cfpark00 commited on
Commit
0c300d7
โ€ข
2 Parent(s): c97da9e 41af016

Merge branch 'main' of hf.co:datasets/cfpark00/KoreanSAT

Browse files
README.md CHANGED
@@ -15,10 +15,10 @@ tags:
15
  configs:
16
  - config_name: default
17
  data_files:
 
 
18
  - split: 2023_math
19
  path: data/2023_math-*
20
- - split: 2024_math
21
- path: data/2024_math-*
22
  dataset_info:
23
  features:
24
  - name: id
@@ -32,16 +32,18 @@ dataset_info:
32
  - name: score
33
  dtype: int64
34
  - name: review
35
- dtype: float64
 
 
36
  splits:
37
- - name: 2023_math
38
- num_bytes: 23272
39
  num_examples: 46
40
- - name: 2024_math
41
- num_bytes: 22985
42
  num_examples: 46
43
- download_size: 30248
44
- dataset_size: 46257
45
  ---
46
 
47
  # KoreanSAT Benchmark
 
15
  configs:
16
  - config_name: default
17
  data_files:
18
+ - split: 2022_math
19
+ path: data/2022_math-*
20
  - split: 2023_math
21
  path: data/2023_math-*
 
 
22
  dataset_info:
23
  features:
24
  - name: id
 
32
  - name: score
33
  dtype: int64
34
  - name: review
35
+ dtype: string
36
+ - name: incomplete
37
+ dtype: bool
38
  splits:
39
+ - name: 2022_math
40
+ num_bytes: 24028
41
  num_examples: 46
42
+ - name: 2023_math
43
+ num_bytes: 22618
44
  num_examples: 46
45
+ download_size: 31188
46
+ dataset_size: 46646
47
  ---
48
 
49
  # KoreanSAT Benchmark
data/{2024_math-00000-of-00001-589645d2d672c249.parquet โ†’ 2022_math-00000-of-00001-b73cb6283dc02610.parquet} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:87246482e1e38dd1668d9d71fdbdcfb769a25b86929c3c34531691ce29b42fde
3
- size 15235
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17c8cd0b0c4f1db55d5806474c34a0c178195240e1b84dae6f34eb4edc3105d2
3
+ size 15937
data/2023_math-00000-of-00001-3ef9ab05717b4a30.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3aed6ddac55a89558bb52b5ce64b1ad7462b745f3777ed5f2cdac324c9c931cd
3
+ size 15251
data/2024_math-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81857574f303138b7a69049f1f7dbf1b87fd9af80891c33c3230c6378cb930f7
3
+ size 15701
data/json/2023/math.json CHANGED
@@ -1,3 +1,4 @@
 
1
  {"id": 1, "name": "1", "problem": "1. $\\left( \\frac{4}{2^{\\sqrt{2}}} \\right)^{2 + \\sqrt{2}}$ ์˜ ๊ฐ’์€? [2์ ] \\begin{itemize} \\item[1] $\\frac{1}{4}$ \\item[2] $\\frac{1}{2}$ \\item[3] $1$ \\item[4] $2$ \\item[5] $4$ \\end{itemize}", "answer": 5, "score": 2, "review": null, "incomplete": false}
2
  {"id": 2, "name": "2", "problem": "2. $\\lim_{x \\to \\infty} \\frac{\\sqrt{x^2 - 2} + 3x}{x + 5}$ ์˜ ๊ฐ’์€? [2์ ] \\begin{itemize} \\item[1] 1 \\item[2] 2 \\item[3] 3 \\item[4] 4 \\item[5] 5 \\end{itemize}", "answer": 4, "score": 2, "review": null, "incomplete": false}
3
  {"id": 3, "name": "3", "problem": "3. ๊ณต๋น„๊ฐ€ ์–‘์ˆ˜์ธ ๋“ฑ๋น„์ˆ˜์—ด$\\{a_n\\}$์ด \\[ a_2 + a_4 = 30, \\quad a_4 + a_6 = \\frac{15}{2} \\] ๋ฅผ ๋งŒ์กฑ์‹œํ‚ฌ ๋•Œ, $a_1$ ์˜ ๊ฐ’์€? [3์ ] \\begin{itemize} \\item[1] 48 \\item[2] 56 \\item[3] 64 \\item[4] 72 \\item[5] 80 \\end{itemize}", "answer": 1, "score": 3, "review": null, "incomplete": false}
@@ -44,3 +45,51 @@
44
  {"id": 44, "name": "28_geom", "problem": "28. ๋‘ ์ดˆ์ ์ด $( \\mathrm{F}(c, 0) )$, $( \\mathrm{F'}(-c, 0) \\ (c > 0) )$์ธ ์Œ๊ณก์„  $( C )$์™€ $( y )$์ถ• ์œ„์˜ ์  $( \\mathrm{A} )$๊ฐ€ ์žˆ๋‹ค. ์Œ๊ณก์„  $( C )$๊ฐ€ ์„ ๋ถ„ $( \\mathrm{AF} )$์™€ ๋งŒ๋‚˜๋Š” ์ ์„ $( \\mathrm{P} )$, ์„ ๋ถ„ $( \\mathrm{AF'} )$์™€ ๋งŒ๋‚˜๋Š” ์ ์„ $( \\mathrm{P'} )$์ด๋ผ ํ•˜์ž. ์ง์„  $( \\mathrm{AF} )$๋Š” ์Œ๊ณก์„  $( C )$์˜ ํ•œ ์ ๊ทผ์„ ๊ณผ ํ‰ํ–‰ํ•˜๊ณ \n\n\\[ \\overline{\\mathrm{AP}}:\\overline{\\mathrm{PP'}} = 5:6, \\quad \\overline{\\mathrm{PF}} = 1 \\]\n\n์ผ ๋•Œ, ์Œ๊ณก์„  $( C )$์˜ ์ฃผ์ถ•์˜ ๊ธธ์ด๋Š”? [4์ ]\n\n\\begin{itemize} \\item[1] \\frac{13}{6} \\item[2] \\frac{9}{4} \\item[3] \\frac{7}{3} \\item[4] \\frac{29}{12} \\item[5] \\frac{5}{2} \\end{itemize}", "answer": 2, "score": 4, "review": "Removed figure.", "incomplete": false}
45
  {"id": 45, "name": "29_geom", "problem": "29. ํ‰๋ฉด $\\alpha$ ์œ„์— $\\overline{\\mathrm{AB}} = \\overline{\\mathrm{CD}} = \\overline{\\mathrm{AD}} = 2$, $\\angle \\mathrm{ABC} = \\angle \\mathrm{BCD} = \\frac{\\pi}{3}$ ์ธ ์‚ฌ๋‹ค๋ฆฌ๊ผด $\\mathrm{ABCD}$๊ฐ€ ์žˆ๋‹ค. ๋‹ค์Œ ์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œํ‚ค๋Š” ํ‰๋ฉด $\\alpha$ ์œ„์˜ ๋‘ ์  $\\mathrm{P}$, $\\mathrm{Q}$์— ๋Œ€ํ•˜์—ฌ $\\overrightarrow{\\mathrm{CP}} \\cdot \\overrightarrow{\\mathrm{DQ}}$์˜ ๊ฐ’์„ ๊ตฌํ•˜์‹œ์˜ค. [4์ ]\n\n\\begin{itemize} \\item[(๊ฐ€)] $\\overrightarrow{\\mathrm{AC}} = 2 \\left( \\overrightarrow{\\mathrm{AD}} + \\overrightarrow{\\mathrm{BP}} \\right)$ \\item[(๋‚˜)] $\\overrightarrow{\\mathrm{AC}} \\cdot \\overrightarrow{\\mathrm{PQ}} = 6$ \\item[(๋‹ค)] $2 \\times \\angle \\mathrm{BQA} = \\angle \\mathrm{PBQ} < \\frac{\\pi}{2}$ \\end{itemize}", "answer": 12, "score": 4, "review": "Removed figure.", "incomplete": false}
46
  {"id": 46, "name": "30_geom", "problem": "30. ์ขŒํ‘œ๊ณต๊ฐ„์— ์ •์‚ฌ๋ฉด์ฒด $\\mathrm{ABCD}$๊ฐ€ ์žˆ๋‹ค. ์ •์‚ผ๊ฐํ˜• $\\mathrm{BCD}$์˜ ์™ธ์‹ฌ์„ ์ค‘์‹ฌ์œผ๋กœ ํ•˜๊ณ  ์  $\\mathrm{B}$๋ฅผ ์ง€๋‚˜๋Š” ๊ตฌ๋ฅผ $S$๋ผ ํ•˜์ž.\n\n๊ตฌ $S$์™€ ์„ ๋ถ„ $\\mathrm{AB}$๊ฐ€ ๋งŒ๋‚˜๋Š” ์  ์ค‘ $\\mathrm{B}$๊ฐ€ ์•„๋‹Œ ์ ์„ $\\mathrm{P}$, ๊ตฌ $S$์™€ ์„ ๋ถ„ $\\mathrm{AC}$๊ฐ€ ๋งŒ๋‚˜๋Š” ์  ์ค‘ $\\mathrm{C}$๊ฐ€ ์•„๋‹Œ ์ ์„ $\\mathrm{Q}$, ๊ตฌ $S$์™€ ์„ ๋ถ„ $\\mathrm{AD}$๊ฐ€ ๋งŒ๋‚˜๋Š” ์  ์ค‘ $\\mathrm{D}$๊ฐ€ ์•„๋‹Œ ์ ์„ $\\mathrm{R}$๋ผ ํ•˜๊ณ , ์  $\\mathrm{P}$์—์„œ ๊ตฌ $S$์— ์ ‘ํ•˜๋Š” ํ‰๋ฉด์„ $\\alpha$๋ผ ํ•˜์ž.\n\n๊ตฌ $S$์˜ ๋ฐ˜์ง€๋ฆ„์˜ ๊ธธ์ด๊ฐ€ $6$์ผ ๋•Œ, ์‚ผ๊ฐํ˜• $\\mathrm{PQR}$์˜ ํ‰๋ฉด $\\alpha$ ์œ„๋กœ์˜ ์ •์‚ฌ์˜์˜ ๋„“์ด๋Š” $k$์ด๋‹ค. $k^2$์˜ ๊ฐ’์„ ๊ตฌํ•˜์‹œ์˜ค. [4์ ]", "answer": 24, "score": 4, "review": "Removed figure.", "incomplete": false}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <<<<<<< HEAD
2
  {"id": 1, "name": "1", "problem": "1. $\\left( \\frac{4}{2^{\\sqrt{2}}} \\right)^{2 + \\sqrt{2}}$ ์˜ ๊ฐ’์€? [2์ ] \\begin{itemize} \\item[1] $\\frac{1}{4}$ \\item[2] $\\frac{1}{2}$ \\item[3] $1$ \\item[4] $2$ \\item[5] $4$ \\end{itemize}", "answer": 5, "score": 2, "review": null, "incomplete": false}
3
  {"id": 2, "name": "2", "problem": "2. $\\lim_{x \\to \\infty} \\frac{\\sqrt{x^2 - 2} + 3x}{x + 5}$ ์˜ ๊ฐ’์€? [2์ ] \\begin{itemize} \\item[1] 1 \\item[2] 2 \\item[3] 3 \\item[4] 4 \\item[5] 5 \\end{itemize}", "answer": 4, "score": 2, "review": null, "incomplete": false}
4
  {"id": 3, "name": "3", "problem": "3. ๊ณต๋น„๊ฐ€ ์–‘์ˆ˜์ธ ๋“ฑ๋น„์ˆ˜์—ด$\\{a_n\\}$์ด \\[ a_2 + a_4 = 30, \\quad a_4 + a_6 = \\frac{15}{2} \\] ๋ฅผ ๋งŒ์กฑ์‹œํ‚ฌ ๋•Œ, $a_1$ ์˜ ๊ฐ’์€? [3์ ] \\begin{itemize} \\item[1] 48 \\item[2] 56 \\item[3] 64 \\item[4] 72 \\item[5] 80 \\end{itemize}", "answer": 1, "score": 3, "review": null, "incomplete": false}
 
45
  {"id": 44, "name": "28_geom", "problem": "28. ๋‘ ์ดˆ์ ์ด $( \\mathrm{F}(c, 0) )$, $( \\mathrm{F'}(-c, 0) \\ (c > 0) )$์ธ ์Œ๊ณก์„  $( C )$์™€ $( y )$์ถ• ์œ„์˜ ์  $( \\mathrm{A} )$๊ฐ€ ์žˆ๋‹ค. ์Œ๊ณก์„  $( C )$๊ฐ€ ์„ ๋ถ„ $( \\mathrm{AF} )$์™€ ๋งŒ๋‚˜๋Š” ์ ์„ $( \\mathrm{P} )$, ์„ ๋ถ„ $( \\mathrm{AF'} )$์™€ ๋งŒ๋‚˜๋Š” ์ ์„ $( \\mathrm{P'} )$์ด๋ผ ํ•˜์ž. ์ง์„  $( \\mathrm{AF} )$๋Š” ์Œ๊ณก์„  $( C )$์˜ ํ•œ ์ ๊ทผ์„ ๊ณผ ํ‰ํ–‰ํ•˜๊ณ \n\n\\[ \\overline{\\mathrm{AP}}:\\overline{\\mathrm{PP'}} = 5:6, \\quad \\overline{\\mathrm{PF}} = 1 \\]\n\n์ผ ๋•Œ, ์Œ๊ณก์„  $( C )$์˜ ์ฃผ์ถ•์˜ ๊ธธ์ด๋Š”? [4์ ]\n\n\\begin{itemize} \\item[1] \\frac{13}{6} \\item[2] \\frac{9}{4} \\item[3] \\frac{7}{3} \\item[4] \\frac{29}{12} \\item[5] \\frac{5}{2} \\end{itemize}", "answer": 2, "score": 4, "review": "Removed figure.", "incomplete": false}
46
  {"id": 45, "name": "29_geom", "problem": "29. ํ‰๋ฉด $\\alpha$ ์œ„์— $\\overline{\\mathrm{AB}} = \\overline{\\mathrm{CD}} = \\overline{\\mathrm{AD}} = 2$, $\\angle \\mathrm{ABC} = \\angle \\mathrm{BCD} = \\frac{\\pi}{3}$ ์ธ ์‚ฌ๋‹ค๋ฆฌ๊ผด $\\mathrm{ABCD}$๊ฐ€ ์žˆ๋‹ค. ๋‹ค์Œ ์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œํ‚ค๋Š” ํ‰๋ฉด $\\alpha$ ์œ„์˜ ๋‘ ์  $\\mathrm{P}$, $\\mathrm{Q}$์— ๋Œ€ํ•˜์—ฌ $\\overrightarrow{\\mathrm{CP}} \\cdot \\overrightarrow{\\mathrm{DQ}}$์˜ ๊ฐ’์„ ๊ตฌํ•˜์‹œ์˜ค. [4์ ]\n\n\\begin{itemize} \\item[(๊ฐ€)] $\\overrightarrow{\\mathrm{AC}} = 2 \\left( \\overrightarrow{\\mathrm{AD}} + \\overrightarrow{\\mathrm{BP}} \\right)$ \\item[(๋‚˜)] $\\overrightarrow{\\mathrm{AC}} \\cdot \\overrightarrow{\\mathrm{PQ}} = 6$ \\item[(๋‹ค)] $2 \\times \\angle \\mathrm{BQA} = \\angle \\mathrm{PBQ} < \\frac{\\pi}{2}$ \\end{itemize}", "answer": 12, "score": 4, "review": "Removed figure.", "incomplete": false}
47
  {"id": 46, "name": "30_geom", "problem": "30. ์ขŒํ‘œ๊ณต๊ฐ„์— ์ •์‚ฌ๋ฉด์ฒด $\\mathrm{ABCD}$๊ฐ€ ์žˆ๋‹ค. ์ •์‚ผ๊ฐํ˜• $\\mathrm{BCD}$์˜ ์™ธ์‹ฌ์„ ์ค‘์‹ฌ์œผ๋กœ ํ•˜๊ณ  ์  $\\mathrm{B}$๋ฅผ ์ง€๋‚˜๋Š” ๊ตฌ๋ฅผ $S$๋ผ ํ•˜์ž.\n\n๊ตฌ $S$์™€ ์„ ๋ถ„ $\\mathrm{AB}$๊ฐ€ ๋งŒ๋‚˜๋Š” ์  ์ค‘ $\\mathrm{B}$๊ฐ€ ์•„๋‹Œ ์ ์„ $\\mathrm{P}$, ๊ตฌ $S$์™€ ์„ ๋ถ„ $\\mathrm{AC}$๊ฐ€ ๋งŒ๋‚˜๋Š” ์  ์ค‘ $\\mathrm{C}$๊ฐ€ ์•„๋‹Œ ์ ์„ $\\mathrm{Q}$, ๊ตฌ $S$์™€ ์„ ๋ถ„ $\\mathrm{AD}$๊ฐ€ ๋งŒ๋‚˜๋Š” ์  ์ค‘ $\\mathrm{D}$๊ฐ€ ์•„๋‹Œ ์ ์„ $\\mathrm{R}$๋ผ ํ•˜๊ณ , ์  $\\mathrm{P}$์—์„œ ๊ตฌ $S$์— ์ ‘ํ•˜๋Š” ํ‰๋ฉด์„ $\\alpha$๋ผ ํ•˜์ž.\n\n๊ตฌ $S$์˜ ๋ฐ˜์ง€๋ฆ„์˜ ๊ธธ์ด๊ฐ€ $6$์ผ ๋•Œ, ์‚ผ๊ฐํ˜• $\\mathrm{PQR}$์˜ ํ‰๋ฉด $\\alpha$ ์œ„๋กœ์˜ ์ •์‚ฌ์˜์˜ ๋„“์ด๋Š” $k$์ด๋‹ค. $k^2$์˜ ๊ฐ’์„ ๊ตฌํ•˜์‹œ์˜ค. [4์ ]", "answer": 24, "score": 4, "review": "Removed figure.", "incomplete": false}
48
+ =======
49
+ {"id":1,"name":"1","problem":"1. \\left( \\frac{4}{2^{\\sqrt{2}}} \\right)^{2 + \\sqrt{2}} \\text{\uc758 \uac12\uc740? [2\uc810]}\n\n\\begin{itemize}\n \\item[1] $\\frac{1}{4}$\n \\item[2] $\\frac{1}{2}$\n \\item[3] $1$\n \\item[4] $2$\n \\item[5] $4$\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
50
+ {"id":2,"name":"2","problem":"2. \\lim_{x \\to \\infty} \\frac{\\sqrt{x^2 - 2 + 3x}}{x + 5} \\text{\uc758 \uac12\uc740? [2\uc810]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
51
+ {"id":3,"name":"3","problem":"3. \\text{\uacf5\ube44\uac00 \uc591\uc218\uc778 \ub4f1\ube44\uc218\uc5f4 } \\{a_n\\}\\text{\uc774}\n\n\\[ a_2 + a_4 = 30, \\quad a_4 + a_6 = \\frac{15}{2} \\]\n\\text{\ub97c \ub9cc\uc871\uc2dc\ud0ac \ub54c, } a_1 \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] 48\n \\item[2] 56\n \\item[3] 64\n \\item[4] 72\n \\item[5] 80\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
52
+ {"id":4,"name":"4","problem":"4. \\text{\ub2e4\ud56d\ud568\uc218 } f(x) \\text{\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 } g(x) \\text{\ub97c}\n\n\\[ g(x) = x^2 f(x) \\]\n\\text{\ub77c \ud558\uc790. } f(2) = 1, \\ f'(2) = 3 \\text{\uc77c \ub54c, } g'(2) \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] 12\n \\item[2] 14\n \\item[3] 16\n \\item[4] 18\n \\item[5] 20\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
53
+ {"id":5,"name":"5","problem":"5. \\tan \\theta < 0 \\text{\uc774\uace0} \\cos \\left( \\frac{\\pi}{2} + \\theta \\right) = \\frac{\\sqrt{5}}{5} \\text{\uc77c \ub54c, } \\cos \\theta \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] - \\frac{2 \\sqrt{5}}{5}\n \\item[2] - \\frac{\\sqrt{5}}{5}\n \\item[3] 0\n \\item[4] \\frac{\\sqrt{5}}{5}\n \\item[5] \\frac{2 \\sqrt{5}}{5}\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
54
+ {"id":6,"name":"6","problem":"6. \\text{\ud568\uc218 } f(x) = 2x^3 - 9x^2 + ax + 5 \\text{\ub294 } x = 1 \\text{\uc5d0\uc11c \uadf9\ub300\uc774\uace0, } x = b \\text{\uc5d0\uc11c \uadf9\uc18c\uc774\ub2e4. } a + b \\text{\uc758 \uac12\uc740? (\ub2e8, } a, b \\text{\ub294 \uc0c1\uc218\uc774\ub2e4.) [3\uc810]}\n\n\\begin{itemize}\n \\item[1] 12\n \\item[2] 14\n \\item[3] 16\n \\item[4] 18\n \\item[5] 20\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
55
+ {"id":7,"name":"7","problem":"7. \\text{\ubaa8\ub4e0 \ud56d\uc774 \uc591\uc218\uc774\uace0 \uccab\uc9f8\ud56d\uacfc \uacf5\ucc28\uac00 \uac19\uc740 \ub4f1\ucc28\uc218\uc5f4 } \\{a_n\\}\\text{\uc774}\n\n\\[ \\sum_{k=1}^{15} \\frac{1}{\\sqrt{a_k} + \\sqrt{a_{k+1}}} = 2 \\]\n\\text{\ub97c \ub9cc\uc871\uc2dc\ud0ac \ub54c, } a_4 \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] 6\n \\item[2] 7\n \\item[3] 8\n \\item[4] 9\n \\item[5] 10\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
56
+ {"id":8,"name":"8","problem":"8. \\text{\uc810 } (0, 4) \\text{\uc5d0\uc11c \uace1\uc120 } y = x^3 - x + 2 \\text{\uc5d0 \uadf8\uc740 \uc811\uc120\uc758 } x \\text{\uc808\ud3b8\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] -\\frac{1}{2}\n \\item[2] -1\n \\item[3] -\\frac{3}{2}\n \\item[4] -2\n \\item[5] -\\frac{5}{2}\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
57
+ {"id":9,"name":"9","problem":"9. \\text{\ud568\uc218}\n\n\\[ f(x) = a - \\sqrt{3} \\tan 2x \\]\n\\text{\uac00 \ub2eb\ud78c\uad6c\uac04} \\left[ -\\frac{\\pi}{6}, b \\right] \\text{\uc5d0\uc11c \ucd5c\ub300\uac12 7, \ucd5c\uc19f\uac12 3\uc744 \uac00\uc9c8 \ub54c, } a \\times b \\text{\uc758 \uac12\uc740? (\ub2e8, } a, b \\text{\ub294 \uc0c1\uc218\uc774\ub2e4.) [4\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{\\pi}{2}\n \\item[2] \\frac{5\\pi}{12}\n \\item[3] \\frac{\\pi}{3}\n \\item[4] \\frac{\\pi}{4}\n \\item[5] \\frac{\\pi}{6}\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
