-
"cell_type": "code",
|
77 |
-
"execution_count": null,
|
78 |
-
"metadata": {},
|
79 |
-
"outputs": [],
|
80 |
-
"source": []
|
81 |
-
}
|
82 |
-
],
|
83 |
-
"metadata": {
|
84 |
-
"kernelspec": {
|
85 |
-
"display_name": "venv1",
|
86 |
-
"language": "python",
|
87 |
-
"name": "python3"
|
88 |
-
},
|
89 |
-
"language_info": {
|
90 |
-
"codemirror_mode": {
|
91 |
-
"name": "ipython",
|
92 |
-
"version": 3
|
93 |
-
},
|
94 |
-
"file_extension": ".py",
|
95 |
-
"mimetype": "text/x-python",
|
96 |
-
"name": "python",
|
97 |
-
"nbconvert_exporter": "python",
|
98 |
-
"pygments_lexer": "ipython3",
|
99 |
-
"version": "3.10.9"
|
100 |
-
}
|
101 |
-
},
|
102 |
-
"nbformat": 4,
|
103 |
-
"nbformat_minor": 2
|
104 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
to_parquet.ipynb
CHANGED
@@ -2,16 +2,25 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
|
|
5 |
"execution_count": 19,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
"from datasets import load_dataset\n",
|
10 |
"import json"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
]
|
12 |
},
|
13 |
{
|
14 |
"cell_type": "code",
|
|
|
15 |
"execution_count": 21,
|
16 |
"metadata": {},
|
17 |
"outputs": [],
|
@@ -32,11 +41,15 @@
|
|
32 |
{
|
33 |
"cell_type": "code",
|
34 |
"execution_count": 22,
|
|
|
|
|
|
|
35 |
"metadata": {},
|
36 |
"outputs": [
|
37 |
{
|
38 |
"data": {
|
39 |
"application/vnd.jupyter.widget-view+json": {
|
|
|
40 |
"model_id": "462231fd51404fd290bffe90a8c0b158",
|
41 |
"version_major": 2,
|
42 |
"version_minor": 0
|
@@ -80,6 +93,9 @@
|
|
80 |
"data": {
|
81 |
"application/vnd.jupyter.widget-view+json": {
|
82 |
"model_id": "3598e1ab98304d5a98a1cd7c322c7fa6",
|
|
|
|
|
|
|
83 |
"version_major": 2,
|
84 |
"version_minor": 0
|
85 |
},
|
@@ -89,16 +105,140 @@
|
|
89 |
},
|
90 |
"metadata": {},
|
91 |
"output_type": "display_data"
|
|
|
92 |
}
|
93 |
],
|
94 |
"source": [
|
95 |
"dataset=load_dataset(\"json\",data_files={\"2022_math\":\"./data/json/2022/math.json\",\n",
|
96 |
" \"2023_math\":\"./data/json/2023/math.json\"})"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
]
|
98 |
},
|
99 |
{
|
100 |
"cell_type": "code",
|
|
|
101 |
"execution_count": 25,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
"metadata": {},
|
103 |
"outputs": [
|
104 |
{
|
@@ -106,6 +246,7 @@
|
|
106 |
"text/plain": [
|
107 |
"{'id': 1,\n",
|
108 |
" 'name': '1',\n",
|
|
|
109 |
" 'problem': '1. $\\\\left(2^{\\\\sqrt{3}} \\\\times 4\\\\right)^{\\\\sqrt{3} - 2}$ ์ ๊ฐ์? [2์ ] \\\\begin{itemize} \\\\item[1] \\\\frac{1}{4} \\\\item[2] \\\\frac{1}{2} \\\\item[3] 1 \\\\item[4] 2 \\\\item[5] 4 \\\\end{itemize}',\n",
|
110 |
" 'answer': 2,\n",
|
111 |
" 'score': 2,\n",
|
@@ -114,28 +255,73 @@
|
|
114 |
]
|
115 |
},
|
116 |
"execution_count": 25,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
"metadata": {},
|
118 |
"output_type": "execute_result"
|
119 |
}
|
120 |
],
|
121 |
"source": [
|
|
|
122 |
"dataset[\"2022_math\"][0]"
|
|
|
|
|
|
|
123 |
]
|
124 |
},
|
125 |