58
+ {"id":10,"name":"10","problem":"10. \\text{\ub450 \uace1\uc120 } y = x^3 + x^2, \\ y = -x^2 + k \\text{\uc640 } y \\text{\ucd95\uc73c\ub85c \ub458\ub7ec\uc2f8\uc778 \ubd80\ubd84\uc758 \ub113\uc774\ub97c } A, \\text{ \ub450 \uace1\uc120 } y = x^3 + x^2, \\ y = -x^2 + k \\text{\uc640 \uc9c1\uc120 } x = 2 \\text{\ub85c \ub458\ub7ec\uc2f8\uc778 \ubd80\ubd84\uc758 \ub113\uc774\ub97c } B \\text{\ub77c \ud558\uc790.} A = B \\text{\uc77c \ub54c, \uc0c1\uc218 } k \\text{\uc758 \uac12\uc740? (\ub2e8, } 4 < k < 5) [4\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{25}{6}\n \\item[2] \\frac{13}{3}\n \\item[3] \\frac{9}{2}\n \\item[4] \\frac{14}{3}\n \\item[5] \\frac{29}{6}\n\\end{itemize}\n","answer":-1,"score":-1,"review":1.0}
59
+ {"id":11,"name":"11","problem":"11. \\text{\uadf8\ub9bc\uacfc \uac19\uc774 \uc0ac\uac01\ud615 } ABCD \\text{\uac00 \ud55c \uc6d0\uc5d0 \ub0b4\uc811\ud558\uace0}\n\n\\[ \\overline{AB} = 5, \\quad \\overline{AC} = 3 \\sqrt{5}, \\quad \\overline{AD} = 7, \\quad \\angle BAC = \\angle CAD \\]\n\\text{\uc77c \ub54c, \uc774 \uc6d0\uc758 \ubc18\uc9c0\ub984\uc758 \uae38\uc774\ub294? [4\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{5 \\sqrt{2}}{2}\n \\item[2] \\frac{8 \\sqrt{5}}{5}\n \\item[3] \\frac{5 \\sqrt{5}}{3}\n \\item[4] \\frac{8 \\sqrt{2}}{3}\n \\item[5] \\frac{9 \\sqrt{3}}{4}\n\\end{itemize}\n","answer":-1,"score":-1,"review":1.0}
60
+ {"id":12,"name":"12","problem":"12. \\text{\uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc5f0\uc18d\uc778 \ud568\uc218 } f(x) \\text{\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.}\n\n\\[ n - 1 \\leq x < n \\text{\uc77c \ub54c, } |f(x)| = |6(x - n + 1)(x - n)| \\text{\uc774\ub2e4. (\ub2e8, } n \\text{\uc740 \uc790\uc5f0\uc218\uc774\ub2e4.)} \\]\n\n\\text{\uc5f4\ub9b0\uad6c\uac04 } (0, 4) \\text{\uc5d0\uc11c \uc815\uc758\ub41c \ud568\uc218} \n\\[ g(x) = \\int_0^x f(t) dt - \\int_x^4 f(t) dt \\]\n\\text{\uac00 } x = 2 \\text{\uc5d0\uc11c \ucd5c\uc19f\uac12 0\uc744 \uac00\uc9c8 \ub54c, } \\int_{\\frac{1}{2}}^4 f(x) dx \\text{\uc758 \uac12\uc740? [4\uc810]}\n\n\\begin{itemize}\n \\item[1] -\\frac{3}{2}\n \\item[2] -\\frac{1}{2}\n \\item[3] \\frac{1}{2}\n \\item[4] \\frac{3}{2}\n \\item[5] \\frac{5}{2}\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
61
+ {"id":13,"name":"13","problem":"13. \\text{\uc790\uc5f0\uc218 } m(m \\geq 2) \\text{\uc5d0 \ub300\ud558\uc5ec } m^{12} \\text{\uc758 } n \\text{\uc81c\uacf1\uadfc \uc911\uc5d0\uc11c \uc815\uc218\uac00 \uc874\uc7ac\ud558\ub3c4\ub85d \ud558\ub294 2 \uc774\uc0c1\uc758 \uc790\uc5f0\uc218 } n \\text{\uc758 \uac1c\uc218\ub97c } f(m) \\text{\uc774\ub77c \ud560 \ub54c,} \n\\[ \\sum_{m=2}^{9} f(m) \\text{\uc758 \uac12\uc740? [4\uc810]} \\]\n\n\\begin{itemize}\n \\item[1] 37\n \\item[2] 42\n \\item[3] 47\n \\item[4] 52\n \\item[5] 57\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
62
+ {"id":14,"name":"14","problem":"14. \\text{\ub2e4\ud56d\ud568\uc218 } f(x) \\text{\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 } g(x) \\text{\ub97c \ub2e4\uc74c\uacfc \uac19\uc774 \uc815\uc758\ud55c\ub2e4.}\n\n\\[ g(x) = \\begin{cases} x & (x < -1 \\text{ \ub610\ub294 } x > 1) \\\\ f(x) & (-1 \\leq x \\leq 1) \\end{cases} \\]\n\\text{\ud568\uc218 } h(x) = \\lim_{t \\to 0^+} g(x+t) \\times \\lim_{t \\to 2^+} g(x+t) \\text{\uc5d0 \ub300\ud558\uc5ec} \n\\text{\ubcf4\uae30\uc5d0\uc11c \uc633\uc740 \uac83\ub9cc\uc744 \uc788\ub294 \ub300\ub85c \uace0\ub978 \uac83\uc740? [4\uc810]}\n\n\\<\ubcf4\uae30>\n\n\u3131. h(1) = 3 \n\n\u3134. \ud568\uc218 h(x)\ub294 \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc5f0\uc18d\uc774\ub2e4. \n\n\u3137. \ud568\uc218 g(x)\uac00 \ub2eb\ud78c\uad6c\uac04 \\([-1, 1]\\)\uc5d0\uc11c \uac10\uc18c\ud558\uace0 \\(g(-1) = -2\\)\uc774\uba74 \ud568\uc218 h(x)\ub294 \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \ucd5c\uc19f\uac12\uc744 \uac16\ub294\ub2e4.\n\n\\begin{itemize}\n \\item[1] \u3131\n \\item[2] \u3134\n \\item[3] \u3131, \u3134\n \\item[4] \u3131, \u3137\n \\item[5] \u3134, \u3137\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
63
+ {"id":15,"name":"15","problem":"15. \\text{\ubaa8\ub4e0 \ud56d\uc774 \uc790\uc5f0\uc218\uc774\uace0 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a4\ub294 \ubaa8\ub4e0 \uc218\uc5f4 } \\{a_n\\} \\text{\uc5d0 \ub300\ud558\uc5ec } a_9 \\text{\uc758 \ucd5c\ub300\uac12\uacfc \ucd5c\uc19f\uac12\uc744 \uac01\uac01 } M, m \\text{\uc774\ub77c \ud560 \ub54c, } M + m \\text{\uc758 \uac12\uc740? [4\uc810]}\n\n\\text{(\uac00) } a_7 = 40 \n\n\\text{(\ub098) \ubaa8\ub4e0 \uc790\uc5f0\uc218 } n \\text{\uc5d0 \ub300\ud558\uc5ec}\n\\[ a_{n+2} = \\begin{cases} a_{n+1} + a_n & (a_{n+1}\\text{\uc774 } 3 \\text{\uc758 \ubc30\uc218\uac00 \uc544\ub2cc \uacbd\uc6b0}) \\\\ \\frac{1}{3} a_{n+1} & (a_{n+1}\\text{\uc774 } 3 \\text{\uc758 \ubc30\uc218\uc778 \uacbd\uc6b0}) \\end{cases} \\]\n\n\\begin{itemize}\n \\item[1] 216\n \\item[2] 218\n \\item[3] 220\n \\item[4] 222\n \\item[5] 224\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
64
+ {"id":16,"name":"16","problem":"16. \\text{\ubc29\uc815\uc2dd}\n\n\\[ \\log_2(3x + 2) = 2 + \\log_2(x - 2) \\]\n\\text{\ub97c \ub9cc\uc871\uc2dc\ud0a4\ub294 \uc2e4\uc218 } x \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [3\uc810]}\n","answer":-1,"score":-1,"review":null}
65
+ {"id":17,"name":"17","problem":"17. \\text{\ud568\uc218 } f(x) \\text{\uc5d0 \ub300\ud558\uc5ec } f'(x) = 4x^3 - 2x \\text{\uc774\uace0 } f(0) = 3 \\text{\uc77c \ub54c, } f(2) \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [3\uc810]}\n","answer":-1,"score":-1,"review":null}
66
+ {"id":18,"name":"18","problem":"18. \\text{\ub450 \uc218\uc5f4 } \\{a_n\\}, \\{b_n\\} \\text{\uc5d0 \ub300\ud558\uc5ec}\n\n\\[ \\sum_{k=1}^{5} (3a_k + 5) = 55, \\quad \\sum_{k=1}^{5} (a_k + b_k) = 32 \\]\n\\text{\uc77c \ub54c, } \\sum_{k=1}^{5} b_k \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [3\uc810]}\n","answer":-1,"score":-1,"review":null}
67
+ {"id":19,"name":"19","problem":"19. \\text{\ubc29\uc815\uc2dd } 2x^3 - 6x^2 + k = 0 \\text{\uc758 \uc11c\ub85c \ub2e4\ub978 \uc591\uc758 \uc2e4\uadfc\uc758 \uac1c\uc218\uac00 2\uac00 \ub418\ub3c4\ub85d \ud558\ub294 \uc815\uc218 } k \\text{\uc758 \uac1c\uc218\ub97c \uad6c\ud558\uc2dc\uc624. [3\uc810]}\n","answer":-1,"score":-1,"review":null}
68
+ {"id":20,"name":"20","problem":"20. \\text{\uc218\uc9c1\uc120 \uc704\ub97c \uc6c0\uc9c1\uc774\ub294 \uc810 P\uc758 \uc2dc\uac01 } t(t \\geq 0) \\text{\uc5d0\uc11c\uc758 \uc18d\ub3c4 } v(t) \\text{\uc640 \uac00\uc18d\ub3c4 } a(t) \\text{\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.}\n\n\\text{(\uac00) } 0 \\leq t \\leq 2 \\text{\uc77c \ub54c, } v(t) = 2t^3 - 8t \\text{\uc774\ub2e4.}\n\\text{(\ub098) } t \\geq 2 \\text{\uc77c \ub54c, } a(t) = 6t + 4 \\text{\uc774\ub2e4.}\n\n\\text{\uc2dc\uac01 } t = 0 \\text{\uc5d0\uc11c } t = 3 \\text{\uae4c\uc9c0 \uc810 P\uac00 \uc6c0\uc9c1\uc778 \uac70\ub9ac\ub97c \uad6c\ud558\uc2dc\uc624. [4\uc810]}\n","answer":-1,"score":-1,"review":null}
69
+ {"id":21,"name":"21","problem":"21. \\text{\uc790\uc5f0\uc218 } n \\text{\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 } f(x) \\text{\ub97c}\n\n\\[ f(x) = \\begin{cases} |3^x + 2 - n| & (x < 0) \\\\ |\\log_2(x + 4) - n| & (x \\geq 0) \\end{cases} \\]\n\\text{\uc774\ub77c \ud558\uc790. \uc2e4\uc218 } t \\text{\uc5d0 \ub300\ud558\uc5ec } x \\text{\uc5d0 \ub300\ud55c \ubc29\uc815\uc2dd } f(x) = t \\text{\uc758 \uc11c\ub85c \ub2e4\ub978 \uc2e4\uadfc\uc758 \uac1c\uc218\ub97c } g(t) \\text{\ub77c \ud560 \ub54c, \ud568\uc218 } g(t) \\text{\uc758 \ucd5c\ub313\uac12\uc774 4\uac00 \ub418\ub3c4\ub85d \ud558\ub294 \ubaa8\ub4e0 \uc790\uc5f0\uc218 } n \\text{\uc758 \uac12\uc758 \ud569\uc744 \uad6c\ud558\uc2dc\uc624. [4\uc810]}\n","answer":-1,"score":-1,"review":null}
70
+ {"id":22,"name":"22","problem":"22. \\text{\ucd5c\uace0\ucc28\ud56d\uc758 \uacc4\uc218\uac00 1\uc778 \uc0bc\ucc28\ud568\uc218 } f(x) \\text{\uc640 \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc5f0\uc18d\uc778 \ud568\uc218 } g(x) \\text{\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0ac \ub54c, } f(4) \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [4\uc810]}\n\n\\text{(\uac00) \ubaa8\ub4e0 \uc2e4\uc218 } x \\text{\uc5d0 \ub300\ud558\uc5ec } f(x) = f(1) + (x - 1)f'(g(x)) \\text{\uc774\ub2e4.}\n\\text{(\ub098) \ud568\uc218 } g(x) \\text{\uc758 \ucd5c\uc19f\uac12\uc740 } \\frac{5}{2} \\text{\uc774\ub2e4.}\n\\text{(\ub2e4) } f(0) = -3, \\quad f(g(1)) = 6 \n","answer":-1,"score":-1,"review":null}
71
+ {"id":23,"name":"23_prob","problem":"23. \\( (x^3 + 3)^5 \\)\uc758 \uc804\uac1c\uc2dd\uc5d0\uc11c \\(x^9\\)\uc758 \uacc4\uc218\ub294? [2\uc810]\n\\begin{itemize}\n \\item[1] 30\n \\item[2] 60\n \\item[3] 90\n \\item[4] 120\n \\item[5] 150\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
72
+ {"id":24,"name":"24_prob","problem":"24. \\text{\uc22b\uc790 } 1, 2, 3, 4, 5 \\text{ \uc911\uc5d0\uc11c \uc911\ubcf5\uc744 \ud5c8\ub77d\ud558\uc5ec 4\uac1c\ub97c \ud0dd\ud574 \uc77c\ub82c\ub85c \ub098\uc5f4\ud558\uc5ec \ub9cc\ub4e4 \uc218 \uc788\ub294 \ub124 \uc790\ub9ac\uc758 \uc790\uc5f0\uc218 \uc911 4000 \uc774\uc0c1\uc778 \ud640\uc218\uc758 \uac1c\uc218\ub294? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] 125\n \\item[2] 150\n \\item[3] 175\n \\item[4] 200\n \\item[5] 225\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
73
+ {"id":25,"name":"25_prob","problem":"25. \\text{\ud770\uc0c9 \ub9c8\uc2a4\ud06c 5\uac1c, \uac80\uc740\uc0c9 \ub9c8\uc2a4\ud06c 9\uac1c\uac00 \ub4e4\uc5b4 \uc788\ub294 \uc0c1\uc790\uac00 \uc788\ub2e4. \uc774 \uc0c1\uc790\uc5d0\uc11c \uc784\uc758\ub85c 3\uac1c\uc758 \ub9c8\uc2a4\ud06c\ub97c \ub3d9\uc2dc\uc5d0 \uaebc\ub0bc \ub54c, \uaebc\ub0b8 3\uac1c\uc758 \ub9c8\uc2a4\ud06c \uc911\uc5d0\uc11c \uc801\uc5b4\ub3c4 \ud55c \uac1c\uac00 \ud770\uc0c9 \ub9c8\uc2a4\ud06c\uc77c \ud655\ub960\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{8}{13}\n \\item[2] \\frac{17}{26}\n \\item[3] \\frac{9}{13}\n \\item[4] \\frac{19}{26}\n \\item[5] \\frac{10}{13}\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
74
+ {"id":26,"name":"26_prob","problem":"26. \\text{\uc8fc\uba38\ub2c8\uc5d0 1\uc774 \uc801\ud78c \ud770 \uacf5 1\uac1c, 2\uac00 \uc801\ud78c \ud770 \uacf5 1\uac1c, 1\uc774 \uc801\ud78c \uac80\uc740 \uacf5 1\uac1c, 2\uac00 \uc801\ud78c \uac80\uc740 \uacf5 3\uac1c\uac00 \ub4e4\uc5b4 \uc788\ub2e4. \uc774 \uc8fc\uba38\ub2c8\uc5d0\uc11c \uc784\uc758\ub85c 3\uac1c\uc758 \uacf5\uc744 \ub3d9\uc2dc\uc5d0 \uaebc\ub0b4\ub294 \uc2dc\ud589\uc744 \ud55c\ub2e4. \uc774 \uc2dc\ud589\uc5d0\uc11c \uaebc\ub0b8 3\uac1c\uc758 \uacf5 \uc911\uc5d0\uc11c \ud770 \uacf5\uc774 1\uac1c\uc774\uace0 \uac80\uc740 \uacf5\uc774 2\uac1c\uc778 \uc0ac\uac74\uc744 } A, \\text{ \uaebc\ub0b8 3\uac1c\uc758 \uacf5\uc5d0 \uc801\ud600 \uc788\ub294 \uc218\ub97c \ubaa8\ub450 \uacf1\ud55c \uac12\uc774 8\uc778 \uc0ac\uac74\uc744 } B \\text{\ub77c \ud560 \ub54c, } P(A \\cup B) \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{11}{20}\n \\item[2] \\frac{3}{5}\n \\item[3] \\frac{13}{20}\n \\item[4] \\frac{7}{10}\n \\item[5] \\frac{3}{4}\n\\end{itemize}\n","answer":-1,"score":-1,"review":1.0}
75
+ {"id":27,"name":"27_prob","problem":"27. \\text{\uc5b4\ub290 \ud68c\uc0ac\uc5d0\uc11c \uc0dd\uc0b0\ud558\ub294 \uc0f4\ud478 1\uac1c\uc758 \uc6a9\ub7c9\uc740 \uc815\uaddc\ubd84\ud3ec } N(m, \\sigma^2) \\text{\uc744 \ub530\ub978\ub2e4\uace0 \ud55c\ub2e4. \uc774 \ud68c\uc0ac\uc5d0\uc11c \uc0dd\uc0b0\ud558\ub294 \uc0f4\ud478 \uc911\uc5d0\uc11c 16\uac1c\ub97c \uc784\uc758\ucd94\ucd9c\ud558\uc5ec \uc5bb\uc740 \ud45c\ubcf8\ud3c9\uade0\uc744 \uc774\uc6a9\ud558\uc5ec \uad6c\ud55c } m \\text{\uc5d0 \ub300\ud55c \uc2e0\ub8b0\ub3c4 95%\uc758 \uc2e0\ub8b0\uad6c\uac04\uc774 } 746.1 \\leq m \\leq 755.9 \\text{\uc774\ub2e4. \uc774 \ud68c\uc0ac\uc5d0\uc11c \uc0dd\uc0b0\ud558\ub294 \uc0f4\ud478 \uc911\uc5d0\uc11c } n \\text{\uac1c\ub97c \uc784\uc758\ucd94\ucd9c\ud558\uc5ec \uc5bb\uc740 \ud45c\ubcf8\ud3c9\uade0\uc744 \uc774\uc6a9\ud558\uc5ec \uad6c\ud558\ub294 } m \\text{\uc5d0 \ub300\ud55c \uc2e0\ub8b0\ub3c4 99%\uc758 \uc2e0\ub8b0\uad6c\uac04\uc774 } a \\leq m \\leq b \\text{\uc77c \ub54c, } b - a \\text{\uc758 \uac12\uc774 6 \uc774\ud558\uac00 \ub418\uae30 \uc704\ud55c \uc790\uc5f0\uc218 } n \\text{\uc758 \ucd5c\uc19f\uac12\uc740? (\ub2e8, \uc6a9\ub7c9\uc758 \ub2e8\uc704\ub294 mL\uc774\uace0, } Z \\text{\uac00 \ud45c\uc900\uc815\uaddc\ubd84\ud3ec\ub97c \ub530\ub974\ub294 \ud655\ub960\ubcc0\uc218\uc77c \ub54c, } P(|Z| \\leq 1.96) = 0.95, P(|Z| \\leq 2.58) = 0.99 \\text{\ub85c \uacc4\uc0b0\ud55c\ub2e4.) [3\uc810]}\n\n\\begin{itemize}\n \\item[1] 70\n \\item[2] 74\n \\item[3] 78\n \\item[4] 82\n \\item[5] 86\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
76
+ {"id":28,"name":"28_prob","problem":"28. \\text{\uc5f0\uc18d\ud655\ub960\ubcc0\uc218 } X \\text{\uac00 \uac16\ub294 \uac12\uc758 \ubc94\uc704\ub294 } 0 \\leq X \\leq a \\text{\uc774\uace0, } X \\text{\uc758 \ud655\ub960\ubc00\ub3c4\ud568\uc218\uc758 \uadf8\ub798\ud504\uac00 \uadf8\ub9bc\uacfc \uac19\ub2e4.}\n\n\\[ P(X \\leq b) - P(X \\geq b) = \\frac{1}{4}, \\quad P(X \\leq \\sqrt{5}) = \\frac{1}{2} \\]\n\\text{\uc77c \ub54c, } a + b + c \\text{\uc758 \uac12\uc740? (\ub2e8, } a, b, c \\text{\ub294 \uc0c1\uc218\uc774\ub2e4.) [4\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{11}{2}\n \\item[2] 6\n \\item[3] \\frac{13}{2}\n \\item[4] 7\n \\item[5] \\frac{15}{2}\n\\end{itemize}\n","answer":-1,"score":-1,"review":2.0}
77
+ {"id":29,"name":"29_prob","problem":"29. \\text{\uc55e\uba74\uc5d0\ub294 1\ubd80\ud130 6\uae4c\uc9c0\uc758 \uc790\uc5f0\uc218\uac00 \ud558\ub098\uc529 \uc801\ud600 \uc788\uace0, \ub4b7\uba74\uc5d0\ub294 \ubaa8\ub450 0\uc774 \ud558\ub098\uc529 \uc801\ud600 \uc788\ub294 6\uc7a5\uc758 \uce74\ub4dc\uac00 \uc788\ub2e4. \uc774 6\uc7a5\uc758 \uce74\ub4dc\uac00 \uadf8\ub9bc\uacfc \uac19\uc774 6 \uc774\ud558\uc758 \uc790\uc5f0\uc218 } k \\text{\uc5d0 \ub300\ud558\uc5ec } k \\text{\ubc88\uc9f8 \uc790\ub9ac\uc5d0 \uc790\uc5f0\uc218 } k \\text{\uac00 \ubcf4\uc774\ub3c4\ub85d \ub193\uc5ec \uc788\ub2e4.}\n\n\\text{\uc774 6\uc7a5\uc758 \uce74\ub4dc\uc640 \ud55c \uac1c\uc758 \uc8fc\uc0ac\uc704\ub97c \uc0ac\uc6a9\ud558\uc5ec \ub2e4\uc74c \uc2dc\ud589\uc744 \ud55c\ub2e4.}\n\n\\[ \\text{\uc8fc\uc0ac\uc704\ub97c \ud55c \ubc88 \ub358\uc838 \ub098\uc628 \ub208\uc758 \uc218\uac00 } k \\text{\uc774\uba74 } k \\text{\ubc88\uc9f8 \uc790\ub9ac\uc5d0 \ub193\uc5ec \uc788\ub294 \uce74\ub4dc\ub97c \ud55c \ubc88 \ub4a4\uc9d1\uc5b4 \uc81c\uc790\ub9ac\uc5d0 \ub193\ub294\ub2e4.} \\]\n\n\\text{\uc704\uc758 \uc2dc\ud589\uc744 3\ubc88 \ubc18\ubcf5\ud55c \ud6c4 6\uc7a5\uc758 \uce74\ub4dc\uc5d0 \ubcf4\uc774\ub294 \ubaa8\ub4e0 \uc218\uc758 \ud569\uc774 \uc9dd\uc218\uc77c \ub54c, \uc8fc\uc0ac\uc704\uc758 1\uc758 \ub208\uc774 \ud55c \ubc88\ub9cc \ub098\uc654\uc744 \ud655\ub960\uc740 } \\frac{q}{p} \\text{\uc774\ub2e4. } p + q \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. (\ub2e8, } p \\text{\uc640 } q \\text{\ub294 \uc11c\ub85c\uc18c\uc778 \uc790\uc5f0\uc218\uc774\ub2e4.) [4\uc810]}\n","answer":-1,"score":-1,"review":1.0}
78
+ {"id":30,"name":"30_prob","problem":"30. \\text{\uc9d1\ud569 } X = \\{x | x \\text{\ub294 10 \uc774\ud558\uc758 \uc790\uc5f0\uc218}\\} \\text{\uc5d0 \ub300\ud558\uc5ec \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a4\ub294 \ud568\uc218 } f: X \\to X \\text{\uc758 \uac1c\uc218\ub97c \uad6c\ud558\uc2dc\uc624. [4\uc810]}\n\n\\text{(\uac00) 9 \uc774\ud558\uc758 \ubaa8\ub4e0 \uc790\uc5f0\uc218 } x \\text{\uc5d0 \ub300\ud558\uc5ec } f(x) \\leq f(x+1) \\text{\uc774\ub2e4.}\n\\text{(\ub098) } 1 \\leq x \\leq 5 \\text{\uc77c \ub54c } f(x) \\leq x \\text{\uc774\uace0, } 6 \\leq x \\leq 10 \\text{\uc77c \ub54c } f(x) \\geq x \\text{\uc774\ub2e4.}\n\\text{(\ub2e4) } f(6) = f(5) + 6\n","answer":-1,"score":-1,"review":null}
79
+ {"id":31,"name":"23_calc","problem":"23. \\lim_{x \\to 0} \\frac{\\ln(x+1)}{\\sqrt{x+4} - 2} \\text{\uc758 \uac12\uc740? [2\uc810]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
80
+ {"id":32,"name":"24_calc","problem":"24. \\lim_{n \\to \\infty} \\frac{1}{n} \\sum_{k=1}^{n} \\sqrt{1 + \\frac{3k}{n}} \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{4}{3}\n \\item[2] \\frac{13}{9}\n \\item[3] \\frac{14}{9}\n \\item[4] \\frac{5}{3}\n \\item[5] \\frac{16}{9}\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
81
+ {"id":33,"name":"25_calc","problem":"25. \\text{\ub4f1\ube44\uc218\uc5f4 } \\{a_n\\} \\text{\uc5d0 \ub300\ud558\uc5ec } \\lim_{n \\to \\infty} \\frac{a_n + 1}{3^n + 2^{2n-1}} = 3 \\text{\uc77c \ub54c, } a_2 \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] 16\n \\item[2] 18\n \\item[3] 20\n \\item[4] 22\n \\item[5] 24\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
82
+ {"id":34,"name":"26_calc","problem":"26. \\text{\uadf8\ub9bc\uacfc \uac19\uc774 \uace1\uc120 } y = \\sqrt{\\sec^2 x} + \\tan x \\left(0 \\leq x \\leq \\frac{\\pi}{3}\\right) \\text{\uc640 } x \\text{\ucd95, } y \\text{\ucd95 \ubc0f \uc9c1\uc120 } x = \\frac{\\pi}{3} \\text{\ub85c \ub458\ub7ec\uc2f8\uc778 \ubd80\ubd84\uc744 \ubc11\uba74\uc73c\ub85c \ud558\ub294 \uc785\uccb4\ub3c4\ud615\uc774 \uc788\ub2e4. \uc774 \uc785\uccb4\ub3c4\ud615\uc744 } x \\text{\ucd95\uc5d0 \uc218\uc9c1\uc778 \ud3c9\uba74\uc73c\ub85c \uc790\ub978 \ub2e8\uba74\uc774 \ubaa8\ub450 \uc815\uc0ac\uac01\ud615\uc77c \ub54c, \uc774 \uc785\uccb4\ub3c4\ud615\uc758 \ubd80\ud53c\ub294? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{\\sqrt{3}}{2} + \\frac{\\ln 2}{2}\n \\item[2] \\frac{\\sqrt{3}}{2} + \\ln 2\n \\item[3] \\sqrt{3} + \\frac{\\ln 2}{2}\n \\item[4] \\sqrt{3} + \\ln 2\n \\item[5] \\sqrt{3} + 2\\ln 2\n\\end{itemize}\n","answer":-1,"score":-1,"review":1.0}
83
+ {"id":35,"name":"27_prob","problem":"27. \\text{\uadf8\ub9bc\uacfc \uac19\uc774 \uc911\uc2ec\uc774 } O, \\text{\ubc18\uc9c0\ub984\uc758 \uae38\uc774\uac00 1\uc774\uace0 \uc911\uc2ec\uac01\uc758 \ud06c\uae30\uac00 } \\frac{\\pi}{2} \\text{\uc778 \ubd80\ucc44\uaf34 } OA_1B_1 \\text{\uc774 \uc788\ub2e4. \ud638 } A_1B_1 \\text{ \uc704\uc5d0 \uc810 } P_1, \\text{\uc120\ubd84 } OA_1 \\text{ \uc704\uc5d0 \uc810 } C_1, \\text{\uc120\ubd84 } OB_1 \\text{ \uc704\uc5d0 \uc810 } D_1 \\text{\uc744 \uc0ac\uac01\ud615 } OC_1P_1D_1 \\text{\uc774 } OC_1 : OD_1 = 3:4 \\text{\uc778 \uc9c1\uc0ac\uac01\ud615\uc774 \ub418\ub3c4\ub85d \uc7a1\ub294\ub2e4.}\n\n\\text{\ubd80\ucc44\uaf34 } OA_1B_1 \\text{\uc758 \ub0b4\ubd80\uc5d0 \uc810 } Q_1 \\text{\uc744 } PQ_1 = AQ_1, \\angle PQ_1A_1 = \\frac{\\pi}{2} \\text{\uac00 \ub418\ub3c4\ub85d \uc7a1\uace0, \uc774\ub4f1\ubcc0\uc0bc\uac01\ud615 } P_1Q_1A_1 \\text{\uc5d0 \uc0c9\uce60\ud558\uc5ec \uc5bb\uc740 \uadf8\ub9bc\uc744 } R_1 \\text{\uc774\ub77c \ud558\uc790.}\n\\text{\uadf8\ub9bc } R_1 \\text{\uc5d0\uc11c \uc120\ubd84 } OA_1 \\text{ \uc704\uc758 \uc810 } A_2 \\text{\uc640 \uc120\ubd84 } OB_1 \\text{ \uc704\uc758 \uc810 } B_2 \\text{\ub97c } OQ_1 = OA_2 = OB_2 \\text{\uac00 \ub418\ub3c4\ub85d \uc7a1\uace0, \uc911\uc2ec\uc774 } O, \\text{\ubc18\uc9c0\ub984\uc758 \uae38\uc774\uac00 } OQ_1, \\text{\uc911\uc2ec\uac01\uc758 \ud06c\uae30\uac00 } \\frac{\\pi}{2} \\text{\uc778 \ubd80\ucc44\uaf34 } OA_2B_2 \\text{\ub97c \uadf8\ub9b0\ub2e4. \uadf8\ub9b0 } R_1 \\text{\uc744 \uc5bb\uc740 \uac83\uacfc \uac19\uc740 \ubc29\ubc95\uc73c\ub85c \ub124 \uc810 } P_2, C_2, D_2, Q_2 \\text{\ub97c \uc7a1\uace0, \uc774\ub4f1\ubcc0\uc0bc\uac01\ud615 } P_2Q_2A_2 \\text{\uc5d0 \uc0c9\uce60\ud558\uc5ec \uc5bb\uc740 \uadf8\ub9bc\uc744 } R_2 \\text{\ub77c \ud558\uc790. \uc774\uc640 \uac19\uc740 \uacfc\uc815\uc744 \uacc4\uc18d\ud558\uc5ec } n \\text{\ubc88\uc9f8 \uc5bb\uc740 \uadf8\ub9bc } R_n \\text{\uc5d0 \uc0c9\uce60\ub418\uc5b4 \uc788\ub294 \ubd80\ubd84\uc758 \ub113\uc774\ub97c } S_n \\text{\uc774\ub77c \ud560 \ub54c, } \\lim_{n \\to \\infty} S_n \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{9}{40}\n \\item[2] \\frac{1}{4}\n \\item[3] \\frac{11}{40}\n \\item[4] \\frac{3}{10}\n \\item[5] \\frac{13}{40}\n\\end{itemize}\n","answer":-1,"score":-1,"review":1.0}
84
+ {"id":36,"name":"28_prob","problem":"28. \\text{\uadf8\ub9bc\uacfc \uac19\uc774 \uc911\uc2ec\uc774 } O \\text{\uc774\uace0 \uae38\uc774\uac00 2\uc778 \uc120\ubd84 } AB \\text{\ub97c \uc9c0\ub984\uc73c\ub85c \ud558\ub294 \ubc18\uc6d0 \uc704\uc5d0 } \\angle AOC = \\frac{\\pi}{2} \\text{\uc778 \uc810 } C \\text{\uac00 \uc788\ub2e4.}\n\\text{\ud638 } BC \\text{ \uc704\uc5d0 \uc810 } P \\text{\uc640 \ud638 } CA \\text{ \uc704\uc5d0 \uc810 } Q \\text{\ub97c } PB = QC \\text{\uac00 \ub418\ub3c4\ub85d \uc7a1\uace0, \uc120\ubd84 } AP \\text{ \uc704\uc5d0 \uc810 } R \\text{\uc744 } \\angle CQR = \\frac{\\pi}{2} \\text{\uac00 \ub418\ub3c4\ub85d \uc7a1\ub294\ub2e4.}\n\\text{\uc120\ubd84 } AP \\text{\uc640 \uc120\ubd84 } CO \\text{\uc758 \uad50\uc810\uc744 } S \\text{\ub77c \ud558\uc790. } \\angle PAB = \\theta \\text{\uc77c \ub54c, \uc0bc\uac01\ud615 } POB \\text{\uc758 \ub113\uc774\ub97c } f(\\theta), \\text{\uc0ac\uac01\ud615 } CQRS \\text{\uc758 \ub113\uc774\ub97c } g(\\theta) \\text{\ub77c \ud558\uc790.}\n\n\\lim_{\\theta \\to 0^+} \\frac{3f(\\theta) - 2g(\\theta)}{\\theta^2} \\text{\uc758 \uac12\uc740? (\ub2e8, } 0 < \\theta < \\frac{\\pi}{4} \\text{) [4\uc810]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":-1,"score":-1,"review":1.0}
85
+ {"id":37,"name":"29_prob","problem":"29. \\text{\uc138 \uc0c1\uc218 } a, b, c \\text{\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 } f(x) = ae^{2x} + be^x + c \\text{\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.}\n\n\\text{(\uac00) } \\lim_{x \\to -\\infty} \\frac{f(x) + 6}{e^x} = 1\n\\text{(\ub098) } f(\\ln 2) = 0\n\n\\text{\ud568\uc218 } f(x) \\text{\uc758 \uc5ed\ud568\uc218\ub97c } g(x) \\text{\ub77c \ud560 \ub54c,}\n\\[ \\int_0^{14} g(x) dx = p + q \\ln 2 \\text{\uc774\ub2e4. } p + q \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624.}\n\\text{(\ub2e8, } p, q \\text{\ub294 \uc720\ub9ac\uc218\uc774\uace0, } \\ln 2 \\text{\ub294 \ubb34\ub9ac\uc218\uc774\ub2e4.) [4\uc810]}\n","answer":-1,"score":-1,"review":null}
86
+ {"id":38,"name":"30_prob","problem":"30. \\text{\ucd5c\uace0\ucc28\ud56d\uc758 \uacc4\uc218\uac00 \uc591\uc218\uc778 \uc0bc\ucc28\ud568\uc218 } f(x) \\text{\uc640 \ud568\uc218 } g(x) = e^{\\sin \\pi x} - 1 \\text{\uc5d0 \ub300\ud558\uc5ec \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc815\uc758\ub41c \ud569\uc131\ud568\uc218 } h(x) = g(f(x)) \\text{\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.}\n\n\\text{(\uac00) \ud568\uc218 } h(x) \\text{\ub294 } x = 0 \\text{\uc5d0\uc11c \uadf9\ub313\uac12 0\uc744 \uac16\ub294\ub2e4.}\n\\text{(\ub098) \uc5f4\ub9b0\uad6c\uac04 } (0, 3) \\text{\uc5d0\uc11c \ubc29\uc815\uc2dd } h(x) = 1 \\text{\uc758 \uc11c\ub85c \ub2e4\ub978 \uc2e4\uadfc\uc758 \uac1c\uc218\ub294 7\uc774\ub2e4.}\n\nf(3) = \\frac{1}{2}, f'(3) = 0 \\text{\uc77c \ub54c, } f(2) = \\frac{q}{p} \\text{\uc774\ub2e4. } p + q \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. (\ub2e8, } p \\text{\uc640 } q \\text{\ub294 \uc11c\ub85c\uc18c\uc778 \uc790\uc5f0\uc218\uc774\ub2e4.) [4\uc810]}\n","answer":-1,"score":-1,"review":null}
87
+ {"id":39,"name":"23_geom","problem":"23. \\text{\uc88c\ud45c\uacf5\uac04\uc758 \uc810 } A(2, 2, -1) \\text{\uc744 } x \\text{\ucd95\uc5d0 \ub300\ud558\uc5ec \ub300\uce6d\uc774\ub3d9\ud55c \uc810\uc744 } B \\text{\ub77c \ud558\uc790. \uc810 } C(-2, 1, 1) \\text{\uc5d0 \ub300\ud558\uc5ec \uc120\ubd84 BC\uc758 \uae38\uc774\ub294? [2\uc810]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
88
+ {"id":40,"name":"24_geom","problem":"24. \\text{\ucd08\uc810\uc774 } F\\left(\\frac{1}{3}, 0\\right) \\text{\uc774\uace0 \uc900\uc120\uc774 } x = -\\frac{1}{3} \\text{\uc778 \ud3ec\ubb3c\uc120\uc774 \uc810 } (a, 2) \\text{\ub97c \uc9c0\ub0a0 \ub54c, } a \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
89
+ {"id":41,"name":"25_geom","problem":"25. \\text{\ud0c0\uc6d0 } \\frac{x^2}{a^2} + \\frac{y^2}{b^2} = 1 \\text{ \uc704\uc758 \uc810 } (2, 1) \\text{\uc5d0\uc11c\uc758 \uc811\uc120\uc758 \uae30\uc6b8\uae30\uac00 } -\\frac{1}{2} \\text{\uc77c \ub54c, \uc774 \ud0c0\uc6d0\uc758 \ub450 \ucd08\uc810 \uc0ac\uc774\uc758 \uac70\ub9ac\ub294? (\ub2e8, } a, b \\text{\ub294 \uc591\uc218\uc774\ub2e4.) [3\uc810]}\n\n\\begin{itemize}\n \\item[1] 2\\sqrt{3}\n \\item[2] 4\n \\item[3] 2\\sqrt{5}\n \\item[4] 2\\sqrt{6}\n \\item[5] 2\\sqrt{7}\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
90
+ {"id":42,"name":"26_geom","problem":"26. \\text{\uc88c\ud45c\ud3c9\uba74\uc5d0\uc11c \uc138 \ubca1\ud130 } \\vec{a} = (2, 4), \\vec{b} = (2, 8), \\vec{c} = (1, 0) \\text{\uc5d0 \ub300\ud558\uc5ec \ub450 \ubca1\ud130 } \\vec{p}, \\vec{q} \\text{\uac00}\n\n(\\vec{p} - \\vec{a}) \\cdot (\\vec{p} - \\vec{b}) = 0, \\quad \\vec{q} = \\frac{1}{2} \\vec{a} + t \\vec{c} \\quad (t \\text{\ub294 \uc2e4\uc218}) \\text{\ub97c \ub9cc\uc871\uc2dc\ud0ac \ub54c, } |\\vec{p} - \\vec{q}| \\text{\uc758 \ucd5c\uc19f\uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{3}{2}\n \\item[2] 2\n \\item[3] \\frac{5}{2}\n \\item[4] 3\n \\item[5] \\frac{7}{2}\n\\end{itemize}\n","answer":-1,"score":-1,"review":null}