{
|
126 |
"cell_type": "code",
|
|
|
127 |
"execution_count": 24,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
"metadata": {},
|
129 |
"outputs": [
|
130 |
{
|
131 |
"data": {
|
132 |
"application/vnd.jupyter.widget-view+json": {
|
|
|
133 |
"model_id": "f612f040825040c6affa3b897f2633ef",
|
|
|
|
|
|
|
134 |
"version_major": 2,
|
135 |
"version_minor": 0
|
136 |
},
|
137 |
"text/plain": [
|
|
|
138 |
"Pushing dataset shards to the dataset hub: 0%| | 0/1 [00:00<?, ?it/s]"
|
|
|
|
|
|
|
139 |
]
|
140 |
},
|
141 |
"metadata": {},
|
@@ -143,6 +329,7 @@
|
|
143 |
},
|
144 |
{
|
145 |
"data": {
|
|
|
146 |
"application/vnd.jupyter.widget-view+json": {
|
147 |
"model_id": "f3cb1129210b4586bbb81b52357c424e",
|
148 |
"version_major": 2,
|
@@ -215,6 +402,49 @@
|
|
215 |
"source": [
|
216 |
"#save as parquet\n",
|
217 |
"dataset.push_to_hub(\"cfpark00/KoreanSAT\")"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
]
|
219 |
},
|
220 |
{
|
@@ -224,6 +454,113 @@
|
|
224 |
"outputs": [],
|
225 |
"source": []
|
226 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
{
|
228 |
"cell_type": "code",
|
229 |
"execution_count": null,
|
@@ -248,7 +585,11 @@
|
|
248 |
"name": "python",
|
249 |
"nbconvert_exporter": "python",
|
250 |
"pygments_lexer": "ipython3",
|
|
|
251 |
"version": "3.10.9"
|
|
|
|
|
|
|
252 |
}
|
253 |
},
|
254 |
"nbformat": 4,
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
<<<<<<< HEAD
|
6 |
"execution_count": 19,
|
7 |
"metadata": {},
|
8 |
"outputs": [],
|
9 |
"source": [
|
10 |
"from datasets import load_dataset\n",
|
11 |
"import json"
|
12 |
+
=======
|
13 |
+
"execution_count": 2,
|
14 |
+
"metadata": {},
|
15 |
+
"outputs": [],
|
16 |
+
"source": [
|
17 |
+
"from datasets import load_dataset"
|
18 |
+
>>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
|
19 |
]
|
20 |
},
|
21 |
{
|
22 |
"cell_type": "code",
|
23 |
+
<<<<<<< HEAD
|
24 |
"execution_count": 21,
|
25 |
"metadata": {},
|
26 |
"outputs": [],
|
|
|
41 |
{
|
42 |
"cell_type": "code",
|
43 |
"execution_count": 22,
|
44 |
+
=======
|
45 |
+
"execution_count": 4,
|
46 |
+
>>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
|
47 |
"metadata": {},
|
48 |
"outputs": [
|
49 |
{
|
50 |
"data": {
|
51 |
"application/vnd.jupyter.widget-view+json": {
|
52 |
+
<<<<<<< HEAD
|
53 |
"model_id": "462231fd51404fd290bffe90a8c0b158",
|
54 |
"version_major": 2,
|
55 |
"version_minor": 0
|
|
|
93 |
"data": {
|
94 |
"application/vnd.jupyter.widget-view+json": {
|
95 |
"model_id": "3598e1ab98304d5a98a1cd7c322c7fa6",
|
96 |
+
=======
|
97 |
+
"model_id": "b5d51386a14e407ca2bdd18926ef997c",
|
98 |
+
>>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
|
99 |
"version_major": 2,
|
100 |
"version_minor": 0
|
101 |
},
|
|
|
105 |
},
|
106 |
"metadata": {},
|
107 |
"output_type": "display_data"
|
108 |
+
<<<<<<< HEAD
|
109 |
}
|
110 |
],
|
111 |
"source": [
|
112 |
"dataset=load_dataset(\"json\",data_files={\"2022_math\":\"./data/json/2022/math.json\",\n",
|
113 |