91
+ {"id":43,"name":"27_geom","problem":"27. \\text{\uc88c\ud45c\uacf5\uac04\uc5d0 \uc9c1\uc120 AB\ub97c \ud3ec\ud568\ud558\ub294 \ud3c9\uba74 } \\alpha \\text{\uac00 \uc788\ub2e4. \ud3c9\uba74 } \\alpha \\text{ \uc704\uc5d0 \uc788\uc9c0 \uc54a\uc740 \uc810 C\uc5d0 \ub300\ud558\uc5ec \uc9c1\uc120 AB\uc640 \uc9c1\uc120 AC\uac00 \uc774\ub8e8\ub294 \uc608\uac01\uc758 \ud06c\uae30\ub97c } \\theta_1 \\text{\uc774\ub77c \ud560 \ub54c } \\sin \\theta_1 = \\frac{4}{5} \\text{\uc774\uace0, \uc9c1\uc120 AC\uc640 \ud3c9\uba74 } \\alpha \\text{\uac00 \uc774\ub8e8\ub294 \uc608\uac01\uc758 \ud06c\uae30\ub294 } \\frac{\\pi}{2} - \\theta_1 \\text{\uc774\ub2e4. \ud3c9\uba74 ABC\uc640 \ud3c9\uba74 } \\alpha \\text{\uac00 \uc774\ub8e8\ub294 \uc608\uac01\uc758 \ud06c\uae30\ub97c } \\theta_2 \\text{\ub77c \ud560 \ub54c, } \\cos \\theta_2 \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{\\sqrt{7}}{4}\n \\item[2] \\frac{\\sqrt{7}}{5}\n \\item[3] \\frac{\\sqrt{7}}{6}\n \\item[4] \\frac{\\sqrt{7}}{7}\n \\item[5] \\frac{\\sqrt{7}}{8}\n\\end{itemize}\n","answer":-1,"score":-1,"review":1.0}
92
+ {"id":44,"name":"28_geom","problem":"28. \\text{\ub450 \ucd08\uc810\uc774 } F(c, 0), F'(-c, 0) \\text{(} c > 0 \\text{)\uc778 \uc30d\uace1\uc120 } C \\text{\uc640 } y \\text{\ucd95 \uc704\uc758 \uc810 } A \\text{\uac00 \uc788\ub2e4. \uc30d\uace1\uc120 } C \\text{\uac00 \uc120\ubd84 } AF \\text{\uc640 \ub9cc\ub098\ub294 \uc810\uc744 } P, \\text{\uc120\ubd84 } AF' \\text{\uacfc \ub9cc\ub098\ub294 \uc810\uc744 } P' \\text{\uc774\ub77c \ud558\uc790. \uc9c1\uc120 } AF \\text{\ub294 \uc30d\uace1\uc120 } C \\text{\uc758 \ud55c \uc811\uadfc\uc120\uacfc \ud3c9\ud589\ud558\uace0 }\n\\frac{AP}{PP'} = \\frac{5}{6}, PF = 1 \\text{\uc77c \ub54c, \uc30d\uace1\uc120 } C \\text{\uc758 \uc8fc\ucd95\uc758 \uae38\uc774\ub294? [4\uc810]}\n\n\\begin{itemize}\n \\item[1] \\frac{13}{6}\n \\item[2] \\frac{9}{4}\n \\item[3] \\frac{7}{3}\n \\item[4] \\frac{29}{12}\n \\item[5] \\frac{5}{2}\n\\end{itemize}\n","answer":-1,"score":-1,"review":1.0}
93
+ {"id":45,"name":"29_geom","problem":"29. \\text{\ud3c9\uba74 } \\alpha \\text{ \uc704\uc5d0 } \\overline{AB} = \\overline{CD} = \\overline{AD} = 2, \\quad \\angle ABC = \\angle BCD = \\frac{\\pi}{3} \\text{\uc778 \uc0ac\ub2e4\ub9ac\uaf34 ABCD\uac00 \uc788\ub2e4. \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a4\ub294 \ud3c9\uba74 } \\alpha \\text{ \uc704\uc758 \ub450 \uc810 P, Q\uc5d0 \ub300\ud558\uc5ec } \\overrightarrow{CP} \\cdot \\overrightarrow{DQ} \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [4\uc810]}\n\n\\text{(\uac00) } \\overrightarrow{AC} = 2(\\overrightarrow{AD} + \\overrightarrow{BP})\n\\text{(\ub098) } \\overrightarrow{AC} \\cdot \\overrightarrow{PQ} = 6\n\\text{(\ub2e4) } 2 \\times \\angle BQA = \\angle PBQ < \\frac{\\pi}{2}\n","answer":-1,"score":-1,"review":2.0}
94
+ {"id":46,"name":"30_geom","problem":"30. \\text{\uc88c\ud45c\uacf5\uac04\uc5d0 \uc815\uc0ac\uba74\uccb4 ABCD\uac00 \uc788\ub2e4. \uc815\uc0bc\uac01\ud615 BCD\uc758 \uc678\uc2ec\uc744 \uc911\uc2ec\uc73c\ub85c \ud558\uace0 \uc810 B\ub97c \uc9c0\ub098\ub294 \uad6c\ub97c } S \\text{\ub77c \ud558\uc790.}\n\\text{\uad6c } S \\text{\uc640 \uc120\ubd84 AB\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 B\uac00 \uc544\ub2cc \uc810\uc744 P,}\n\\text{\uad6c } S \\text{\uc640 \uc120\ubd84 AC\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 C\uac00 \uc544\ub2cc \uc810\uc744 Q,}\n\\text{\uad6c } S \\text{\uc640 \uc120\ubd84 AD\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 D\uac00 \uc544\ub2cc \uc810\uc744 R\ub77c \ud558\uace0, \uc810 P\uc5d0\uc11c \uad6c } S \\text{\uc5d0 \uc811\ud558\ub294 \ud3c9\uba74\uc744 } \\alpha \\text{\ub77c \ud558\uc790.}\n\\text{\uad6c } S \\text{\uc758 \ubc18\uc9c0\ub984\uc758 \uae38\uc774\uac00 6\uc77c \ub54c, \uc0bc\uac01\ud615 PQR\uc758 \ud3c9\uba74 } \\alpha \\text{\uc704\ub85c\uc758 \uc815\uc0ac\uc601\uc758 \ub113\uc774\ub294 } k \\alpha \\text{\uc774\ub2e4. } k^2 \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [4\uc810]}\n","answer":-1,"score":-1,"review":null}
95
+ >>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
data/json/2023/math_temp.json ADDED
@@ -0,0 +1,336 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "id": 1,
3
+ "name": "1",
4
+ "problem": "1. \\left( \\frac{4}{2^{\\sqrt{2}}} \\right)^{2 + \\sqrt{2}} \\text{์˜ ๊ฐ’์€? [2์ ]}\n\n\\begin{itemize}\n \\item[1] $\\frac{1}{4}$\n \\item[2] $\\frac{1}{2}$\n \\item[3] $1$\n \\item[4] $2$\n \\item[5] $4$\n\\end{itemize}\n",
5
+ "answer": -1,
6
+ "score": -1
7
+ }
8
+ {
9
+ "id": 2,
10
+ "name": "2",
11
+ "problem": "2. \\lim_{x \\to \\infty} \\frac{\\sqrt{x^2 - 2 + 3x}}{x + 5} \\text{์˜ ๊ฐ’์€? [2์ ]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n",
12
+ "answer": -1,
13
+ "score": -1
14
+ }
15
+ {
16
+ "id": 3,
17
+ "name": "3",
18
+ "problem": "3. \\text{๊ณต๋น„๊ฐ€ ์–‘์ˆ˜์ธ ๋“ฑ๋น„์ˆ˜์—ด } \\{a_n\\}\\text{์ด}\n\n\\[ a_2 + a_4 = 30, \\quad a_4 + a_6 = \\frac{15}{2} \\]\n\\text{๋ฅผ ๋งŒ์กฑ์‹œํ‚ฌ ๋•Œ, } a_1 \\text{์˜ ๊ฐ’์€? [3์ ]}\n\n\\begin{itemize}\n \\item[1] 48\n \\item[2] 56\n \\item[3] 64\n \\item[4] 72\n \\item[5] 80\n\\end{itemize}\n",
19
+ "answer": -1,
20
+ "score": -1
21
+ }
22
+ {
23
+ "id": 4,
24
+ "name": "4",
25
+ "problem": "4. \\text{๋‹คํ•ญํ•จ์ˆ˜ } f(x) \\text{์— ๋Œ€ํ•˜์—ฌ ํ•จ์ˆ˜ } g(x) \\text{๋ฅผ}\n\n\\[ g(x) = x^2 f(x) \\]\n\\text{๋ผ ํ•˜์ž. } f(2) = 1, \\ f'(2) = 3 \\text{์ผ ๋•Œ, } g'(2) \\text{์˜ ๊ฐ’์€? [3์ ]}\n\n\\begin{itemize}\n \\item[1] 12\n \\item[2] 14\n \\item[3] 16\n \\item[4] 18\n \\item[5] 20\n\\end{itemize}\n",
26
+ "answer": -1,
27
+ "score": -1
28
+ }
29
+ {
30
+ "id": 5,
31
+ "name": "5",
32
+ "problem": "5. \\tan \\theta < 0 \\text{์ด๊ณ } \\cos \\left( \\frac{\\pi}{2} + \\theta \\right) = \\frac{\\sqrt{5}}{5} \\text{์ผ ๋•Œ, } \\cos \\theta \\text{์˜ ๊ฐ’์€? [3์ ]}\n\n\\begin{itemize}\n \\item[1] - \\frac{2 \\sqrt{5}}{5}\n \\item[2] - \\frac{\\sqrt{5}}{5}\n \\item[3] 0\n \\item[4] \\frac{\\sqrt{5}}{5}\n \\item[5] \\frac{2 \\sqrt{5}}{5}\n\\end{itemize}\n",
33
+ "answer": -1,
34
+ "score": -1
35
+ }
36
+ {
37
+ "id": 6,
38
+ "name": "6",
39
+ "problem": "6. \\text{ํ•จ์ˆ˜ } f(x) = 2x^3 - 9x^2 + ax + 5 \\text{๋Š” } x = 1 \\text{์—์„œ ๊ทน๋Œ€์ด๊ณ , } x = b \\text{์—์„œ ๊ทน์†Œ์ด๋‹ค. } a + b \\text{์˜ ๊ฐ’์€? (๋‹จ, } a, b \\text{๋Š” ์ƒ์ˆ˜์ด๋‹ค.) [3์ ]}\n\n\\begin{itemize}\n \\item[1] 12\n \\item[2] 14\n \\item[3] 16\n \\item[4] 18\n \\item[5] 20\n\\end{itemize}\n",
40
+ "answer": -1,
41
+ "score": -1
42
+ }
43
+ {
44
+ "id": 7,
45
+ "name": "7",
46
+ "problem": "7. \\text{๋ชจ๋“  ํ•ญ์ด ์–‘์ˆ˜์ด๊ณ  ์ฒซ์งธํ•ญ๊ณผ ๊ณต์ฐจ๊ฐ€ ๊ฐ™์€ ๋“ฑ์ฐจ์ˆ˜์—ด } \\{a_n\\}\\text{์ด}\n\n\\[ \\sum_{k=1}^{15} \\frac{1}{\\sqrt{a_k} + \\sqrt{a_{k+1}}} = 2 \\]\n\\text{๋ฅผ ๋งŒ์กฑ์‹œํ‚ฌ ๋•Œ, } a_4 \\text{์˜ ๊ฐ’์€? [3์ ]}\n\n\\begin{itemize}\n \\item[1] 6\n \\item[2] 7\n \\item[3] 8\n \\item[4] 9\n \\item[5] 10\n\\end{itemize}\n",
47
+ "answer": -1,
48
+ "score": -1
49
+ }
50
+ {
51
+ "id": 8,
52
+ "name": "8",
53
+ "problem": "8. \\text{์  } (0, 4) \\text{์—์„œ ๊ณก์„  } y = x^3 - x + 2 \\text{์— ๊ทธ์€ ์ ‘์„ ์˜ } x \\text{์ ˆํŽธ์€? [3์ ]}\n\n\\begin{itemize}\n \\item[1] -\\frac{1}{2}\n \\item[2] -1\n \\item[3] -\\frac{3}{2}\n \\item[4] -2\n \\item[5] -\\frac{5}{2}\n\\end{itemize}\n",
54
+ "answer": -1,
55
+ "score": -1
56
+ }
57
+ {
58
+ "id": 9,
59
+ "name": "9",
60
+ "problem": "9. \\text{ํ•จ์ˆ˜}\n\n\\[ f(x) = a - \\sqrt{3} \\tan 2x \\]\n\\text{๊ฐ€ ๋‹ซํžŒ๊ตฌ๊ฐ„} \\left[ -\\frac{\\pi}{6}, b \\right] \\text{์—์„œ ์ตœ๋Œ€๊ฐ’ 7, ์ตœ์†Ÿ๊ฐ’ 3์„ ๊ฐ€์งˆ ๋•Œ, } a \\times b \\text{์˜ ๊ฐ’์€? (๋‹จ, } a, b \\text{๋Š” ์ƒ์ˆ˜์ด๋‹ค.) [4์ ]}\n\n\\begin{itemize}\n \\item[1] \\frac{\\pi}{2}\n \\item[2] \\frac{5\\pi}{12}\n \\item[3] \\frac{\\pi}{3}\n \\item[4] \\frac{\\pi}{4}\n \\item[5] \\frac{\\pi}{6}\n\\end{itemize}\n",
61
+ "answer": -1,
62
+ "score": -1
63
+ }
64
+ {
65
+ "id": 10,
66
+ "name": "10",
67
+ "problem": "10. \\text{๋‘ ๊ณก์„  } y = x^3 + x^2, \\ y = -x^2 + k \\text{์™€ } y \\text{์ถ•์œผ๋กœ ๋‘˜๋Ÿฌ์‹ธ์ธ ๋ถ€๋ถ„์˜ ๋„“์ด๋ฅผ } A, \\text{ ๋‘ ๊ณก์„  } y = x^3 + x^2, \\ y = -x^2 + k \\text{์™€ ์ง์„  } x = 2 \\text{๋กœ ๋‘˜๋Ÿฌ์‹ธ์ธ ๋ถ€๋ถ„์˜ ๋„“์ด๋ฅผ } B \\text{๋ผ ํ•˜์ž.} A = B \\text{์ผ ๋•Œ, ์ƒ์ˆ˜ } k \\text{์˜ ๊ฐ’์€? (๋‹จ, } 4 < k < 5) [4์ ]}\n\n\\begin{itemize}\n \\item[1] \\frac{25}{6}\n \\item[2] \\frac{13}{3}\n \\item[3] \\frac{9}{2}\n \\item[4] \\frac{14}{3}\n \\item[5] \\frac{29}{6}\n\\end{itemize}\n",
68
+ "answer": -1,
69
+ "score": -1,
70
+ "review": 1
71
+ }
72
+ {
73
+ "id": 11,
74
+ "name": "11",
75
+ "problem": "11. \\text{๊ทธ๋ฆผ๊ณผ ๊ฐ™์ด ์‚ฌ๊ฐํ˜• } ABCD \\text{๊ฐ€ ํ•œ ์›์— ๋‚ด์ ‘ํ•˜๊ณ }\n\n\\[ \\overline{AB} = 5, \\quad \\overline{AC} = 3 \\sqrt{5}, \\quad \\overline{AD} = 7, \\quad \\angle BAC = \\angle CAD \\]\n\\text{์ผ ๋•Œ, ์ด ์›์˜ ๋ฐ˜์ง€๋ฆ„์˜ ๊ธธ์ด๋Š”? [4์ ]}\n\n\\begin{itemize}\n \\item[1] \\frac{5 \\sqrt{2}}{2}\n \\item[2] \\frac{8 \\sqrt{5}}{5}\n \\item[3] \\frac{5 \\sqrt{5}}{3}\n \\item[4] \\frac{8 \\sqrt{2}}{3}\n \\item[5] \\frac{9 \\sqrt{3}}{4}\n\\end{itemize}\n",
76
+ "answer": -1,
77
+ "score": -1,
78
+ "review": 1
79
+ }
80
+ {
81
+ "id": 12,
82
+ "name": "12",
83
+ "problem": "12. \\text{์‹ค์ˆ˜ ์ „์ฒด์˜ ์ง‘ํ•ฉ์—์„œ ์—ฐ์†์ธ ํ•จ์ˆ˜ } f(x) \\text{๊ฐ€ ๋‹ค์Œ ์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œํ‚จ๋‹ค.}\n\n\\[ n - 1 \\leq x < n \\text{์ผ ๋•Œ, } |f(x)| = |6(x - n + 1)(x - n)| \\text{์ด๋‹ค. (๋‹จ, } n \\text{์€ ์ž์—ฐ์ˆ˜์ด๋‹ค.)} \\]\n\n\\text{์—ด๋ฆฐ๊ตฌ๊ฐ„ } (0, 4) \\text{์—์„œ ์ •๏ฟฝ๏ฟฝ๋œ ํ•จ์ˆ˜} \n\\[ g(x) = \\int_0^x f(t) dt - \\int_x^4 f(t) dt \\]\n\\text{๊ฐ€ } x = 2 \\text{์—์„œ ์ตœ์†Ÿ๊ฐ’ 0์„ ๊ฐ€์งˆ ๋•Œ, } \\int_{\\frac{1}{2}}^4 f(x) dx \\text{์˜ ๊ฐ’์€? [4์ ]}\n\n\\begin{itemize}\n \\item[1] -\\frac{3}{2}\n \\item[2] -\\frac{1}{2}\n \\item[3] \\frac{1}{2}\n \\item[4] \\frac{3}{2}\n \\item[5] \\frac{5}{2}\n\\end{itemize}\n",
84
+ "answer": -1,
85
+ "score": -1
86
+ }
87
+ {
88
+ "id": 13,
89
+ "name": "13",
90
+ "problem": "13. \\text{์ž์—ฐ์ˆ˜ } m(m \\geq 2) \\text{์— ๋Œ€ํ•˜์—ฌ } m^{12} \\text{์˜ } n \\text{์ œ๊ณฑ๊ทผ ์ค‘์—์„œ ์ •์ˆ˜๊ฐ€ ์กด์žฌํ•˜๋„๋ก ํ•˜๋Š” 2 ์ด์ƒ์˜ ์ž์—ฐ์ˆ˜ } n \\text{์˜ ๊ฐœ์ˆ˜๋ฅผ } f(m) \\text{์ด๋ผ ํ•  ๋•Œ,} \n\\[ \\sum_{m=2}^{9} f(m) \\text{์˜ ๊ฐ’์€? [4์ ]} \\]\n\n\\begin{itemize}\n \\item[1] 37\n \\item[2] 42\n \\item[3] 47\n \\item[4] 52\n \\item[5] 57\n\\end{itemize}\n",
91
+ "answer": -1,
92
+ "score": -1
93
+ }
94
+ {
95
+ "id": 14,
96
+ "name": "14",
97
+ "problem": "14. \\text{๋‹คํ•ญํ•จ์ˆ˜ } f(x) \\text{์— ๋Œ€ํ•˜์—ฌ ํ•จ์ˆ˜ } g(x) \\text{๋ฅผ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •์˜ํ•œ๋‹ค.}\n\n\\[ g(x) = \\begin{cases} x & (x < -1 \\text{ ๋˜๋Š” } x > 1) \\\\ f(x) & (-1 \\leq x \\leq 1) \\end{cases} \\]\n\\text{ํ•จ์ˆ˜ } h(x) = \\lim_{t \\to 0^+} g(x+t) \\times \\lim_{t \\to 2^+} g(x+t) \\text{์— ๋Œ€ํ•˜์—ฌ} \n\\text{๋ณด๊ธฐ์—์„œ ์˜ณ์€ ๊ฒƒ๋งŒ์„ ์žˆ๋Š” ๋Œ€๋กœ ๊ณ ๋ฅธ ๊ฒƒ์€? [4์ ]}\n\n\\<๋ณด๊ธฐ>\n\nใ„ฑ. h(1) = 3 \n\nใ„ด. ํ•จ์ˆ˜ h(x)๋Š” ์‹ค์ˆ˜ ์ „์ฒด์˜ ์ง‘ํ•ฉ์—์„œ ์—ฐ์†์ด๋‹ค. \n\nใ„ท. ํ•จ์ˆ˜ g(x)๊ฐ€ ๋‹ซํžŒ๊ตฌ๊ฐ„ \\([-1, 1]\\)์—์„œ ๊ฐ์†Œํ•˜๊ณ  \\(g(-1) = -2\\)์ด๋ฉด ํ•จ์ˆ˜ h(x)๋Š” ์‹ค์ˆ˜ ์ „์ฒด์˜ ์ง‘ํ•ฉ์—์„œ ์ตœ์†Ÿ๊ฐ’์„ ๊ฐ–๋Š”๋‹ค.\n\n\\begin{itemize}\n \\item[1] ใ„ฑ\n \\item[2] ใ„ด\n \\item[3] ใ„ฑ, ใ„ด\n \\item[4] ใ„ฑ, ใ„ท\n \\item[5] ใ„ด, ใ„ท\n\\end{itemize}\n",
98
+ "answer": -1,
99
+ "score": -1
100
+ }
101
+ {
102
+ "id": 15,
103
+ "name": "15",
104
+ "problem": "15. \\text{๋ชจ๋“  ํ•ญ์ด ์ž์—ฐ์ˆ˜์ด๊ณ  ๋‹ค์Œ ์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œํ‚ค๋Š” ๋ชจ๋“  ์ˆ˜์—ด } \\{a_n\\} \\text{์— ๋Œ€ํ•˜์—ฌ } a_9 \\text{์˜ ์ตœ๋Œ€๊ฐ’๊ณผ ์ตœ์†Ÿ๊ฐ’์„ ๊ฐ๊ฐ } M, m \\text{์ด๋ผ ํ•  ๋•Œ, } M + m \\text{์˜ ๊ฐ’์€? [4์ ]}\n\n\\text{(๊ฐ€) } a_7 = 40 \n\n\\text{(๋‚˜) ๋ชจ๋“  ์ž์—ฐ์ˆ˜ } n \\text{์— ๋Œ€ํ•˜์—ฌ}\n\\[ a_{n+2} = \\begin{cases} a_{n+1} + a_n & (a_{n+1}\\text{์ด } 3 \\text{์˜ ๋ฐฐ์ˆ˜๊ฐ€ ์•„๋‹Œ ๊ฒฝ์šฐ}) \\\\ \\frac{1}{3} a_{n+1} & (a_{n+1}\\text{์ด } 3 \\text{์˜ ๋ฐฐ์ˆ˜์ธ ๊ฒฝ์šฐ}) \\end{cases} \\]\n\n\\begin{itemize}\n \\item[1] 216\n \\item[2] 218\n \\item[3] 220\n \\item[4] 222\n \\item[5] 224\n\\end{itemize}\n",
105
+ "answer": -1,
106
+ "score": -1
107
+ }
108
+ {
109
+ "id": 16,
110
+ "name": "16",
111
+ "problem": "16. \\text{๋ฐฉ์ •์‹}\n\n\\[ \\log_2(3x + 2) = 2 + \\log_2(x - 2) \\]\n\\text{๋ฅผ ๋งŒ์กฑ์‹œํ‚ค๋Š” ์‹ค์ˆ˜ } x \\text{์˜ ๊ฐ’์„ ๊ตฌํ•˜์‹œ์˜ค. [3์ ]}\n",
112
+ "answer": -1,
113
+ "score": -1
114
+ }
115
+ {
116
+ "id": 17,
117
+ "name": "17",
118
+ "problem": "17. \\text{ํ•จ์ˆ˜ } f(x) \\text{์— ๋Œ€ํ•˜์—ฌ } f'(x) = 4x^3 - 2x \\text{์ด๊ณ  } f(0) = 3 \\text{์ผ ๋•Œ, } f(2) \\text{์˜ ๊ฐ’์„ ๊ตฌํ•˜์‹œ์˜ค. [3์ ]}\n",
119
+ "answer": -1,
120
+ "score": -1
121
+ }
122
+ {
123
+ "id": 18,
124
+ "name": "18",
125
+ "problem": "18. \\text{๋‘ ์ˆ˜์—ด } \\{a_n\\}, \\{b_n\\} \\text{์— ๋Œ€ํ•˜์—ฌ}\n\n\\[ \\sum_{k=1}^{5} (3a_k + 5) = 55, \\quad \\sum_{k=1}^{5} (a_k + b_k) = 32 \\]\n\\text{์ผ ๋•Œ, } \\sum_{k=1}^{5} b_k \\text{์˜ ๊ฐ’์„ ๊ตฌํ•˜์‹œ์˜ค. [3์ ]}\n",
126
+ "answer": -1,
127
+ "score": -1
128
+ }
129
+ {
130
+ "id": 19,
131
+ "name": "19",
132
+ "problem": "19. \\text{๋ฐฉ์ •์‹ } 2x^3 - 6x^2 + k = 0 \\text{์˜ ์„œ๋กœ ๋‹ค๋ฅธ ์–‘์˜ ์‹ค๊ทผ์˜ ๊ฐœ์ˆ˜๊ฐ€ 2๊ฐ€ ๋˜๋„๋ก ํ•˜๋Š” ์ •์ˆ˜ } k \\text{์˜ ๊ฐœ์ˆ˜๋ฅผ ๊ตฌํ•˜์‹œ์˜ค. [3์ ]}\n",
133
+ "answer": -1,
134
+ "score": -1
135
+ }
136
+ {
137
+ "id": 20,
138
+ "name": "20",
139
+ "problem": "20. \\text{์ˆ˜์ง์„  ์œ„๋ฅผ ์›€์ง์ด๋Š” ์  P์˜ ์‹œ๊ฐ } t(t \\geq 0) \\text{์—์„œ์˜ ์†๋„ } v(t) \\text{์™€ ๊ฐ€์†๋„ } a(t) \\text{๊ฐ€ ๋‹ค์Œ ์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œํ‚จ๋‹ค.}\n\n\\text{(๊ฐ€) } 0 \\leq t \\leq 2 \\text{์ผ ๋•Œ, } v(t) = 2t^3 - 8t \\text{์ด๋‹ค.}\n\\text{(๋‚˜) } t \\geq 2 \\text{์ผ ๋•Œ, } a(t) = 6t + 4 \\text{์ด๋‹ค.}\n\n\\text{์‹œ๊ฐ } t = 0 \\text{์—์„œ } t = 3 \\text{๊นŒ์ง€ ์  P๊ฐ€ ์›€์ง์ธ ๊ฑฐ๋ฆฌ๋ฅผ ๊ตฌํ•˜์‹œ์˜ค. [4์ ]}\n",
140
+ "answer": -1,
141
+ "score": -1
142
+ }
143
+ {
144
+ "id": 21,
145
+ "name": "21",
146
+ "problem": "21. \\text{์ž์—ฐ์ˆ˜ } n \\text{์— ๋Œ€ํ•˜์—ฌ ํ•จ์ˆ˜ } f(x) \\text{๋ฅผ}\n\n\\[ f(x) = \\begin{cases} |3^x + 2 - n| & (x < 0) \\\\ |\\log_2(x + 4) - n| & (x \\geq 0) \\end{cases} \\]\n\\text{์ด๋ผ ํ•˜์ž. ์‹ค์ˆ˜ } t \\text{์— ๋Œ€ํ•˜์—ฌ } x \\text{์— ๋Œ€ํ•œ ๋ฐฉ์ •์‹ } f(x) = t \\text{์˜ ์„œ๋กœ ๋‹ค๋ฅธ ์‹ค๊ทผ์˜ ๊ฐœ์ˆ˜๋ฅผ } g(t) \\text{๋ผ ํ•  ๋•Œ, ํ•จ์ˆ˜ } g(t) \\text{์˜ ์ตœ๋Œ“๊ฐ’์ด 4๊ฐ€ ๋˜๋„๋ก ํ•˜๋Š” ๋ชจ๋“  ์ž์—ฐ์ˆ˜ } n \\text{์˜ ๊ฐ’์˜ ํ•ฉ์„ ๊ตฌํ•˜์‹œ์˜ค. [4์ ]}\n",
147
+ "answer": -1,
148
+ "score": -1
149
+ }
150
+ {
151
+ "id": 22,
152
+ "name": "22",
153
+ "problem": "22. \\text{์ตœ๊ณ ์ฐจํ•ญ์˜ ๊ณ„์ˆ˜๊ฐ€ 1์ธ ์‚ผ์ฐจํ•จ์ˆ˜ } f(x) \\text{์™€ ์‹ค์ˆ˜ ์ „์ฒด์˜ ์ง‘ํ•ฉ์—์„œ ์—ฐ์†์ธ ํ•จ์ˆ˜ } g(x) \\text{๊ฐ€ ๋‹ค์Œ ์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œํ‚ฌ ๋•Œ, } f(4) \\text{์˜ ๊ฐ’์„ ๊ตฌํ•˜์‹œ์˜ค. [4์ ]}\n\n\\text{(๊ฐ€) ๋ชจ๋“  ์‹ค์ˆ˜ } x \\text{์— ๋Œ€ํ•˜์—ฌ } f(x) = f(1) + (x - 1)f'(g(x)) \\text{์ด๋‹ค.}\n\\text{(๋‚˜) ํ•จ์ˆ˜ } g(x) \\text{์˜ ์ตœ์†Ÿ๊ฐ’์€ } \\frac{5}{2} \\text{์ด๋‹ค.}\n\\text{(๋‹ค) } f(0) = -3, \\quad f(g(1)) = 6 \n",
154
+ "answer": -1,
155
+ "score": -1
156
+ }
157
+
158
+ {
159
+ "id": 23,
160
+ "name": "23_prob",
161
+ "problem": "23. \\( (x^3 + 3)^5 \\)์˜ ์ „๊ฐœ์‹์—์„œ \\(x^9\\)์˜ ๊ณ„์ˆ˜๋Š”? [2์ ]\n\\begin{itemize}\n \\item[1] 30\n \\item[2] 60\n \\item[3] 90\n \\item[4] 120\n \\item[5] 150\n\\end{itemize}\n",
162
+ "answer": -1,
163
+ "score": -1
164
+ }
165
+ {
166
+ "id": 24,
167
+ "name": "24_prob",
168
+ "problem": "24. \\text{์ˆซ์ž } 1, 2, 3, 4, 5 \\text{ ์ค‘์—์„œ ์ค‘๋ณต์„ ํ—ˆ๋ฝํ•˜์—ฌ 4๊ฐœ๋ฅผ ํƒํ•ด ์ผ๋ ฌ๋กœ ๋‚˜์—ดํ•˜์—ฌ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋Š” ๋„ค ์ž๋ฆฌ์˜ ์ž์—ฐ์ˆ˜ ์ค‘ 4000 ์ด์ƒ์ธ ํ™€์ˆ˜์˜ ๊ฐœ์ˆ˜๋Š”? [3์ ]}\n\n\\begin{itemize}\n \\item[1] 125\n \\item[2] 150\n \\item[3] 175\n \\item[4] 200\n \\item[5] 225\n\\end{itemize}\n",
169
+ "answer": -1,
170
+ "score": -1
171
+ }
172
+ {
173
+ "id": 25,
174
+ "name": "25_prob",
175
+ "problem": "25. \\text{ํฐ์ƒ‰ ๋งˆ์Šคํฌ 5๊ฐœ, ๊ฒ€์€์ƒ‰ ๋งˆ์Šคํฌ 9๊ฐœ๊ฐ€ ๋“ค์–ด ์žˆ๋Š” ์ƒ์ž๊ฐ€ ์žˆ๋‹ค. ์ด ์ƒ์ž์—์„œ ์ž„์˜๋กœ 3๊ฐœ์˜ ๋งˆ์Šคํฌ๋ฅผ ๋™์‹œ์— ๊บผ๋‚ผ ๋•Œ, ๊บผ๋‚ธ 3๊ฐœ์˜ ๋งˆ์Šคํฌ ์ค‘์—์„œ ์ ์–ด๋„ ํ•œ ๊ฐœ๊ฐ€ ํฐ์ƒ‰ ๋งˆ์Šคํฌ์ผ ํ™•๋ฅ ์€? [3์ ]}\n\n\\begin{itemize}\n \\item[1] \\frac{8}{13}\n \\item[2] \\frac{17}{26}\n \\item[3] \\frac{9}{13}\n \\item[4] \\frac{19}{26}\n \\item[5] \\frac{10}{13}\n\\end{itemize}\n",
176
+ "answer": -1,
177
+ "score": -1
178
+ }
179
+ {
180
+ "id": 26,
181
+ "name": "26_prob",
182
+ "problem": "26. \\text{์ฃผ๋จธ๋‹ˆ์— 1์ด ์ ํžŒ ํฐ ๊ณต 1๊ฐœ, 2๊ฐ€ ์ ํžŒ ํฐ ๊ณต 1๊ฐœ, 1์ด ์ ํžŒ ๊ฒ€์€ ๊ณต 1๊ฐœ, 2๊ฐ€ ์ ํžŒ ๊ฒ€์€ ๊ณต 3๊ฐœ๊ฐ€ ๋“ค์–ด ์žˆ๋‹ค. ์ด ์ฃผ๋จธ๋‹ˆ์—์„œ ์ž„์˜๋กœ 3๊ฐœ์˜ ๊ณต์„ ๋™์‹œ์— ๊บผ๋‚ด๋Š” ์‹œํ–‰์„ ํ•œ๋‹ค. ์ด ์‹œํ–‰์—์„œ ๊บผ๋‚ธ 3๊ฐœ์˜ ๊ณต ์ค‘์—์„œ ํฐ ๊ณต์ด 1๊ฐœ์ด๊ณ  ๊ฒ€์€ ๊ณต์ด 2๊ฐœ์ธ ์‚ฌ๊ฑด์„ } A, \\text{ ๊บผ๋‚ธ 3๊ฐœ์˜ ๊ณต์— ์ ํ˜€ ์žˆ๋Š” ์ˆ˜๋ฅผ ๋ชจ๋‘ ๊ณฑํ•œ ๊ฐ’์ด 8์ธ ์‚ฌ๊ฑด์„ } B \\text{๋ผ ํ•  ๋•Œ, } P(A \\cup B) \\text{์˜ ๊ฐ’์€? [3์ ]}\n\n\\begin{itemize}\n \\item[1] \\frac{11}{20}\n \\item[2] \\frac{3}{5}\n \\item[3] \\frac{13}{20}\n \\item[4] \\frac{7}{10}\n \\item[5] \\frac{3}{4}\n\\end{itemize}\n",
183
+ "answer": -1,
184
+ "score": -1,
185
+ "review": 1
186
+ }
187
+ {
188
+ "id": 27,
189
+ "name": "27_prob",
190
+ "problem": "27. \\text{์–ด๋Š ํšŒ์‚ฌ์—์„œ ์ƒ์‚ฐํ•˜๋Š” ์ƒดํ‘ธ 1๊ฐœ์˜ ์šฉ๋Ÿ‰์€ ์ •๊ทœ๋ถ„ํฌ } N(m, \\sigma^2) \\text{์„ ๋”ฐ๋ฅธ๋‹ค๊ณ  ํ•œ๋‹ค. ์ด ํšŒ์‚ฌ์—์„œ ์ƒ์‚ฐํ•˜๋Š” ์ƒดํ‘ธ ์ค‘์—์„œ 16๊ฐœ๋ฅผ ์ž„์˜์ถ”์ถœํ•˜์—ฌ ์–ป์€ ํ‘œ๋ณธํ‰๊ท ์„ ์ด์šฉํ•˜์—ฌ ๊ตฌํ•œ } m \\text{์— ๋Œ€ํ•œ ์‹ ๋ขฐ๋„ 95%์˜ ์‹ ๋ขฐ๊ตฌ๊ฐ„์ด } 746.1 \\leq m \\leq 755.9 \\text{์ด๋‹ค. ์ด ํšŒ์‚ฌ์—์„œ ์ƒ์‚ฐํ•˜๋Š” ์ƒดํ‘ธ ์ค‘์—์„œ } n \\text{๊ฐœ๋ฅผ ์ž„์˜์ถ”์ถœํ•˜์—ฌ ์–ป์€ ํ‘œ๋ณธํ‰๊ท ์„ ์ด์šฉํ•˜์—ฌ ๊ตฌํ•˜๋Š” } m \\text{์— ๋Œ€ํ•œ ์‹ ๋ขฐ๋„ 99%์˜ ์‹ ๋ขฐ๊ตฌ๊ฐ„์ด } a \\leq m \\leq b \\text{์ผ ๋•Œ, } b - a \\text{์˜ ๊ฐ’์ด 6 ์ดํ•˜๊ฐ€ ๋˜๊ธฐ ์œ„ํ•œ ์ž์—ฐ์ˆ˜ } n \\text{์˜ ์ตœ์†Ÿ๊ฐ’์€? (๋‹จ, ์šฉ๋Ÿ‰์˜ ๋‹จ์œ„๋Š” mL์ด๊ณ , } Z \\text{๊ฐ€ ํ‘œ์ค€์ •๊ทœ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅด๋Š” ํ™•๋ฅ ๋ณ€์ˆ˜์ผ ๋•Œ, } P(|Z| \\leq 1.96) = 0.95, P(|Z| \\leq 2.58) = 0.99 \\text{๋กœ ๊ณ„์‚ฐํ•œ๋‹ค.) [3์ ]}\n\n\\begin{itemize}\n \\item[1] 70\n \\item[2] 74\n \\item[3] 78\n \\item[4] 82\n \\item[5] 86\n\\end{itemize}\n",
191
+ "answer": -1,
192
+ "score": -1
193
+ }
194
+ {
195
+ "id": 28,
196
+ "name": "28_prob",
197
+ "problem": "28. \\text{์—ฐ์†ํ™•๋ฅ ๋ณ€์ˆ˜ } X \\text{๊ฐ€ ๊ฐ–๋Š” ๊ฐ’์˜ ๋ฒ”์œ„๋Š” } 0 \\leq X \\leq a \\text{์ด๊ณ , } X \\text{์˜ ํ™•๋ฅ ๋ฐ€๋„ํ•จ์ˆ˜์˜ ๊ทธ๋ž˜ํ”„๊ฐ€ ๊ทธ๋ฆผ๊ณผ ๊ฐ™๋‹ค.}\n\n\\[ P(X \\leq b) - P(X \\geq b) = \\frac{1}{4}, \\quad P(X \\leq \\sqrt{5}) = \\frac{1}{2} \\]\n\\text{์ผ ๋•Œ, } a + b + c \\text{์˜ ๊ฐ’์€? (๋‹จ, } a, b, c \\text{๋Š” ์ƒ์ˆ˜์ด๋‹ค.) [4์ ]}\n\n\\begin{itemize}\n \\item[1] \\frac{11}{2}\n \\item[2] 6\n \\item[3] \\frac{13}{2}\n \\item[4] 7\n \\item[5] \\frac{15}{2}\n\\end{itemize}\n",
198
+ "answer": -1,
199
+ "score": -1,
200
+ "review": 2
201
+ }
202
+ {
203
+ "id": 29,
204
+ "name": "29_prob",
205
+ "problem": "29. \\text{์•ž๋ฉด์—๋Š” 1๋ถ€ํ„ฐ 6๊นŒ์ง€์˜ ์ž์—ฐ์ˆ˜๊ฐ€ ํ•˜๋‚˜์”ฉ ์ ํ˜€ ์žˆ๊ณ , ๋’ท๋ฉด์—๋Š” ๋ชจ๋‘ 0์ด ํ•˜๋‚˜์”ฉ ์ ํ˜€ ์žˆ๋Š” 6์žฅ์˜ ์นด๋“œ๊ฐ€ ์žˆ๋‹ค. ์ด 6์žฅ์˜ ์นด๋“œ๊ฐ€ ๊ทธ๋ฆผ๊ณผ ๊ฐ™์ด 6 ์ดํ•˜์˜ ์ž์—ฐ์ˆ˜ } k \\text{์— ๋Œ€ํ•˜์—ฌ } k \\text{๋ฒˆ์งธ ์ž๋ฆฌ์— ์ž์—ฐ์ˆ˜ } k \\text{๊ฐ€ ๋ณด์ด๋„๋ก ๋†“์—ฌ ์žˆ๋‹ค.}\n\n\\text{์ด 6์žฅ์˜ ์นด๋“œ์™€ ํ•œ ๊ฐœ์˜ ์ฃผ์‚ฌ์œ„๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋‹ค์Œ ์‹œํ–‰์„ ํ•œ๋‹ค.}\n\n\\[ \\text{์ฃผ์‚ฌ์œ„๋ฅผ ํ•œ ๋ฒˆ ๋˜์ ธ ๋‚˜์˜จ ๋ˆˆ์˜ ์ˆ˜๊ฐ€ } k \\text{์ด๋ฉด } k \\text{๋ฒˆ์งธ ์ž๋ฆฌ์— ๋†“์—ฌ ์žˆ๋Š” ์นด๋“œ๋ฅผ ํ•œ ๋ฒˆ ๋’ค์ง‘์–ด ์ œ์ž๋ฆฌ์— ๋†“๋Š”๋‹ค.} \\]\n\n\\text{์œ„์˜ ์‹œํ–‰์„ 3๋ฒˆ ๋ฐ˜๋ณตํ•œ ํ›„ 6์žฅ์˜ ์นด๋“œ์— ๋ณด์ด๋Š” ๋ชจ๋“  ์ˆ˜์˜ ํ•ฉ์ด ์ง์ˆ˜์ผ ๋•Œ, ์ฃผ์‚ฌ์œ„์˜ 1์˜ ๋ˆˆ์ด ํ•œ ๋ฒˆ๋งŒ ๋‚˜์™”์„ ํ™•๋ฅ ์€ } \\frac{q}{p} \\text{์ด๋‹ค. } p + q \\text{์˜ ๊ฐ’์„ ๊ตฌํ•˜์‹œ์˜ค. (๋‹จ, } p \\text{์™€ } q \\text{๋Š” ์„œ๋กœ์†Œ์ธ ์ž์—ฐ์ˆ˜์ด๋‹ค.) [4์ ]}\n",
206
+ "answer": -1,
207
+ "score": -1,
208
+ "review": 1
209
+ }
210
+ {
211
+ "id": 30,
212
+ "name": "30_prob",
213
+ "problem": "30. \\text{์ง‘ํ•ฉ } X = \\{x | x \\text{๋Š” 10 ์ดํ•˜์˜ ์ž์—ฐ์ˆ˜}\\} \\text{์— ๋Œ€ํ•˜์—ฌ ๋‹ค์Œ ์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œํ‚ค๋Š” ํ•จ์ˆ˜ } f: X \\to X \\text{์˜ ๊ฐœ์ˆ˜๋ฅผ ๊ตฌํ•˜์‹œ์˜ค. [4์ ]}\n\n\\text{(๊ฐ€) 9 ์ดํ•˜์˜ ๋ชจ๋“  ์ž์—ฐ์ˆ˜ } x \\text{์— ๋Œ€ํ•˜์—ฌ } f(x) \\leq f(x+1) \\text{์ด๋‹ค.}\n\\text{(๋‚˜) } 1 \\leq x \\leq 5 \\text{์ผ ๋•Œ } f(x) \\leq x \\text{์ด๊ณ , } 6 \\leq x \\leq 10 \\text{์ผ ๋•Œ } f(x) \\geq x \\text{์ด๋‹ค.}\n\\text{(๋‹ค) } f(6) = f(5) + 6\n",
214
+ "answer": -1,
215
+ "score": -1
216
+ }
217
+
218
+ {
219
+ "id": 31,
220
+ "name": "23_calc",
221
+ "problem": "23. \\lim_{x \\to 0} \\frac{\\ln(x+1)}{\\sqrt{x+4} - 2} \\text{์˜ ๊ฐ’์€? [2์ ]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n",
222
+ "answer": -1,
223
+ "score": -1
224
+ }
225
+ {
226
+ "id": 32,
227
+ "name": "24_calc",
228
+ "problem": "24. \\lim_{n \\to \\infty} \\frac{1}{n} \\sum_{k=1}^{n} \\sqrt{1 + \\frac{3k}{n}} \\text{์˜ ๊ฐ’์€? [3์ ]}\n\n\\begin{itemize}\n \\item[1] \\frac{4}{3}\n \\item[2] \\frac{13}{9}\n \\item[3] \\frac{14}{9}\n \\item[4] \\frac{5}{3}\n \\item[5] \\frac{16}{9}\n\\end{itemize}\n",
229
+ "answer": -1,
230
+ "score": -1
231
+ }
232
+ {
233
+ "id": 33,
234
+ "name": "25_calc",
235
+ "problem": "25. \\text{๋“ฑ๋น„์ˆ˜์—ด } \\{a_n\\} \\text{์— ๋Œ€ํ•˜์—ฌ } \\lim_{n \\to \\infty} \\frac{a_n + 1}{3^n + 2^{2n-1}} = 3 \\text{์ผ ๋•Œ, } a_2 \\text{์˜ ๊ฐ’์€? [3์ ]}\n\n\\begin{itemize}\n \\item[1] 16\n \\item[2] 18\n \\item[3] 20\n \\item[4] 22\n \\item[5] 24\n\\end{itemize}\n",
236
+ "answer": -1,
237
+ "score": -1
238
+ }
239
+ {
240
+ "id": 34,
241
+ "name": "26_calc",
242
+ "problem": "26. \\text{๊ทธ๋ฆผ๊ณผ ๊ฐ™์ด ๊ณก์„  } y = \\sqrt{\\sec^2 x} + \\tan x \\left(0 \\leq x \\leq \\frac{\\pi}{3}\\right) \\text{์™€ } x \\text{์ถ•, } y \\text{์ถ• ๋ฐ ์ง์„  } x = \\frac{\\pi}{3} \\text{๋กœ ๋‘˜๋Ÿฌ์‹ธ์ธ ๋ถ€๋ถ„์„ ๋ฐ‘๋ฉด์œผ๋กœ ํ•˜๋Š” ์ž…์ฒด๋„ํ˜•์ด ์žˆ๋‹ค. ์ด ์ž…์ฒด๋„ํ˜•์„ } x \\text{์ถ•์— ์ˆ˜์ง์ธ ํ‰๋ฉด์œผ๋กœ ์ž๋ฅธ ๋‹จ๋ฉด์ด ๋ชจ๋‘ ์ •์‚ฌ๊ฐํ˜•์ผ ๋•Œ, ์ด ์ž…์ฒด๋„ํ˜•์˜ ๋ถ€ํ”ผ๋Š”? [3์ ]}\n\n\\begin{itemize}\n \\item[1] \\frac{\\sqrt{3}}{2} + \\frac{\\ln 2}{2}\n \\item[2] \\frac{\\sqrt{3}}{2} + \\ln 2\n \\item[3] \\sqrt{3} + \\frac{\\ln 2}{2}\n \\item[4] \\sqrt{3} + \\ln 2\n \\item[5] \\sqrt{3} + 2\\ln 2\n\\end{itemize}\n",
243
+ "answer": -1,
244
+ "score": -1,
245
+ "review": 1
246
+ }
247
+ {
248
+ "id": 35,
249
+ "name": "27_prob",
250
+ "problem": "27. \\text{๊ทธ๋ฆผ๊ณผ ๊ฐ™์ด ์ค‘์‹ฌ์ด } O, \\text{๋ฐ˜์ง€๋ฆ„์˜ ๊ธธ์ด๊ฐ€ 1์ด๊ณ  ์ค‘์‹ฌ๊ฐ์˜ ํฌ๊ธฐ๊ฐ€ } \\frac{\\pi}{2} \\text{์ธ ๋ถ€์ฑ„๊ผด } OA_1B_1 \\text{์ด ์žˆ๋‹ค. ํ˜ธ } A_1B_1 \\text{ ์œ„์— ์  } P_1, \\text{์„ ๋ถ„ } OA_1 \\text{ ์œ„์— ์  } C_1, \\text{์„ ๋ถ„ } OB_1 \\text{ ์œ„์— ์  } D_1 \\text{์„ ์‚ฌ๊ฐํ˜• } OC_1P_1D_1 \\text{์ด } OC_1 : OD_1 = 3:4 \\text{์ธ ์ง์‚ฌ๊ฐํ˜•์ด ๋˜๋„๋ก ์žก๋Š”๋‹ค.}\n\n\\text{๋ถ€์ฑ„๊ผด } OA_1B_1 \\text{์˜ ๋‚ด๋ถ€์— ์  } Q_1 \\text{์„ } PQ_1 = AQ_1, \\angle PQ_1A_1 = \\frac{\\pi}{2} \\text{๊ฐ€ ๋˜๋„๋ก ์žก๊ณ , ์ด๋“ฑ๋ณ€์‚ผ๊ฐํ˜• } P_1Q_1A_1 \\text{์— ์ƒ‰์น ํ•˜์—ฌ ์–ป์€ ๊ทธ๋ฆผ์„ } R_1 \\text{์ด๋ผ ํ•˜์ž.}\n\\text{๊ทธ๋ฆผ } R_1 \\text{์—์„œ ์„ ๋ถ„ } OA_1 \\text{ ์œ„์˜ ์  } A_2 \\text{์™€ ์„ ๋ถ„ } OB_1 \\text{ ์œ„์˜ ์  } B_2 \\text{๋ฅผ } OQ_1 = OA_2 = OB_2 \\text{๊ฐ€ ๋˜๋„๋ก ์žก๊ณ , ์ค‘์‹ฌ์ด } O, \\text{๋ฐ˜์ง€๋ฆ„์˜ ๊ธธ์ด๊ฐ€ } OQ_1, \\text{์ค‘์‹ฌ๊ฐ์˜ ํฌ๊ธฐ๊ฐ€ } \\frac{\\pi}{2} \\text{์ธ ๋ถ€์ฑ„๊ผด } OA_2B_2 \\text{๋ฅผ ๊ทธ๋ฆฐ๋‹ค. ๊ทธ๋ฆฐ } R_1 \\text{์„ ์–ป์€ ๊ฒƒ๊ณผ ๊ฐ™์€ ๋ฐฉ๋ฒ•์œผ๋กœ ๋„ค ์  } P_2, C_2, D_2, Q_2 \\text{๋ฅผ ์žก๊ณ , ์ด๋“ฑ๋ณ€์‚ผ๊ฐํ˜• } P_2Q_2A_2 \\text{์— ์ƒ‰์น ํ•˜์—ฌ ์–ป์€ ๊ทธ๋ฆผ์„ } R_2 \\text{๋ผ ํ•˜์ž. ์ด์™€ ๊ฐ™์€ ๊ณผ์ •์„ ๊ณ„์†ํ•˜์—ฌ } n \\text{๋ฒˆ์งธ ์–ป์€ ๊ทธ๋ฆผ } R_n \\text{์— ์ƒ‰์น ๋˜์–ด ์žˆ๋Š” ๋ถ€๋ถ„์˜ ๋„“์ด๋ฅผ } S_n \\text{์ด๋ผ ํ•  ๋•Œ, } \\lim_{n \\to \\infty} S_n \\text{์˜ ๊ฐ’์€? [3์ ]}\n\n\\begin{itemize}\n \\item[1] \\frac{9}{40}\n \\item[2] \\frac{1}{4}\n \\item[3] \\frac{11}{40}\n \\item[4] \\frac{3}{10}\n \\item[5] \\frac{13}{40}\n\\end{itemize}\n",
251
+ "answer": -1,
252
+ "score": -1,
253
+ "review": 1
254
+ }
255
+ {
256
+ "id": 36,
257
+ "name": "28_prob",
258
+ "problem": "28. \\text{๊ทธ๋ฆผ๊ณผ ๊ฐ™์ด ์ค‘์‹ฌ์ด } O \\text{์ด๊ณ  ๊ธธ์ด๊ฐ€ 2์ธ ์„ ๋ถ„ } AB \\text{๋ฅผ ์ง€๋ฆ„์œผ๋กœ ํ•˜๋Š” ๋ฐ˜์› ์œ„์— } \\angle AOC = \\frac{\\pi}{2} \\text{์ธ ์  } C \\text{๊ฐ€ ์žˆ๋‹ค.}\n\\text{ํ˜ธ } BC \\text{ ์œ„์— ์  } P \\text{์™€ ํ˜ธ } CA \\text{ ์œ„์— ์  } Q \\text{๋ฅผ } PB = QC \\text{๊ฐ€ ๋˜๋„๋ก ์žก๊ณ , ์„ ๋ถ„ } AP \\text{ ์œ„์— ์  } R \\text{์„ } \\angle CQR = \\frac{\\pi}{2} \\text{๊ฐ€ ๋˜๋„๋ก ์žก๋Š”๋‹ค.}\n\\text{์„ ๋ถ„ } AP \\text{์™€ ์„ ๋ถ„ } CO \\text{์˜ ๊ต์ ์„ } S \\text{๋ผ ํ•˜์ž. } \\angle PAB = \\theta \\text{์ผ ๋•Œ, ์‚ผ๊ฐํ˜• } POB \\text{์˜ ๋„“์ด๋ฅผ } f(\\theta), \\text{์‚ฌ๊ฐํ˜• } CQRS \\text{์˜ ๋„“์ด๋ฅผ } g(\\theta) \\text{๋ผ ํ•˜์ž.}\n\n\\lim_{\\theta \\to 0^+} \\frac{3f(\\theta) - 2g(\\theta)}{\\theta^2} \\text{์˜ ๊ฐ’์€? (๋‹จ, } 0 < \\theta < \\frac{\\pi}{4} \\text{) [4์ ]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n",
259
+ "answer": -1,
260
+ "score": -1,
261
+ "review": 1
262
+ }
263
+ {
264
+ "id": 37,
265
+ "name": "29_prob",
266
+ "problem": "29. \\text{์„ธ ์ƒ์ˆ˜ } a, b, c \\text{์— ๋Œ€ํ•˜์—ฌ ํ•จ์ˆ˜ } f(x) = ae^{2x} + be^x + c \\text{๊ฐ€ ๋‹ค์Œ ์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œํ‚จ๋‹ค.}\n\n\\text{(๊ฐ€) } \\lim_{x \\to -\\infty} \\frac{f(x) + 6}{e^x} = 1\n\\text{(๋‚˜) } f(\\ln 2) = 0\n\n\\text{ํ•จ์ˆ˜ } f(x) \\text{์˜ ์—ญํ•จ์ˆ˜๋ฅผ } g(x) \\text{๋ผ ํ•  ๋•Œ,}\n\\[ \\int_0^{14} g(x) dx = p + q \\ln 2 \\text{์ด๋‹ค. } p + q \\text{์˜ ๊ฐ’๏ฟฝ๏ฟฝ๏ฟฝ ๊ตฌํ•˜์‹œ์˜ค.}\n\\text{(๋‹จ, } p, q \\text{๋Š” ์œ ๋ฆฌ์ˆ˜์ด๊ณ , } \\ln 2 \\text{๋Š” ๋ฌด๋ฆฌ์ˆ˜์ด๋‹ค.) [4์ ]}\n",
267
+ "answer": -1,
268
+ "score": -1
269
+ }
270
+ {
271
+ "id": 38,
272