" \"2023_math\":\"./data/json/2023/math.json\"})"
|
114 |
+
=======
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"data": {
|
118 |
+
"application/vnd.jupyter.widget-view+json": {
|
119 |
+
"model_id": "a3015bdd603e44c789b8347863bb94c8",
|
120 |
+
"version_major": 2,
|
121 |
+
"version_minor": 0
|
122 |
+
},
|
123 |
+
"text/plain": [
|
124 |
+
"Generating 2024_math split: 0 examples [00:00, ? examples/s]"
|
125 |
+
]
|
126 |
+
},
|
127 |
+
"metadata": {},
|
128 |
+
"output_type": "display_data"
|
129 |
+
}
|
130 |
+
],
|
131 |
+
"source": [
|
132 |
+
"dataset=load_dataset(\"json\",data_files={\"2023_math\":\"./data/json/2023/math.json\",\n",
|
133 |
+
" \"2024_math\":\"./data/json/2024/math.json\"})"
|
134 |
+
>>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
|
135 |
]
|
136 |
},
|
137 |
{
|
138 |
"cell_type": "code",
|
139 |
+
<<<<<<< HEAD
|
140 |
"execution_count": 25,
|
141 |
+
=======
|
142 |
+
"execution_count": 5,
|
143 |
+
"metadata": {},
|
144 |
+
"outputs": [
|
145 |
+
{
|
146 |
+
"data": {
|
147 |
+
"application/vnd.jupyter.widget-view+json": {
|
148 |
+
"model_id": "221c4bba0e78418b9686c1ba0a0fa668",
|
149 |
+
"version_major": 2,
|
150 |
+
"version_minor": 0
|
151 |
+
},
|
152 |
+
"text/plain": [
|
153 |
+
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
154 |
+
]
|
155 |
+
},
|
156 |
+
"metadata": {},
|
157 |
+
"output_type": "display_data"
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"data": {
|
161 |
+
"application/vnd.jupyter.widget-view+json": {
|
162 |
+
"model_id": "1763d5a9fc5c4c8099d0deb716f06c73",
|
163 |
+
"version_major": 2,
|
164 |
+
"version_minor": 0
|
165 |
+
},
|
166 |
+
"text/plain": [
|
167 |
+
"Creating parquet from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
"metadata": {},
|
171 |
+
"output_type": "display_data"
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"data": {
|
175 |
+
"application/vnd.jupyter.widget-view+json": {
|
176 |
+
"model_id": "04f7bfc0e76c438ab84048301cb0e10e",
|
177 |
+
"version_major": 2,
|
178 |
+
"version_minor": 0
|
179 |
+
},
|
180 |
+
"text/plain": [
|
181 |
+
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
182 |
+
]
|
183 |
+
},
|
184 |
+
"metadata": {},
|
185 |
+
"output_type": "display_data"
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"data": {
|
189 |
+
"application/vnd.jupyter.widget-view+json": {
|
190 |
+
"model_id": "8707c527afaf47d0928b5167c509d5f7",
|
191 |
+
"version_major": 2,
|
192 |
+
"version_minor": 0
|
193 |
+
},
|
194 |
+
"text/plain": [
|
195 |
+
"Creating parquet from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
|
196 |
+
]
|
197 |
+
},
|
198 |
+
"metadata": {},
|
199 |
+
"output_type": "display_data"
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"data": {
|
203 |
+
"text/plain": [
|
204 |
+