+ "name": "30_prob",
273
+ "problem": "30. \\text{์ตœ๊ณ ์ฐจํ•ญ์˜ ๊ณ„์ˆ˜๊ฐ€ ์–‘์ˆ˜์ธ ์‚ผ์ฐจํ•จ์ˆ˜ } f(x) \\text{์™€ ํ•จ์ˆ˜ } g(x) = e^{\\sin \\pi x} - 1 \\text{์— ๋Œ€ํ•˜์—ฌ ์‹ค์ˆ˜ ์ „์ฒด์˜ ์ง‘ํ•ฉ์—์„œ ์ •์˜๋œ ํ•ฉ์„ฑํ•จ์ˆ˜ } h(x) = g(f(x)) \\text{๊ฐ€ ๋‹ค์Œ ์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œํ‚จ๋‹ค.}\n\n\\text{(๊ฐ€) ํ•จ์ˆ˜ } h(x) \\text{๋Š” } x = 0 \\text{์—์„œ ๊ทน๋Œ“๊ฐ’ 0์„ ๊ฐ–๋Š”๋‹ค.}\n\\text{(๋‚˜) ์—ด๋ฆฐ๊ตฌ๊ฐ„ } (0, 3) \\text{์—์„œ ๋ฐฉ์ •์‹ } h(x) = 1 \\text{์˜ ์„œ๋กœ ๋‹ค๋ฅธ ์‹ค๊ทผ์˜ ๊ฐœ์ˆ˜๋Š” 7์ด๋‹ค.}\n\nf(3) = \\frac{1}{2}, f'(3) = 0 \\text{์ผ ๋•Œ, } f(2) = \\frac{q}{p} \\text{์ด๋‹ค. } p + q \\text{์˜ ๊ฐ’์„ ๊ตฌํ•˜์‹œ์˜ค. (๋‹จ, } p \\text{์™€ } q \\text{๋Š” ์„œ๋กœ์†Œ์ธ ์ž์—ฐ์ˆ˜์ด๋‹ค.) [4์ ]}\n",
274
+ "answer": -1,
275
+ "score": -1
276
+ }
277
+
278
+ {
279
+ "id": 39,
280
+ "name": "23_geom",
281
+ "problem": "23. \\text{์ขŒํ‘œ๊ณต๊ฐ„์˜ ์  } A(2, 2, -1) \\text{์„ } x \\text{์ถ•์— ๋Œ€ํ•˜์—ฌ ๋Œ€์นญ์ด๋™ํ•œ ์ ์„ } B \\text{๋ผ ํ•˜์ž. ์  } C(-2, 1, 1) \\text{์— ๋Œ€ํ•˜์—ฌ ์„ ๋ถ„ BC์˜ ๊ธธ์ด๋Š”? [2์ ]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n",
282
+ "answer": -1,
283
+ "score": -1
284
+ }
285
+ {
286
+ "id": 40,
287
+ "name": "24_geom",
288
+ "problem": "24. \\text{์ดˆ์ ์ด } F\\left(\\frac{1}{3}, 0\\right) \\text{์ด๊ณ  ์ค€์„ ์ด } x = -\\frac{1}{3} \\text{์ธ ํฌ๋ฌผ์„ ์ด ์  } (a, 2) \\text{๋ฅผ ์ง€๋‚  ๋•Œ, } a \\text{์˜ ๊ฐ’์€? [3์ ]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n",
289
+ "answer": -1,
290
+ "score": -1
291
+ }
292
+ {
293
+ "id": 41,
294
+ "name": "25_geom",
295
+ "problem": "25. \\text{ํƒ€์› } \\frac{x^2}{a^2} + \\frac{y^2}{b^2} = 1 \\text{ ์œ„์˜ ์  } (2, 1) \\text{์—์„œ์˜ ์ ‘์„ ์˜ ๊ธฐ์šธ๊ธฐ๊ฐ€ } -\\frac{1}{2} \\text{์ผ ๋•Œ, ์ด ํƒ€์›์˜ ๋‘ ์ดˆ์  ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ๋Š”? (๋‹จ, } a, b \\text{๋Š” ์–‘์ˆ˜์ด๋‹ค.) [3์ ]}\n\n\\begin{itemize}\n \\item[1] 2\\sqrt{3}\n \\item[2] 4\n \\item[3] 2\\sqrt{5}\n \\item[4] 2\\sqrt{6}\n \\item[5] 2\\sqrt{7}\n\\end{itemize}\n",
296
+ "answer": -1,
297
+ "score": -1
298
+ }
299
+ {
300
+ "id": 42,
301
+ "name": "26_geom",
302
+ "problem": "26. \\text{์ขŒํ‘œํ‰๋ฉด์—์„œ ์„ธ ๋ฒกํ„ฐ } \\vec{a} = (2, 4), \\vec{b} = (2, 8), \\vec{c} = (1, 0) \\text{์— ๋Œ€ํ•˜์—ฌ ๋‘ ๋ฒกํ„ฐ } \\vec{p}, \\vec{q} \\text{๊ฐ€}\n\n(\\vec{p} - \\vec{a}) \\cdot (\\vec{p} - \\vec{b}) = 0, \\quad \\vec{q} = \\frac{1}{2} \\vec{a} + t \\vec{c} \\quad (t \\text{๋Š” ์‹ค์ˆ˜}) \\text{๋ฅผ ๋งŒ์กฑ์‹œํ‚ฌ ๋•Œ, } |\\vec{p} - \\vec{q}| \\text{์˜ ์ตœ์†Ÿ๊ฐ’์€? [3์ ]}\n\n\\begin{itemize}\n \\item[1] \\frac{3}{2}\n \\item[2] 2\n \\item[3] \\frac{5}{2}\n \\item[4] 3\n \\item[5] \\frac{7}{2}\n\\end{itemize}\n",
303
+ "answer": -1,
304
+ "score": -1
305
+ }
306
+ {
307
+ "id": 43,
308
+ "name": "27_geom",
309
+ "problem": "27. \\text{์ขŒํ‘œ๊ณต๊ฐ„์— ์ง์„  AB๋ฅผ ํฌํ•จํ•˜๋Š” ํ‰๋ฉด } \\alpha \\text{๊ฐ€ ์žˆ๋‹ค. ํ‰๋ฉด } \\alpha \\text{ ์œ„์— ์žˆ์ง€ ์•Š์€ ์  C์— ๋Œ€ํ•˜์—ฌ ์ง์„  AB์™€ ์ง์„  AC๊ฐ€ ์ด๋ฃจ๋Š” ์˜ˆ๊ฐ์˜ ํฌ๊ธฐ๋ฅผ } \\theta_1 \\text{์ด๋ผ ํ•  ๋•Œ } \\sin \\theta_1 = \\frac{4}{5} \\text{์ด๊ณ , ์ง์„  AC์™€ ํ‰๋ฉด } \\alpha \\text{๊ฐ€ ์ด๋ฃจ๋Š” ์˜ˆ๊ฐ์˜ ํฌ๊ธฐ๋Š” } \\frac{\\pi}{2} - \\theta_1 \\text{์ด๋‹ค. ํ‰๋ฉด ABC์™€ ํ‰๋ฉด } \\alpha \\text{๊ฐ€ ์ด๋ฃจ๋Š” ์˜ˆ๊ฐ์˜ ํฌ๊ธฐ๋ฅผ } \\theta_2 \\text{๋ผ ํ•  ๋•Œ, } \\cos \\theta_2 \\text{์˜ ๊ฐ’์€? [3์ ]}\n\n\\begin{itemize}\n \\item[1] \\frac{\\sqrt{7}}{4}\n \\item[2] \\frac{\\sqrt{7}}{5}\n \\item[3] \\frac{\\sqrt{7}}{6}\n \\item[4] \\frac{\\sqrt{7}}{7}\n \\item[5] \\frac{\\sqrt{7}}{8}\n\\end{itemize}\n",
310
+ "answer": -1,
311
+ "score": -1,
312
+ "review": 1
313
+ }
314
+ {
315
+ "id": 44,
316
+ "name": "28_geom",
317
+ "problem": "28. \\text{๋‘ ์ดˆ์ ์ด } F(c, 0), F'(-c, 0) \\text{(} c > 0 \\text{)์ธ ์Œ๊ณก์„  } C \\text{์™€ } y \\text{์ถ• ์œ„์˜ ์  } A \\text{๊ฐ€ ์žˆ๋‹ค. ์Œ๊ณก์„  } C \\text{๊ฐ€ ์„ ๋ถ„ } AF \\text{์™€ ๋งŒ๋‚˜๋Š” ์ ์„ } P, \\text{์„ ๋ถ„ } AF' \\text{๊ณผ ๋งŒ๋‚˜๋Š” ์ ์„ } P' \\text{์ด๋ผ ํ•˜์ž. ์ง์„  } AF \\text{๋Š” ์Œ๊ณก์„  } C \\text{์˜ ํ•œ ์ ‘๊ทผ์„ ๊ณผ ํ‰ํ–‰ํ•˜๊ณ  }\n\\frac{AP}{PP'} = \\frac{5}{6}, PF = 1 \\text{์ผ ๋•Œ, ์Œ๊ณก์„  } C \\text{์˜ ์ฃผ์ถ•์˜ ๊ธธ์ด๋Š”? [4์ ]}\n\n\\begin{itemize}\n \\item[1] \\frac{13}{6}\n \\item[2] \\frac{9}{4}\n \\item[3] \\frac{7}{3}\n \\item[4] \\frac{29}{12}\n \\item[5] \\frac{5}{2}\n\\end{itemize}\n",
318
+ "answer": -1,
319
+ "score": -1,
320
+ "review": 1
321
+ }
322
+ {
323
+ "id": 45,
324
+ "name": "29_geom",
325
+ "problem": "29. \\text{ํ‰๋ฉด } \\alpha \\text{ ์œ„์— } \\overline{AB} = \\overline{CD} = \\overline{AD} = 2, \\quad \\angle ABC = \\angle BCD = \\frac{\\pi}{3} \\text{์ธ ์‚ฌ๋‹ค๋ฆฌ๊ผด ABCD๊ฐ€ ์žˆ๋‹ค. ๋‹ค์Œ ์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œํ‚ค๋Š” ํ‰๋ฉด } \\alpha \\text{ ์œ„์˜ ๋‘ ์  P, Q์— ๋Œ€ํ•˜์—ฌ } \\overrightarrow{CP} \\cdot \\overrightarrow{DQ} \\text{์˜ ๊ฐ’์„ ๊ตฌํ•˜์‹œ์˜ค. [4์ ]}\n\n\\text{(๊ฐ€) } \\overrightarrow{AC} = 2(\\overrightarrow{AD} + \\overrightarrow{BP})\n\\text{(๋‚˜) } \\overrightarrow{AC} \\cdot \\overrightarrow{PQ} = 6\n\\text{(๋‹ค) } 2 \\times \\angle BQA = \\angle PBQ < \\frac{\\pi}{2}\n",
326
+ "answer": -1,
327
+ "score": -1,
328
+ "review": 2
329
+ }
330
+ {
331
+ "id": 46,
332
+ "name": "30_geom",
333
+ "problem": "30. \\text{์ขŒํ‘œ๊ณต๊ฐ„์— ์ •์‚ฌ๋ฉด์ฒด ABCD๊ฐ€ ์žˆ๋‹ค. ์ •์‚ผ๊ฐํ˜• BCD์˜ ์™ธ์‹ฌ์„ ์ค‘์‹ฌ์œผ๋กœ ํ•˜๊ณ  ์  B๋ฅผ ์ง€๋‚˜๋Š” ๊ตฌ๋ฅผ } S \\text{๋ผ ํ•˜์ž.}\n\\text{๊ตฌ } S \\text{์™€ ์„ ๋ถ„ AB๊ฐ€ ๋งŒ๋‚˜๋Š” ์  ์ค‘ B๊ฐ€ ์•„๋‹Œ ์ ์„ P,}\n\\text{๊ตฌ } S \\text{์™€ ์„ ๋ถ„ AC๊ฐ€ ๋งŒ๋‚˜๋Š” ์  ์ค‘ C๊ฐ€ ์•„๋‹Œ ์ ์„ Q,}\n\\text{๊ตฌ } S \\text{์™€ ์„ ๋ถ„ AD๊ฐ€ ๋งŒ๋‚˜๋Š” ์  ์ค‘ D๊ฐ€ ์•„๋‹Œ ์ ์„ R๋ผ ํ•˜๊ณ , ์  P์—์„œ ๊ตฌ } S \\text{์— ์ ‘ํ•˜๋Š” ํ‰๋ฉด์„ } \\alpha \\text{๋ผ ํ•˜์ž.}\n\\text{๊ตฌ } S \\text{์˜ ๋ฐ˜์ง€๋ฆ„์˜ ๊ธธ์ด๊ฐ€ 6์ผ ๋•Œ, ์‚ผ๊ฐํ˜• PQR์˜ ํ‰๋ฉด } \\alpha \\text{์œ„๋กœ์˜ ์ •์‚ฌ์˜์˜ ๋„“์ด๋Š” } k \\alpha \\text{์ด๋‹ค. } k^2 \\text{์˜ ๊ฐ’์„ ๊ตฌํ•˜์‹œ์˜ค. [4์ ]}\n",
334
+ "answer": -1,
335
+ "score": -1
336
+ }
data/json/2024/math.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"id":1,"name":"1","problem":"1. \\left( \\frac{4}{2 ^{\\sqrt{2}}} \\right)^{2 + \\sqrt{2}} \\text{\uc758 \uac12\uc740? [2\uc810]}\n\n\\begin{itemize}\n \\item[1] $\\frac{1}{4}$\n \\item[2] $\\frac{1}{2}$\n \\item[3] $1$\n \\item[4] $2$\n \\item[5] $4$\n\\end{itemize}\n","answer":"1","score":2}
2
+ {"id":2,"name":"2","problem":"2. \\lim_{x \\to \\infty} \\frac{\\sqrt{x^2 - 2} + 3x}{x+5} \\text{\uc758 \uac12\uc740? [2\uc810]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":"4","score":2}
3
+ {"id":3,"name":"3","problem":"3. \uacf5\ube44\uac00 \uc591\uc218\uc778 \ub4f1\ube44\uc218\uc5f4 $\\{a_n\\}$\uc774\n\\[\na_2 + a_4 = 30, \\quad a_4 + a_6 = \\frac{15}{2}\n\\]\n\ub97c \ub9cc\uc871\uc2dc\ud0ac \ub54c, $a_1$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] 48\n \\item[2] 56\n \\item[3] 64\n \\item[4] 72\n \\item[5] 80\n\\end{itemize}\n","answer":"2","score":3}
4
+ {"id":4,"name":"4","problem":"4. \ub2e4\ud56d\ud568\uc218 $f(x)$\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 $g(x)$\ub97c\n\\[\ng(x) = x^2 f(x)\n\\]\n\ub77c \ud558\uc790. $f(2) = 1$, $f'(2) = 3$\uc77c \ub54c, $g'(2)$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] 12\n \\item[2] 14\n \\item[3] 16\n \\item[4] 18\n \\item[5] 20\n\\end{itemize}\n","answer":"1","score":3}
5
+ {"id":5,"name":"5","problem":"5. \\(\\tan \\theta < 0\\)\uc774\uace0 \\(\\cos \\left(\\frac{\\pi}{2} + \\theta \\right) = \\frac{\\sqrt{5}}{5}\\)\uc77c \ub54c, \\(\\cos \\theta\\)\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] \\(- \\frac{2\\sqrt{5}}{5}\\)\n \\item[2] \\(- \\frac{\\sqrt{5}}{5}\\)\n \\item[3] 0\n \\item[4] \\(\\frac{\\sqrt{5}}{5}\\)\n \\item[5] \\(\\frac{2\\sqrt{5}}{5}\\)\n\\end{itemize}\n","answer":"4","score":3}
6
+ {"id":6,"name":"6","problem":"6. \ud568\uc218 \\( f(x) = 2x^3 - 9x^2 + ax + 5 \\)\ub294 \\( x = 1 \\)\uc5d0\uc11c \uadf9\ub300\uc774\uace0, \\( x = b \\)\uc5d0\uc11c \uadf9\uc18c\uc774\ub2e4. \\( a + b \\)\uc758 \uac12\uc740? (\ub2e8, \\( a, b \\)\ub294 \uc0c1\uc218\uc774\ub2e4.) [3\uc810]\n\\begin{itemize}\n \\item[1] 12\n \\item[2] 14\n \\item[3] 16\n \\item[4] 18\n \\item[5] 20\n\\end{itemize}\n","answer":"4","score":3}
7
+ {"id":7,"name":"7","problem":"7. \ubaa8\ub4e0 \ud56d\uc774 \uc591\uc218\uc774\uace0 \uccab\uc9f8\ud56d\uacfc \uacf5\ucc28\uac00 \uac19\uc740 \ub4f1\ucc28\uc218\uc5f4 $\\{a_n\\}$\uc774 \n\\[\n\\sum_{k=1}^{15} \\frac{1}{\\sqrt{a_k} + \\sqrt{a_{k+1}}} = 2\n\\]\n\ub97c \ub9cc\uc871\uc2dc\ud0ac \ub54c, $a_4$\uc758 \uac12\uc740? \\textbf{[3\uc810]}\n\\begin{itemize}\n \\item[1] 6\n \\item[2] 7\n \\item[3] 8\n \\item[4] 9\n \\item[5] 10\n\\end{itemize}\n","answer":"5","score":3}
8
+ {"id":8,"name":"8","problem":"8. \uc810 $(0, 4)$\uc5d0\uc11c \uace1\uc120 $y = x^3 - x + 2$\uc5d0 \uadf8\uc740 \uc811\uc120\uc758 $x$\uc808\ud3b8\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] $-\\frac{1}{2}$\n \\item[2] $-1$\n \\item[3] $-\\frac{3}{2}$\n \\item[4] $-2$\n \\item[5] $-\\frac{5}{2}$\n\\end{itemize}\n","answer":"2","score":3}
9
+ {"id":9,"name":"9","problem":"9. \ud568\uc218\n\\[\nf(x) = a - \\sqrt{3} \\tan 2x\n\\]\n\uac00 \ub2eb\ud78c\uad6c\uac04 \\(\\left[ -\\frac{\\pi}{6}, b \\right]\\) \uc5d0\uc11c \ucd5c\ub313\uac12 7, \ucd5c\uc19f\uac12 3\uc744 \uac00\uc9c8 \ub54c, \\(a \\times b\\)\uc758 \uac12\uc740? (\ub2e8, \\(a, b\\)\ub294 \uc0c1\uc218\uc774\ub2e4.) [4\uc810]\n\\begin{itemize}\n \\item[1] \\(\\frac{\\pi}{2}\\)\n \\item[2] \\(\\frac{5\\pi}{12}\\)\n \\item[3] \\(\\frac{\\pi}{3}\\)\n \\item[4] \\(\\frac{\\pi}{4}\\)\n \\item[5] \\(\\frac{\\pi}{6}\\)\n\\end{itemize}\n","answer":"4","score":4}
10
+ {"id":10,"name":"10","problem":"10. \ub450 \uace1\uc120 \\(y = x^3 + x^2\\), \\(y = -x^2 + k\\)\uc640 \\(y\\) \ucd95\uc73c\ub85c \ub458\ub7ec\uc2f8\uc778 \ubd80\ubd84\uc758 \ub113\uc774\ub97c \\(A\\), \ub450 \uace1\uc120 \\(y = x^3 + x^2\\), \\(y = -x^2 + k\\)\uc640 \uc9c1\uc120 \\(x = 2\\)\ub85c \ub458\ub7ec\uc2f8\uc778 \ubd80\ubd84\uc758 \ub113\uc774\ub97c \\(B\\)\ub77c \ud558\uc790. \\(A = B\\)\uc77c \ub54c, \uc0c1\uc218 \\(k\\)\uc758 \uac12\uc740? (\ub2e8, \\(4 < k < 5\\)) [4\uc810]\n\\begin{itemize}\n \\item[1] \\(\\frac{25}{6}\\)\n \\item[2] \\(\\frac{13}{3}\\)\n \\item[3] \\(\\frac{9}{2}\\)\n \\item[4] \\(\\frac{14}{3}\\)\n \\item[5] \\(\\frac{29}{6}\\)\n\\end{itemize}\n","answer":"2","score":4}
11
+ {"id":11,"name":"11","problem":"11. \uadf8\ub9bc\uacfc \uac19\uc774 \uc0ac\uac01\ud615 ABCD\uac00 \ud55c \uc6d0\uc5d0 \ub0b4\uc811\ud558\uace0 \\\\\n\\[\n\\overline{AB} = 5, \\quad \\overline{AC} = 3\\sqrt{5}, \\quad \\overline{AD} = 7, \\quad \\angle BAC = \\angle CAD\n\\]\n\uc77c \ub54c, \uc774 \uc6d0\uc758 \ubc18\uc9c0\ub984\uc758 \uae38\uc774\ub294? \\textbf{[4\uc810]}\\\\\n\\begin{itemize}\n \\item[1] \\(\\frac{5\\sqrt{2}}{2}\\)\n \\item[2] \\(\\frac{8\\sqrt{5}}{5}\\)\n \\item[3] \\(\\frac{5\\sqrt{5}}{3}\\)\n \\item[4] \\(\\frac{8\\sqrt{2}}{3}\\)\n \\item[5] \\(\\frac{9\\sqrt{3}}{4}\\)\n\\end{itemize}\n","answer":"1","score":4}
12
+ {"id":12,"name":"12","problem":"12. \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc5f0\uc18d\uc778 \ud568\uc218 \\( f(x) \\)\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.\n\\[\n\\boxed{\nn-1 \\leq x < n \\text{\uc77c \ub54c}, \\, |f(x)| = |6(x-n+1)(x-n)| \\, \\text{\uc774\ub2e4}. \\, (\\text{\ub2e8}, n \\, \\text{\uc740 \uc790\uc5f0\uc218\uc774\ub2e4.})\n}\n\\]\n\uc5f4\ub9b0\uad6c\uac04 \\( (0, 4) \\)\uc5d0\uc11c \uc815\uc758\ub41c \ud568\uc218\n\\[\ng(x) = \\int_0^x f(t)dt - \\int_x^4 f(t)dt\n\\]\n\uac00 \\( x = 2 \\)\uc5d0\uc11c \ucd5c\uc19f\uac12 0\uc744 \uac00\uc9c8 \ub54c, \\( \\int_\\frac{1}{2}^4 f(x)dx \\)\uc758 \uac12\uc740? [4\uc810]\n\\begin{itemize}\n \\item[1] \\( -\\frac{3}{2} \\)\n \\item[2] \\( -\\frac{1}{2} \\)\n \\item[3] \\( \\frac{1}{2} \\)\n \\item[4] \\( \\frac{3}{2} \\)\n \\item[5] \\( \\frac{5}{2} \\)\n\\end{itemize}\n","answer":"3","score":4}
13
+ {"id":13,"name":"13","problem":"13. \uc790\uc5f0\uc218 $m(m \\geq 2)$\uc5d0 \ub300\ud558\uc5ec $m^{12}$\uc758 $n$\uc81c\uacf1\uadfc \uc911\uc5d0\uc11c \uc815\uc218\uac00 \uc874\uc7ac\ud558\ub3c4\ub85d \ud558\ub294 2 \uc774\uc0c1\uc758 \uc790\uc5f0\uc218 $n$\uc758 \uac1c\uc218\ub97c $f(m)$\uc774\ub77c \ud560 \ub54c,\n\\[\n\\sum_{m=2}^{9} f(m) \\text{\uc758 \uac12\uc740? [4\uc810]} \n\\]\n\\begin{itemize}\n \\item[1] 37\n \\item[2] 42\n \\item[3] 47\n \\item[4] 52\n \\item[5] 57\n\\end{itemize}\n","answer":"1","score":4}
14
+ {"id":14,"name":"14","problem":"14. \ub2e4\ud56d\ud568\uc218 $f(x)$\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 $g(x)$\ub97c \ub2e4\uc74c\uacfc \uac19\uc774 \uc815\uc758\ud55c\ub2e4.\n\\[\ng(x) = \\begin{cases} \nx & (x < -1 \\text{ \ub610\ub294 } x > 1) \\\\\nf(x) & (-1 \\leq x \\leq 1)\n\\end{cases}\n\\]\n\ud568\uc218 $h(x) = \\lim_{t \\to 0^+} g(x + t) \\times \\lim_{t \\to 2^+} g(x + t)$\uc5d0 \ub300\ud558\uc5ec \\\\\n\\textless \ubcf4\uae30\\textgreater \uc5d0\uc11c \uc633\uc740 \uac83\ub9cc\uc744 \uc788\ub294 \ub300\ub85c \uace0\ub978 \uac83\uc740? [4\uc810]\n\\textless \ubcf4\uae30\\textgreater \\\\\n\\fbox{\n \\parbox{\\textwidth}{\n \u3131. $h(1) = 3$ \\\\\n \u3134. \ud568\uc218 $h(x)$\ub294 \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc5f0\uc18d\uc774\ub2e4. \\\\\n \u3137. \ud568\uc218 $g(x)$\uac00 \ub2eb\ud78c\uad6c\uac04 $[-1, 1]$\uc5d0\uc11c \uac10\uc18c\ud558\uace0 $g(-1) = -2$\uc774\uba74 \ud568\uc218 $h(x)$\ub294 \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \ucd5c\uc19f\uac12\uc744 \uac16\ub294\ub2e4.\n }\n}\n\\begin{itemize}\n\\item[1] \u3131\n\\item[2] \u3134\n\\item[3] \u3131, \u3134\n\\item[4] \u3131, \u3137\n\\item[5] \u3134, \u3137\n\\end{itemize}\n","answer":"1","score":4}
15
+ {"id":15,"name":"15","problem":"15. \ubaa8\ub4e0 \ud56d\uc774 \uc790\uc5f0\uc218\uc774\uace0 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a4\ub294 \ubaa8\ub4e0 \uc218\uc5f4 $\\{a_n\\}$\uc5d0 \ub300\ud558\uc5ec $a_9$\uc758 \ucd5c\ub313\uac12\uacfc \ucd5c\uc19f\uac12\uc744 \uac01\uac01 $M, m$\uc774\ub77c \ud560 \ub54c, $M+m$\uc758 \uac12\uc740? \\textbf{[4\uc810]}\n\\[\n\\text{(\uac00)} \\quad a_7 = 40\n\\]\n\\text{(\ub098)} \\quad \ubaa8\ub4e0 \uc790\uc5f0\uc218 $n$\uc5d0 \ub300\ud558\uc5ec \n\\[\na_{n+2} = \n\\begin{cases} \na_{n+1} + a_n & \\text{(}a_{n+1}\\text{\uc774 3\uc758 \ubc30\uc218\uac00 \uc544\ub2cc \uacbd\uc6b0)}\\\\\n\\frac{1}{3} a_{n+1} & \\text{(}a_{n+1}\\text{\uc774 3\uc758 \ubc30\uc218\uc778 \uacbd\uc6b0)}\n\\end{cases}\n\\]\n\\begin{itemize}\n \\item[1] 216\n \\item[2] 218\n \\item[3] 220\n \\item[4] 222\n \\item[5] 224\n\\end{itemize}\n","answer":"3","score":4}
16
+ {"id":16,"name":"16","problem":"16. \ubc29\uc815\uc2dd\n\\[\n\\log_2{(3x+2)} = 2 + \\log_2{(x-2)}\n\\]\n\\text{\ub97c \ub9cc\uc871\uc2dc\ud0a4\ub294 \uc2e4\uc218 } \\( x \\) \\text{\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [3\uc810]}\n","answer":"2","score":3}
17
+ {"id":17,"name":"17","problem":"17. \ud568\uc218 $f(x)$\uc5d0 \ub300\ud558\uc5ec $f'(x) = 4x^3 - 2x$\uc774\uace0 $f(0) = 3$\uc77c \ub54c, $f(2)$\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [3\uc810]\n","answer":"8","score":3}
18
+ {"id":18,"name":"18","problem":"18. \ub450 \uc218\uc5f4 $\\{a_n\\}$, $\\{b_n\\}$\uc5d0 \ub300\ud558\uc5ec\n\\[\n\\sum_{k=1}^{5} (3a_k + 5) = 55, \\quad \\sum_{k=1}^{5} (a_k + b_k) = 32\n\\]\n\uc77c \ub54c, $\\sum_{k=1}^{5} b_k$\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [3\uc810]\n","answer":"9","score":3}
19
+ {"id":19,"name":"19","problem":"19. \ubc29\uc815\uc2dd $2x^3 - 6x^2 + k = 0$\uc758 \uc11c\ub85c \ub2e4\ub978 \uc591\uc758 \uc2e4\uadfc\uc758 \uac1c\uc218\uac00 2\uac00 \ub418\ub3c4\ub85d \ud558\ub294 \uc815\uc218 $k$\uc758 \uac1c\uc218\ub97c \uad6c\ud558\uc2dc\uc624. [3\uc810]\n","answer":"32","score":3}
20
+ {"id":20,"name":"20","problem":"20. \uc218\uc9c1\uc120 \uc704\ub97c \uc6c0\uc9c1\uc774\ub294 \uc810 P\uc758 \uc2dc\uac01 \\(t(t\\geq0)\\)\uc5d0\uc11c\uc758 \uc18d\ub3c4 \\(v(t)\\)\uc640 \uac00\uc18d\ub3c4 \\(a(t)\\)\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.\n\\[\n\\text{(\uac00)} \\quad 0 \\leq t \\leq 2 \\text{\uc77c \ub54c}, \\quad v(t) = 2t^3 - 8t \\text{\uc774\ub2e4.}\n\\]\n\\[\n\\text{(\ub098)} \\quad t \\geq 2 \\text{\uc77c \ub54c}, \\quad a(t) = 6t + 4\\text{\uc774\ub2e4.}\n\\]\n\uc2dc\uac01 \\( t=0 \\)\uc5d0\uc11c \\( t=3 \\)\uae4c\uc9c0 \uc810 P\uac00 \uc6c0\uc9c1\uc778 \uac70\ub9ac\ub97c \uad6c\ud558\uc2dc\uc624. \\hfill [4\uc810]\n","answer":"25","score":4}
21
+ {"id":21,"name":"21","problem":"21. \uc790\uc5f0\uc218 \\(n\\)\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 \\(f(x)\\)\ub97c\n\\[\nf(x) =\n\\begin{cases} \n |3^{x+2}-n| & (x<0) \\\\ \n | \\log_2 (x+4) -n| & (x \\geq 0)\n\\end{cases}\n\\]\n\uc774\ub77c \ud558\uc790. \uc2e4\uc218 \\(t\\)\uc5d0 \ub300\ud558\uc5ec \\(x\\)\uc5d0 \ub300\ud55c \ubc29\uc815\uc2dd \\(f(x) = t\\)\uc758 \uc11c\ub85c \ub2e4\ub978 \uc2e4\uadfc\uc758 \uac1c\uc218\ub97c \\(g(t)\\)\ub77c \ud560 \ub54c, \ud568\uc218 \\(g(t)\\)\uc758 \ucd5c\ub313\uac12\uc774 4\uac00 \ub418\ub3c4\ub85d \ud558\ub294 \ubaa8\ub4e0 \uc790\uc5f0\uc218 \\(n\\)\uc758 \uac12\uc758 \ud569\uc744 \uad6c\ud558\uc2dc\uc624. [4\uc810]\n","answer":"10","score":4}
22
+ {"id":22,"name":"22","problem":"22. \ucd5c\uace0\ucc28\ud56d\uc758 \uacc4\uc218\uac00 1\uc778 \uc0bc\ucc28\ud568\uc218 \\( f(x) \\)\uc640 \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc5f0\uc18d\uc778 \ud568\uc218 \\( g(x) \\)\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0ac \ub54c, \\( f(4) \\)\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. [4\uc810]\n\\[\n\\begin{aligned}\n\\text{(\uac00)} & \\quad \\text{\ubaa8\ub4e0 \uc2e4\uc218 } x \\text{\uc5d0 \ub300\ud558\uc5ec} \\\\\n& \\quad f(x) = f(1) + (x - 1)f'(g(x)) \\text{\uc774\ub2e4.} \\\\\n\\text{(\ub098)} & \\quad \\text{\ud568\uc218 } g(x) \\text{\uc758 \ucd5c\uc19f\uac12\uc740 } \\frac{5}{2} \\text{\uc774\ub2e4.} \\\\\n\\text{(\ub2e4)} & \\quad f(0) = -3, \\, f(g(1)) = 6\n\\end{aligned}\n\\]\n","answer":"483","score":4}
23
+
24
+ {"id":23,"name":"23_prob","problem":"23. \ub2e4\ud56d\uc2dd $(x^3 + 3)^5$ \uc758 \uc804\uac1c\uc2dd\uc5d0\uc11c $x^9$\uc758 \uacc4\uc218\ub294? [2\uc810]\n\\begin{itemize}\n \\item[1] 30\n \\item[2] 60\n \\item[3] 90\n \\item[4] 120\n \\item[5] 150\n\\end{itemize}\n","answer":"3","score":2}
25
+ {"id":24,"name":"24_prob","problem":"24. \uc22b\uc790 1, 2, 3, 4, 5 \uc911\uc5d0\uc11c \uc911\ubcf5\uc744 \ud5c8\ub77d\ud558\uc5ec 4\uac1c\ub97c \ud0dd\ud574 \uc77c\ub82c\ub85c \ub098\uc5f4\ud558\uc5ec \ub9cc\ub4e4 \uc218 \uc788\ub294 \ub124 \uc790\ub9ac\uc758 \uc790\uc5f0\uc218 \uc911 4000 \uc774\uc0c1\uc778 \ud640\uc218\uc758 \uac1c\uc218\ub294? [3\uc810]\n\\begin{itemize}\n \\item[1] 125\n \\item[2] 150\n \\item[3] 175\n \\item[4] 200\n \\item[5] 225\n\\end{itemize}\n","answer":"4","score":3}
26
+ {"id":25,"name":"25_prob","problem":"25. \ud770\uc0c9 \ub9c8\uc2a4\ud06c 5\uac1c, \uac80\uc740\uc0c9 \ub9c8\uc2a4\ud06c 9\uac1c\uac00 \ub4e4\uc5b4 \uc788\ub294 \uc0c1\uc790\uac00 \uc788\ub2e4. \uc774 \uc0c1\uc790\uc5d0\uc11c \uc784\uc758\ub85c 3\uac1c\uc758 \ub9c8\uc2a4\ud06c\ub97c \ub3d9\uc2dc\uc5d0 \uaebc\ub0bc \ub54c, \uaebc\ub0b8 3\uac1c\uc758 \ub9c8\uc2a4\ud06c \uc911\uc5d0\uc11c \uc801\uc5b4\ub3c4 \ud55c \uac1c\uac00 \ud770\uc0c9 \ub9c8\uc2a4\ud06c\uc77c \ud655\ub960\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{8}{13}$\n \\item[2] $\\frac{17}{26}$\n \\item[3] $\\frac{9}{13}$\n \\item[4] $\\frac{19}{26}$\n \\item[5] $\\frac{10}{13}$\n\\end{itemize}\n","answer":"5","score":3}
27
+ {"id":26,"name":"26_prob","problem":"26. \uc8fc\uba38\ub2c8\uc5d0 1\uc774 \uc801\ud78c \ud770 \uacf5 1\uac1c, 2\uac00 \uc801\ud78c \ud770 \uacf5 1\uac1c, 1\uc774 \uc801\ud78c \uac80\uc740 \uacf5 1\uac1c, 2\uac00 \uc801\ud78c \uac80\uc740 \uacf5 3\uac1c\uac00 \ub4e4\uc5b4 \uc788\ub2e4. \n\uc774 \uc8fc\uba38\ub2c8\uc5d0\uc11c \uc784\uc758\ub85c 3\uac1c\uc758 \uacf5\uc744 \ub3d9\uc2dc\uc5d0 \uaebc\ub0b4\ub294 \uc2dc\ud589\uc744 \ud55c\ub2e4. \n\uc774 \uc2dc\ud589\uc5d0\uc11c \uaebc\ub0b8 3\uac1c\uc758 \uacf5 \uc911\uc5d0\uc11c \ud770 \uacf5\uc774 1\uac1c\uc774\uace0 \uac80\uc740 \uacf5\uc774 2\uac1c\uc778 \uc0ac\uac74\uc744 A, \uaebc\ub0b8 3\uac1c\uc758 \uacf5\uc5d0 \uc801\ud600 \uc788\ub294 \uc218\ub97c \ubaa8\ub450 \uacf1\ud55c \uac12\uc774 8\uc778 \uc0ac\uac74\uc744 B\ub77c \ud560 \ub54c, $P(A \\cup B)$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{11}{20}$\n \\item[2] $\\frac{3}{5}$\n \\item[3] $\\frac{13}{20}$\n \\item[4] $\\frac{7}{10}$\n \\item[5] $\\frac{3}{4}$\n\\end{itemize}\n","answer":"2","score":3}
28
+ {"id":27,"name":"27_prob","problem":"27. \uc5b4\ub290 \ud68c\uc0ac\uc5d0\uc11c \uc0dd\uc0b0\ud558\ub294 \uc0d8\ud50c 1\uac1c\uc758 \uc6a9\ub7c9\uc740 \uc815\uaddc\ubd84\ud3ec \\( N(\\mu, \\sigma^2) \\) \ub97c \ub530\ub978\ub2e4\uace0 \ud55c\ub2e4. \uc774 \ud68c\uc0ac\uc5d0\uc11c \uc0dd\uc0b0\ud558\ub294 \uc0d8\ud50c \uc911\uc5d0\uc11c 16\uac1c\ub97c \uc784\uc758\ucd94\ucd9c\ud558\uc5ec \uc5bb\uc740 \ud45c\ubcf8\ud3c9\uade0\uc744 \uc774\uc6a9\ud558\uc5ec \uad6c\ud55c \\( m \\) \uc5d0 \ub300\ud55c \uc2e0\ub8b0\ub3c4 95\\%\uc758 \uc2e0\ub8b0\uad6c\uac04\uc774 \\( 746.1 \\leq m \\leq 755.9 \\)\uc774\ub2e4. \uc774 \ud68c\uc0ac\uc5d0\uc11c \uc0dd\uc0b0\ud558\ub294 \uc0d8\ud50c \uc911\uc5d0\uc11c \\( n \\) \uac1c\ub97c \uc784\uc758\ucd94\ucd9c\ud558\uc5ec \uc5bb\uc740 \ud45c\ubcf8\ud3c9\uade0\uc744 \uc774\uc6a9\ud558\uc5ec \uad6c\ud558\ub294 \\( m \\) \uc5d0 \ub300\ud55c \uc2e0\ub8b0\ub3c4 99\\%\uc758 \uc2e0\ub8b0\uad6c\uac04\uc774 \\( a \\leq m \\leq b \\)\uc77c \ub54c, \\( b-a \\)\uc758 \uac12\uc774 6 \uc774\ud558\uac00 \ub418\uae30 \uc704\ud55c \uc790\uc5f0\uc218 \\( n \\)\uc758 \ucd5c\uc18c\uac12\uc740? (\ub2e8, \uc6a9\ub7c9\uc758 \ub2e8\uc704\ub294 mL\uc774\uace0, \\( Z \\)\uac00 \ud45c\uc900\uc815\uaddc\ubd84\ud3ec\ub97c \ub530\ub974\ub294 \ud655\ub960\ubcc0\uc218\uc77c \ub54c, \\( P(|Z| \\leq 1.96) = 0.95, P(|Z| \\leq 2.58) = 0.99 \\) \ub85c \uacc4\uc0b0\ud55c\ub2e4.) [3\uc810]\n\\begin{itemize}\n \\item[1] 70\n \\item[2] 74\n \\item[3] 78\n \\item[4] 82\n \\item[5] 86\n\\end{itemize}\n","answer":"2","score":3}
29
+ {"id":28,"name":"28_prob","problem":"28. \uc5f0\uc18d\ud655\ub960\ubcc0\uc218 \\( X \\) \uac00 \uac16\ub294 \uac12\uc758 \ubc94\uc704\ub294 \\( 0 \\leq X \\leq a \\) \uc774\uace0, \\( X \\)\uc758 \ud655\ub960\ubc00\ub3c4\ud568\uc218\uc758 \uadf8\ub798\ud504\uac00 \uadf8\ub9bc\uacfc \uac19\ub2e4.\\\\\n\\begin{center}\n\\begin{tikzpicture}\n % Draw axes\n \\draw[->] (0,0) -- (5,0) node[right] {$x$};\n \\draw[->] (0,0) -- (0,4) node[above] {$y$};\n % Label points\n \\node at (1,-0.3) {$O$};\n \\node at (3,-0.3) {$b$};\n \\node at (5,-0.3) {$a$};\n \\node at (-0.3,3) {$c$};\n % Draw the function\n \\draw[thick] (0,0) -- (3,3) -- (5,0);\n % Dotted lines for the heights\n \\draw[dashed] (3,0) -- (3,3);\n \\draw[dashed] (5,0) -- (5,0);\n\\end{tikzpicture}\n\\end{center}\n\\( P(X \\leq b) - P(X \\geq b) = \\frac{1}{4}, \\quad P(X \\leq \\sqrt{5}) = \\frac{1}{2} \\)\uc77c \ub54c,\\\\\n\\( a + b + c \\)\uc758 \uac12\uc740? (\ub2e8, \\(a, b, c\\)\ub294 \uc0c1\uc218\uc774\ub2e4.) [4\uc810] \n\\begin{itemize}\n \\item[1] \\(\\frac{11}{2}\\)\n \\item[2] 6\n \\item[3] \\(\\frac{13}{2}\\)\n \\item[4] 7\n \\item[5] \\(\\frac{15}{2}\\)\n\\end{itemize}\n","answer":"4","score":4}
30
+ {"id":29,"name":"29_prob","problem":"29. \uc55e\uba74\uc5d0\ub294 1\ubd80\ud130 6\uae4c\uc9c0\uc758 \uc790\uc5f0\uc218\uac00 \ud558\ub098\uc529 \uc801\ud600 \uc788\uace0 \ub4b7\uba74\uc5d0\ub294 \ubaa8\ub450 0\uc774 \ud558\ub098\uc529 \uc801\ud600 \uc788\ub294 6\uc7a5\uc758 \uce74\ub4dc\uac00 \uc788\ub2e4. \uc774 6\uc7a5\uc758 \uce74\ub4dc\ub97c \uadf8\ub9bc\uacfc \uac19\uc774 6 \uc774\ud558\uc758 \uc790\uc5f0\uc218 $k$\uc5d0 \ub300\ud558\uc5ec $k$\ubc88\uc9f8 \uc790\ub9ac\uc5d0 \uc790\uc5f0\uc218 $k$\uac00 \ubcf4\uc774\ub3c4\ub85d \ub193\uc5ec \uc788\ub2e4. \\\\\n\\[\n\\begin{array}{|c|c|c|c|c|c|}\n\\hline\n\\text{1\ubc88\uc9f8 \uc790\ub9ac} & \\text{2\ubc88\uc9f8 \uc790\ub9ac} & \\text{3\ubc88\uc9f8 \uc790\ub9ac} & \\text{4\ubc88\uc9f8 \uc790\ub9ac} & \\text{5\ubc88\uc9f8 \uc790\ub9ac} & \\text{6\ubc88\uc9f8 \uc790\ub9ac} \\\\\n\\hline\n1 & 2 & 3 & 4 & 5 & 6 \\\\\n\\hline\n\\end{array}\n\\]\n\uc774 6\uc7a5\uc758 \uce74\ub4dc\uc640 \ud55c \uac1c\uc758 \uc8fc\uc0ac\uc704\ub97c \uc0ac\uc6a9\ud558\uc5ec \ub2e4\uc74c \uc2dc\ud589\uc744 \ud55c\ub2e4. \\\\\n\\framebox{\n\\parbox{\\textwidth}{\n\uc8fc\uc0ac\uc704\ub97c \ud55c \ubc88 \ub358\uc838 \ub098\uc628 \ub208\uc758 \uc218\uac00 $k$\uc774\uba74 $k$\ubc88\uc9f8 \uc790\ub9ac\uc5d0 \ub193\uc5ec \uc788\ub294 \uce74\ub4dc\ub97c \ud55c \ubc88 \ub4a4\uc9d1\uc5b4 \uc81c\uc790\ub9ac\uc5d0 \ub193\ub294\ub2e4.\n}\n} \\\\\n\uc704\uc758 \uc2dc\ud589\uc744 3\ubc88 \ubc18\ubcf5\ud55c \ud6c4 6\uc7a5\uc758 \uce74\ub4dc\uc5d0 \ubcf4\uc774\ub294 \ubaa8\ub4e0 \uc218\uc758 \ud569\uc774 \uc9dd\uc218\uc77c \ub54c, \uc8fc\uc0ac\uc704\uc758 1\uc758 \ub208\uc774 \ud55c \ubc88\ub9cc \ub098\uc654\uc744 \ud655\ub960\uc744 $\\frac{p}{q}$\uc774\ub2e4. $p+q$\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. (\ub2e8, $p$\uc640 $q$\ub294 \uc11c\ub85c\uc18c\uc778 \uc790\uc5f0\uc218\uc774\ub2e4.) [4\uc810]\n","answer":"196","score":4}
31
+ {"id":30,"name":"30_prob","problem":"30. \uc9d1\ud569 $X=\\{x \\mid x \\text{\ub294 10 \uc774\ud558\uc758 \uc790\uc5f0\uc218}\\}$\uc5d0 \ub300\ud558\uc5ec \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a4\ub294 \ud568\uc218 $f: X \\rightarrow X$\uc758 \uac1c\uc218\ub97c \uad6c\ud558\uc2dc\uc624. [4\uc810]\n\\begin{quote}\n\\textbf{(\uac00)} 9 \uc774\ud558\uc758 \ubaa8\ub4e0 \uc790\uc5f0\uc218 $x$\uc5d0 \ub300\ud558\uc5ec $f(x) \\leq f(x+1)$ \uc774\ub2e4.\n\\textbf{(\ub098)} $1 \\leq x \\leq 5$\uc77c \ub54c $f(x) \\leq x$\uc774\uace0, \\\\\n$6 \\leq x \\leq 10$\uc77c \ub54c $f(x) \\geq x$\uc774\ub2e4.\n\\textbf{(\ub2e4)} $f(6) = f(5) + 6$\n\\end{quote}\n","answer":"673","score":4}