"CommitInfo(commit_url='https://huggingface.co/datasets/cfpark00/KoreanSAT/commit/8fdf990d118abc5511f7fe828a4ae482e4b67d07', commit_message='Upload dataset', commit_description='', oid='8fdf990d118abc5511f7fe828a4ae482e4b67d07', pr_url=None, repo_url=RepoUrl('https://huggingface.co/datasets/cfpark00/KoreanSAT', endpoint='https://huggingface.co', repo_type='dataset', repo_id='cfpark00/KoreanSAT'), pr_revision=None, pr_num=None)"
|
205 |
+
]
|
206 |
+
},
|
207 |
+
"execution_count": 5,
|
208 |
+
"metadata": {},
|
209 |
+
"output_type": "execute_result"
|
210 |
+
}
|
211 |
+
],
|
212 |
+
"source": [
|
213 |
+
"#save as parquet\n",
|
214 |
+
"dataset.push_to_hub(\"cfpark00/KoreanSAT\")"
|
215 |
+
]
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"cell_type": "code",
|
219 |
+
"execution_count": null,
|
220 |
+
"metadata": {},
|
221 |
+
"outputs": [],
|
222 |
+
"source": []
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"cell_type": "code",
|
226 |
+
"execution_count": null,
|
227 |
+
"metadata": {},
|
228 |
+
"outputs": [],
|
229 |
+
"source": []
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"cell_type": "code",
|
233 |
+
"execution_count": null,
|
234 |
+
"metadata": {},
|
235 |
+
"outputs": [],
|
236 |
+
"source": []
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"cell_type": "code",
|
240 |
+
"execution_count": 4,
|
241 |
+
>>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
|
242 |
"metadata": {},
|
243 |
"outputs": [
|
244 |
{
|
|
|
246 |
"text/plain": [
|
247 |
"{'id': 1,\n",
|
248 |
" 'name': '1',\n",
|
249 |
+
<<<<<<< HEAD
|
250 |
" 'problem': '1. $\\\\left(2^{\\\\sqrt{3}} \\\\times 4\\\\right)^{\\\\sqrt{3} - 2}$ ์ ๊ฐ์? [2์ ] \\\\begin{itemize} \\\\item[1] \\\\frac{1}{4} \\\\item[2] \\\\frac{1}{2} \\\\item[3] 1 \\\\item[4] 2 \\\\item[5] 4 \\\\end{itemize}',\n",
|
251 |
" 'answer': 2,\n",
|
252 |
" 'score': 2,\n",
|
|
|
255 |
]
|
256 |
},
|
257 |
"execution_count": 25,
|
258 |
+
=======
|
259 |
+
" 'problem': '1. \\\\left( \\\\frac{4}{2^{\\\\sqrt{2}}} \\\\right)^{2 + \\\\sqrt{2}} \\\\text{์ ๊ฐ์? [2์ ]}\\n\\n\\\\begin{itemize}\\n \\\\item[1] $\\\\frac{1}{4}$\\n \\\\item[2] $\\\\frac{1}{2}$\\n \\\\item[3] $1$\\n \\\\item[4] $2$\\n \\\\item[5] $4$\\n\\\\end{itemize}\\n',\n",
|
260 |
+
" 'answer': -1,\n",
|
261 |
+
" 'score': -1}"
|
262 |
+
]
|
263 |
+
},
|
264 |
+
"execution_count": 4,
|
265 |
+
>>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
|
266 |
"metadata": {},
|
267 |
"output_type": "execute_result"
|
268 |
}
|
269 |
],
|
270 |
"source": [
|
271 |
+
<<<<<<< HEAD
|
272 |
"dataset[\"2022_math\"][0]"
|
273 |
+
=======
|
274 |
+
"dataset[\"2023_math\"][0]"
|
275 |
+
>>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
|
276 |
]
|
277 |
},
|
278 |
{
|
279 |
"cell_type": "code",
|
280 |
+
<<<<<<< HEAD
|
281 |
"execution_count": 24,
|
282 |
+
=======
|
283 |
+
"execution_count": null,
|
284 |
+
"metadata": {},
|
285 |
+
"outputs": [],
|
286 |
+
"source": []
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"cell_type": "code",
|
290 |
+
"execution_count": null,
|
291 |
+
"metadata": {},
|
292 |
+
"outputs": [],
|
293 |
+
"source": []
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"cell_type": "code",
|
297 |
+
"execution_count": null,
|
298 |
+
"metadata": {},
|
299 |
+
"outputs": [],
|
300 |
+
"source": []
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"cell_type": "code",
|
304 |
+
"execution_count": 19,
|
305 |
+
>>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
|
306 |
"metadata": {},
|
307 |
"outputs": [
|
308 |
{
|
309 |
"data": {
|
310 |
"application/vnd.jupyter.widget-view+json": {
|
311 |
+
<<<<<<< HEAD
|
312 |
"model_id": "f612f040825040c6affa3b897f2633ef",
|
313 |
+
=======
|
314 |
+
"model_id": "ed6870fcaa5d4641ae911c05f8d5e1a3",
|
315 |
+
>>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
|
316 |
"version_major": 2,
|
317 |
"version_minor": 0
|
318 |
},
|
319 |
"text/plain": [
|
320 |
+
<<<<<<< HEAD
|
321 |
"Pushing dataset shards to the dataset hub: 0%| | 0/1 [00:00<?, ?it/s]"
|
322 |
+
=======
|
323 |
+
"Creating json from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
|
324 |
+
>>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
|
325 |
]
|
326 |
},
|
327 |
"metadata": {},
|
|
|
329 |
},
|
330 |
{
|
331 |
"data": {
|
332 |
+
<<<<<<< HEAD
|
333 |
"application/vnd.jupyter.widget-view+json": {
|
334 |
"model_id": "f3cb1129210b4586bbb81b52357c424e",
|
335 |
"version_major": 2,
|
|
|
402 |
"source": [
|
403 |
"#save as parquet\n",
|
404 |
"dataset.push_to_hub(\"cfpark00/KoreanSAT\")"
|
405 |
+
=======
|
406 |
+
"text/plain": [
|
407 |
+
"33057"
|
408 |
+
]
|
409 |
+
},
|
410 |
+
"execution_count": 19,
|
411 |
+
"metadata": {},
|
412 |
+
"output_type": "execute_result"
|
413 |
+
}
|
414 |
+
],
|
415 |
+
"source": [
|
416 |
+
"from datasets import load_dataset\n",
|
417 |
+
"\n",
|
418 |
+
"ds = load_dataset(\"cfpark00/KoreanSAT\")\n",
|
419 |
+
"ds[\"2024_math\"].to_json(\"./data/json/2024/math.json\")"
|
420 |
+
>>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
|
421 |
+
]
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"cell_type": "code",
|
425 |
+
<<<<<<< HEAD
|
426 |
+
=======
|
427 |
+
"execution_count": 46,
|
428 |
+
"metadata": {},
|
429 |
+
"outputs": [
|
430 |
+
{
|
431 |
+
"data": {
|
432 |
+
"text/plain": [
|
433 |
+
"DatasetDict({\n",
|
434 |
+
" 2024_math: Dataset({\n",
|
435 |
+
" features: ['id', 'name', 'problem', 'answer', 'score'],\n",
|
436 |
+
" num_rows: 46\n",
|
437 |
+
" })\n",
|
438 |
+
"})"
|
439 |
+
]
|
440 |
+
},
|
441 |
+
"execution_count": 46,
|
442 |
+
"metadata": {},
|
443 |
+
"output_type": "execute_result"
|
444 |
+
}
|
445 |
+
],
|
446 |
+
"source": [
|
447 |
+
"ds"
|
448 |
]
|
449 |
},
|
450 |
{
|
|
|
454 |
"outputs": [],
|
455 |
"source": []
|
456 |
},
|
457 |
+
{
|
458 |
+
"cell_type": "code",
|
459 |
+
"execution_count": 37,
|
460 |
+
"metadata": {},
|
461 |
+
"outputs": [
|
462 |
+
{
|
463 |
+
"data": {
|
464 |
+
"application/vnd.jupyter.widget-view+json": {
|
465 |
+
"model_id": "56b0357800c24f42af02e56bcd9f9133",
|
466 |
+
"version_major": 2,
|
467 |
+
"version_minor": 0
|
468 |
+
},
|
469 |
+
"text/plain": [
|
470 |
+
"Creating json from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
|
471 |
+
]
|
472 |
+
},
|
473 |
+
"metadata": {},
|
474 |
+
"output_type": "display_data"
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"data": {
|
478 |
+
"text/plain": [
|
479 |
+
"33057"
|
480 |
+
]
|
481 |
+
},
|
482 |
+
"execution_count": 37,
|
483 |
+
"metadata": {},
|
484 |
+
"output_type": "execute_result"
|
485 |
+
}
|
486 |
+
],
|
487 |
+
"source": [
|
488 |
+
"dataset[\"2024_math\"].to_json(\"./data/json/2024/math.json\")"
|
489 |
+
]
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"cell_type": "code",
|
493 |
+
"execution_count": 29,
|
494 |
+
"metadata": {},
|
495 |
+
"outputs": [],
|
496 |
+
"source": [
|
497 |
+
"import json\n",
|
498 |
+
"jsons=[]\n",
|
499 |
+
"for line in open(\"./data/json/2024/math.json\"):\n",
|
500 |
+
" jsons.append(json.loads(line))"
|
501 |
+
]
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"cell_type": "code",
|
505 |
+
"execution_count": 31,
|
506 |
+
"metadata": {},
|
507 |
+
"outputs": [
|
508 |
+
{
|
509 |
+
"name": "stdout",
|
510 |
+
"output_type": "stream",
|
511 |
+
"text": [
|
512 |
+
"16. ๋ฐฉ์ ์\n",
|
513 |
+
"\\[\n",
|
514 |
+
"\\log_2{(3x+2)} = 2 + \\log_2{(x-2)}\n",
|
515 |
+
"\\]\n",
|
516 |
+
"\\text{๋ฅผ ๋ง์กฑ์ํค๋ ์ค์ } \\( x \\) \\text{์ ๊ฐ์ ๏ฟฝ๏ฟฝํ์์ค. [3์ ]}\n",
|
517 |
+
"\n"
|
518 |
+
]
|
519 |
+
}
|
520 |
+
],
|
521 |
+
"source": [
|
522 |
+
"print(jsons[15][\"problem\"])"
|
523 |
+
]
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"cell_type": "code",
|
527 |
+
"execution_count": 30,
|
528 |
+
"metadata": {},
|
529 |
+
"outputs": [
|
530 |
+
{
|
531 |
+
"data": {
|
532 |
+
"text/plain": [
|
533 |
+
"{'id': 16,\n",
|
534 |
+
" 'name': '16',\n",
|
535 |
+
" 'problem': '16. ๋ฐฉ์ ์\\n\\\\[\\n\\\\log_2{(3x+2)} = 2 + \\\\log_2{(x-2)}\\n\\\\]\\n\\\\text{๋ฅผ ๋ง์กฑ์ํค๋ ์ค์ } \\\\( x \\\\) \\\\text{์ ๊ฐ์ ๊ตฌํ์์ค. [3์ ]}\\n',\n",
|
536 |
+
" 'answer': '2',\n",
|
537 |
+
" 'score': 3}"
|
538 |
+
]
|
539 |
+
},
|
540 |
+
"execution_count": 30,
|
541 |
+
"metadata": {},
|
542 |
+
"output_type": "execute_result"
|
543 |
+
}
|
544 |
+
],
|
545 |
+
"source": [
|
546 |
+
"jsons[15]"
|
547 |
+
]
|
548 |
+
},
|
549 |
+
{
|
550 |
+
"cell_type": "code",
|
551 |
+
"execution_count": null,
|
552 |
+
"metadata": {},
|
553 |
+
"outputs": [],
|
554 |
+
"source": []
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"cell_type": "code",
|
558 |
+
>>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
|
559 |
+
"execution_count": null,
|
560 |
+
"metadata": {},
|
561 |
+
"outputs": [],
|
562 |
+
"source": []
|
563 |
+
},
|
564 |
{
|
565 |
"cell_type": "code",
|
566 |
"execution_count": null,
|
|
|
585 |
"name": "python",
|
586 |
"nbconvert_exporter": "python",
|
587 |
"pygments_lexer": "ipython3",
|
588 |
+
<<<<<<< HEAD
|
589 |
"version": "3.10.9"
|
590 |
+
=======
|
591 |
+
"version": "3.8.9"
|
592 |
+
>>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
|
593 |
}
|
594 |
},
|
595 |
"nbformat": 4,
|