32
+
33
+ {"id":31,"name":"23_calc","problem":"23. \\lim_{x \\to 0} \\frac{\\ln(x+1)}{\\sqrt{x+4} - 2} \\text{\uc758 \uac12\uc740? [2\uc810]}\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":"3","score":2}
34
+ {"id":32,"name":"24_calc","problem":"24. \\lim_{n \\to \\infty} \\frac{1}{n} \\sum_{k=1}^{n} \\sqrt{1 + \\frac{3k}{n}} \\text{\uc758 \uac12\uc740? [3\uc810]}\n\n\\begin{itemize}\n \\item[1] $\\frac{4}{3}$\n \\item[2] $\\frac{13}{9}$\n \\item[3] $\\frac{14}{9}$\n \\item[4] $\\frac{5}{3}$\n \\item[5] $\\frac{16}{9}$\n\\end{itemize}\n","answer":"2","score":3}
35
+ {"id":33,"name":"25_calc","problem":"25. \ub4f1\ube44\uc218\uc5f4 $\\{a_n\\}$\uc5d0 \ub300\ud558\uc5ec $\\lim_{n \\to \\infty} \\frac{a_{n+1}}{3^n + 2^{2n-1}} = 3$\uc77c \ub54c, $a_2$\uc758 \uac12\uc740? \\hspace{3mm}[3\uc810]\n\\begin{itemize}\n \\item[1] 16\n \\item[2] 18\n \\item[3] 20\n \\item[4] 22\n \\item[5] 24\n\\end{itemize}\n","answer":"4","score":3}
36
+ {"id":34,"name":"26_calc","problem":"26. \uadf8\ub9bc\uacfc \uac19\uc774 \uace1\uc120 $y=\\sqrt{\\sec^2x + \\tan x} \\ \\left( 0 \\leq x \\leq \\frac{\\pi}{3} \\right)$ \uc640 $x$\ucd95, $y$\ucd95 \ubc0f \uc9c1\uc120 $x=\\frac{\\pi}{3}$\ub85c \ub458\ub7ec\uc2f8\uc778 \ubd80\ubd84\uc744 \ubc11\uba74\uc73c\ub85c \ud558\ub294 \uc785\uccb4\ub3c4\ud615\uc774 \uc788\ub2e4. \uc774 \uc785\uccb4\ub3c4\ud615\uc744 $x$\ucd95\uc5d0 \uc218\uc9c1\uc778 \ud3c9\uba74\uc73c\ub85c \uc790\ub978 \ub2e8\uba74\uc774 \ubaa8\ub450 \uc815\uc0ac\uac01\ud615\uc77c \ub54c, \uc774 \uc785\uccb4\ub3c4\ud615\uc758 \ubd80\ud53c\ub294? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{\\sqrt{3}}{2} + \\frac{\\ln 2}{2}$\n \\item[2] $\\frac{\\sqrt{3}}{2} + \\ln 2$\n \\item[3] $\\sqrt{3} + \\frac{\\ln 2}{2}$\n \\item[4] $\\sqrt{3} + \\ln 2$\n \\item[5] $\\frac{\\sqrt{3}}{2} + 2 \\ln 2$\n\\end{itemize}\n","answer":"3","score":3}
37
+ {"id":35,"name":"27_calc","problem":"27. \uadf8\ub9bc\uacfc \uac19\uc774 \uc911\uc2ec\uc774 $O$, \ubc18\uc9c0\ub984\uc758 \uae38\uc774\uac00 $1$\uc774\uace0 \uc911\uc2ec\uac01\uc758 \ud06c\uae30\uac00 $\\frac{\\pi}{2}$\uc778 \ubd80\ucc44\uaf34 $OA_1B_1$\uc774 \uc788\ub2e4. \ud638 $A_1B_1$ \uc704\uc5d0 \uc810 $P_1$, \uc120\ubd84 $OA_1$ \uc704\uc5d0 \uc810 $C_1$, \uc120\ubd84 $OB_1$ \uc704\uc5d0 \uc810 $D_1$\uc744 \uc0ac\uac01\ud615 $OC_1P_1D_1$\uc774 $OC_1 : OD_1 = 3:4$\uc778 \uc9c1\uc0ac\uac01\ud615\uc774 \ub418\ub3c4\ub85d \uc7a1\ub294\ub2e4.\n\ubd80\ucc44\uaf34 $OA_1B_1$\uc758 \ub0b4\ubd80\uc5d0 \uc810 $Q_1$\uc744 $P_1Q_1 = A_1Q_1$, $\\angle P_1Q_1A_1 = \\frac{\\pi}{2}$\uac00 \ub418\ub3c4\ub85d \uc7a1\uace0, \uc774\ub4f1\ubcc0\uc0bc\uac01\ud615 $P_1Q_1A_1$\uc5d0 \uc0c9\uce60\ud558\uc5ec \uc5bb\uc740 \uadf8\ub9bc\uc744 $R_1$\uc774\ub77c \ud558\uc790.\n\uadf8\ub9bc $R_1$\uc5d0\uc11c \uc120\ubd84 $OA_1$ \uc704\uc758 \uc810 $A_2$\uc640 \uc120\ubd84 $OB_1$ \uc704\uc758 \uc810 $B_2$\ub97c $OQ_1 = OA_2 = OB_2$\uac00 \ub418\ub3c4\ub85d \uc7a1\uace0, \uc911\uc2ec\uc774 $O$, \ubc18\uc9c0\ub984\uc758 \uae38\uc774\uac00 $OQ_1$, \uc911\uc2ec\uac01\uc758 \ud06c\uae30\uac00 $\\frac{\\pi}{2}$\uc778 \ubd80\ucc44\uaf34 $OA_2B_2$\ub97c \uadf8\ub9b0\ub2e4. \uadf8\ub9bc $R_1$\uc744 \uc5bb\uc740 \uac83\uacfc \uac19\uc740 \ubc29\ubc95\uc73c\ub85c \ub124 \uc810 $P_2, C_2, D_2, Q_2$\ub97c \uc7a1\uace0, \uc774\ub4f1\ubcc0\uc0bc\uac01\ud615 $P_2Q_2A_2$\uc5d0 \uc0c9\uce60\ud558\uc5ec \uc5bb\uc740 \uadf8\ub9bc\uc744 $R_2$\ub77c \ud558\uc790.\n\uc774\uc640 \uac19\uc740 \uacfc\uc815\uc744 \uacc4\uc18d\ud558\uc5ec $n$\ubc88\uc9f8 \uc5bb\uc740 \uadf8\ub9bc $R_n$\uc5d0 \uc0c9\uce60\ub418\uc5b4 \uc788\ub294 \ubd80\ubd84\uc758 \ub113\uc774\ub97c $S_n$\uc774\ub77c \ud560 \ub54c, $\\lim_{n \\to \\infty} S_n$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{9}{40}$\n \\item[2] $\\frac{1}{4}$\n \\item[3] $\\frac{11}{40}$\n \\item[4] $\\frac{3}{10}$\n \\item[5] $\\frac{13}{40}$\n\\end{itemize}\n","answer":"1","score":3}
38
+ {"id":36,"name":"28_calc","problem":"28. \uadf8\ub9bc\uacfc \uac19\uc774 \uc911\uc2ec\uc774 $O$\uc774\uace0 \uae38\uc774\uac00 2\uc778 \uc120\ubd84 $AB$\ub97c \uc9c0\ub984\uc73c\ub85c \ud558\ub294 \ubc18\uc6d0 \uc704\uc5d0 $\\angle AOC = \\frac{\\pi}{2}$\uc778 \uc810 $C$\uac00 \uc788\ub2e4. \ud638 $BC$ \uc704\uc5d0 \uc810 $P$\uc640 \ud638 $CA$ \uc704\uc5d0 \uc810 $Q$\ub97c $PB = QC$\uac00 \ub418\ub3c4\ub85d \uc7a1\uace0, \uc120\ubd84 $AP$ \uc704\uc5d0 \uc810 $R$\uc744 $\\angle CQR = \\frac{\\pi}{2}$\uac00 \ub418\ub3c4\ub85d \uc7a1\ub294\ub2e4.\\\\\n\uc120\ubd84 $AP$\uc640 \uc120\ubd84 $CO$\uc758 \uad50\uc810\uc744 $S$\ub77c \ud558\uc790. $\\angle PAB = \\theta$\uc77c \ub54c, \uc0bc\uac01\ud615 $POB$\uc758 \ub113\uc774\ub97c $f(\\theta)$, \uc0ac\uac01\ud615 $CQRS$\uc758 \ub113\uc774\ub97c $g(\\theta)$\ub77c \ud558\uc790. \\\\\n\\[\n\\lim_{\\theta \\to 0^{+}} \\frac{3f(\\theta) - 2g(\\theta)}{\\theta^2}\n\\]\n\uc758 \uac12\uc740? (\ub2e8, $0 < \\theta < \\frac{\\pi}{4}$) [4\uc810] \n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":"2","score":4}
39
+ {"id":37,"name":"29_calc","problem":"29. \uc138 \uc0c1\uc218 \\(a, b, c\\)\uc5d0 \ub300\ud558\uc5ec \ud568\uc218 \\(f(x) = ae^{2x} + be^x + c\\)\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.\n\\[\n(\uac00)\\ \\lim_{x \\to -\\infty} \\frac{f(x) + 6}{e^x} = 1\n\\]\n\\[\n(\ub098)\\ f(\\ln 2) = 0\n\\]\n\ud568\uc218 \\(f(x)\\)\uc758 \uc5ed\ud568\uc218\ub97c \\(g(x)\\)\ub77c \ud560 \ub54c,\n\\[\n\\int_0^{14} g(x) dx = p + q \\ln 2 \uc774\ub2e4. \\ p+q\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624.\n\\]\n(\ub2e8, \\(p, q\\)\ub294 \uc720\ub9ac\uc218\uc774\uace0, \\(\\ln 2\\)\ub294 \ubb34\ub9ac\uc218\uc774\ub2e4.) [4\uc810]\n","answer":"162","score":4}
40
+ {"id":38,"name":"30_calc","problem":"30. \ucd5c\uace0\ucc28\ud56d\uc758 \uacc4\uc218\uac00 \uc591\uc218\uc778 \uc0bc\ucc28\ud568\uc218 $f(x)$\uc640\\\\\n\ud568\uc218 $g(x) = e^{\\sin \\pi x} - 1$\uc5d0 \ub300\ud558\uc5ec \uc2e4\uc218 \uc804\uccb4\uc758 \uc9d1\ud569\uc5d0\uc11c \uc815\uc758\ub41c \ud569\uc131\ud568\uc218 $h(x) = g(f(x))$\uac00 \ub2e4\uc74c \uc870\uac74\uc744 \ub9cc\uc871\uc2dc\ud0a8\ub2e4.\n\\begin{itemize}\n \\item[(\uac00)] \ud568\uc218 $h(x)$\ub294 $x = 0$\uc5d0\uc11c \uadf9\ub313\uac12 $0$\uc744 \uac16\ub294\ub2e4.\n \\item[(\ub098)] \uc5f4\ub9b0\uad6c\uac04 $(0, 3)$\uc5d0\uc11c \ubc29\uc815\uc2dd $h(x) = 1$\uc758 \uc11c\ub85c \ub2e4\ub978 \uc2e4\uadfc\uc758 \uac1c\uc218\ub294 7\uc774\ub2e4.\n\\end{itemize}\n$f(3) = \\frac{1}{2}, f'(3) = 0$\uc77c \ub54c, $f(2) = \\frac{q}{p}$\uc774\ub2e4. $p + q$\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. (\ub2e8, $p$\uc640 $q$\ub294 \uc11c\ub85c\uc18c\uc778 \uc790\uc5f0\uc218\uc774\ub2e4.) [4\uc810]\n","answer":"125","score":4}
41
+
42
+ {"id":39,"name":"23_geom","problem":"23. \uc88c\ud45c\uacf5\uac04\uc758 \uc810 A(2, 2, -1)\uc744 \\(x\\)\ucd95\uc5d0 \ub300\ud558\uc5ec \ub300\uce6d\uc774\ub3d9\ud55c \uc810\uc744 B\ub77c \ud558\uc790. \uc810 C(-2, 1, 1)\uc5d0 \ub300\ud558\uc5ec \uc120\ubd84 BC\uc758 \uae38\uc774\ub294? \\hfill [2\uc810]\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":"4","score":2}
43
+ {"id":40,"name":"24_geom","problem":"24. \ucd08\uc810\uc774 $F\\left(\\frac{1}{3}, 0\\right)$\uc774\uace0 \uc900\uc120\uc774 $x = -\\frac{1}{3}$\uc778 \ud3ec\ubb3c\uc120\uc774 \uc810 $(a, 2)$\ub97c \uc9c0\ub0a0 \ub54c, $a$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 2\n \\item[3] 3\n \\item[4] 4\n \\item[5] 5\n\\end{itemize}\n","answer":"3","score":3}
44
+ {"id":41,"name":"25_geom","problem":"25. \ud0c0\uc6d0 $\\dfrac{x^2}{a^2} + \\dfrac{y^2}{b^2} = 1$ \uc704\uc758 \uc810 $(2, 1)$\uc5d0\uc11c\uc758 \uc811\uc120\uc758 \uae30\uc6b8\uae30\uac00 $-\\dfrac{1}{2}$\uc77c \ub54c, \uc774 \ud0c0\uc6d0\uc758 \ub450 \ucd08\uc810 \uc0ac\uc774\uc758 \uac70\ub9ac\ub294?\\\\\n(\ub2e8, $a$, $b$\ub294 \uc591\uc218\uc774\ub2e4.) [3\uc810]\n\\begin{itemize}\n \\item[1] $2 \\sqrt{3}$\n \\item[2] $4$\n \\item[3] $2 \\sqrt{5}$\n \\item[4] $2 \\sqrt{6}$\n \\item[5] $2 \\sqrt{7}$\n\\end{itemize}\n","answer":"2","score":3}
45
+ {"id":42,"name":"26_geom","problem":"26. \uc88c\ud45c\ud3c9\uba74\uc5d0\uc11c \uc138 \ubca1\ud130\n\\[\n\\vec{a} = (2, 4), \\quad \\vec{b} = (2, 8), \\quad \\vec{c} = (1, 0)\n\\]\n\uc5d0 \ub300\ud558\uc5ec \ub450 \ubca1\ud130 \\(\\vec{p}, \\vec{q}\\)\uac00\n\\[\n(\\vec{p} - \\vec{a}) \\cdot (\\vec{p} - \\vec{b}) = 0, \\quad \\vec{q} = \\frac{1}{2} \\vec{a} + t \\vec{c} \\quad (t\ub294 \\, \uc2e4\uc218)\n\\]\n\ub97c \ub9cc\uc871\uc2dc\ud0ac \ub54c, \\(\\left| \\vec{p} - \\vec{q} \\right|\\)\uc758 \ucd5c\uc18c\uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] \\(\\frac{3}{2}\\)\n \\item[2] 2\n \\item[3] \\(\\frac{5}{2}\\)\n \\item[4] 3\n \\item[5] \\(\\frac{7}{2}\\)\n\\end{itemize}\n","answer":"5","score":3}
46
+ {"id":43,"name":"27_geom","problem":"27. \uc88c\ud45c\uacf5\uac04\uc5d0 \uc9c1\uc120 AB\ub97c \ud3ec\ud568\ud558\ub294 \ud3c9\uba74 $\\alpha$\uac00 \uc788\ub2e4. \ud3c9\uba74 $\\alpha$ \uc704\uc5d0 \uc788\uc9c0 \uc54a\uc740 \uc810 C\uc5d0 \ub300\ud558\uc5ec \uc9c1\uc120 AB\uc640 \uc9c1\uc120 AC\uac00 \uc774\ub8e8\ub294 \uc608\uac01\uc758 \ud06c\uae30\ub97c $\\theta_1$\uc774\ub77c \ud560 \ub54c $\\sin \\theta_1 = \\frac{4}{5}$\uc774\uace0, \uc9c1\uc120 AC\uc640 \ud3c9\uba74 $\\alpha$\uac00 \uc774\ub8e8\ub294 \uc608\uac01\uc758 \ud06c\uae30\ub294 $\\frac{\\pi}{2} - \\theta_1$\uc774\ub2e4. \ud3c9\uba74 ABC\uc640 \ud3c9\uba74 $\\alpha$\uac00 \uc774\ub8e8\ub294 \uc608\uac01\uc758 \ud06c\uae30\ub97c $\\theta_2$\ub77c \ud560 \ub54c, $\\cos \\theta_2$\uc758 \uac12\uc740? [3\uc810]\n\\begin{itemize}\n \\item[1] $\\frac{\\sqrt{7}}{4}$\n \\item[2] $\\frac{\\sqrt{7}}{5}$\n \\item[3] $\\frac{\\sqrt{7}}{6}$\n \\item[4] $\\frac{\\sqrt{7}}{7}$\n \\item[5] $\\frac{\\sqrt{7}}{8}$\n\\end{itemize}\n","answer":"3","score":3}
47
+ {"id":44,"name":"28_geom","problem":"28. \ub450 \ucd08\uc810\uc774 $F(c,0), F'(-c,0)(c>0)$\uc778 \uc30d\uace1\uc120 $C$\uc640 y\ucd95 \uc704\uc758 \uc810 $A$\uac00 \uc788\ub2e4. \uc30d\uace1\uc120 $C$\uac00 \uc120\ubd84 $AF$\uc640 \ub9cc\ub098\ub294 \uc810\uc744 $P$, \uc120\ubd84 $AF'$\uacfc \ub9cc\ub098\ub294 \uc810\uc744 $P'$\uc774\ub77c \ud558\uc790. \\\\\n\uc9c1\uc120 $AF$\ub294 \uc30d\uace1\uc120 $C$\uc758 \ud55c \uc810\uadfc\uc120\uacfc \ud3c9\ud589\ud558\uace0 \\\\\n\\[\n\\frac{AP}{PP'} = \\frac{5}{6}, \\quad PF = 1\n\\]\n\uc77c \ub54c, \uc30d\uace1\uc120 $C$\uc758 \uc8fc\ucd95\uc758 \uae38\uc774\ub294? \\textbf{[4\uc810]} \\\\\n\\begin{itemize}\n \\item[1] $\\frac{13}{6}$\n \\item[2] $9\/4$\n \\item[3] $7\/3$\n \\item[4] $\\frac{29}{12}$\n \\item[5] $\\frac{5}{2}$\n\\end{itemize}\n","answer":"5","score":4}
48
+ {"id":45,"name":"29_geom","problem":"29.\\ \ud3c9\uba74\\ \\(\\alpha\\) \uc704\uc5d0\\ \\(\\overline{AB} = \\overline{CD} = \\overline{AD} = 2\\),\\ \\(\\angle ABC = \\angle BCD = \\frac{\\pi}{3}\\)\\ \uc778\\ \uc0ac\ub2e4\ub9ac\uaf34\\ \\(ABCD\\)\\ \uac00\\ \uc788\ub2e4.\\ \ub2e4\uc74c\\ \uc870\uac74\uc744\\ \ub9cc\uc871\uc2dc\ud0a4\ub294\\ \ud3c9\uba74\\ \\(\\alpha\\) \uc704\uc758\\ \ub450\\ \uc810\\ \\(P, Q\\)\uc5d0\\ \ub300\ud558\uc5ec\\ \\(CP \\cdot DQ\\)\uc758\\ \uac12\uc744\\ \uad6c\ud558\uc2dc\uc624.\\ [4\uc810]\n\\begin{itemize}\n \\item[(\uac00)] \\(\\overrightarrow{AC} = 2(\\overrightarrow{AD} + \\overrightarrow{BP})\\)\n \\item[(\ub098)] \\(\\overrightarrow{AC} \\cdot \\overrightarrow{PQ} = 6\\)\n \\item[(\ub2e4)] \\(2 \\times \\angle BQA = \\angle PBQ < \\frac{\\pi}{2}\\)\n\\end{itemize}\n\\begin{center}\n\\begin{tikzpicture}\n \\draw (0,0) -- (2,0) -- (2.5,1.5) -- (-0.5,1.5) -- cycle;\n \\node[below] at (0,0) {B};\n \\node[below] at (2,0) {C};\n \\node[above] at (2.5,1.5) {D};\n \\node[above] at (-0.5,1.5) {A};\n\\end{tikzpicture}\n\\end{center}\n","answer":"11","score":4}
49
+ {"id":46,"name":"30_geom","problem":"30. \uc88c\ud45c\uacf5\uac04\uc5d0 \uc815\uc0ac\uba74\uccb4 $ABCD$ \uac00 \uc788\ub2e4. \uc815\uc0bc\uac01\ud615 $BCD$ \uc758 \uc678\uc2ec\uc744 \uc911\uc2ec\uc73c\ub85c \ud558\uace0 \uc810 $B$\ub97c \uc9c0\ub098\ub294 \uad6c\ub97c $S$\ub77c \ud558\uc790. \\\\\n\uad6c $S$\uc640 \uc120\ubd84 $AB$\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 $B$\uac00 \uc544\ub2cc \uc810\uc744 $P$, \\\\\n\uad6c $S$\uc640 \uc120\ubd84 $AC$\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 $C$\uac00 \uc544\ub2cc \uc810\uc744 $Q$, \\\\\n\uad6c $S$\uc640 \uc120\ubd84 $AD$\uac00 \ub9cc\ub098\ub294 \uc810 \uc911 $D$\uac00 \uc544\ub2cc \uc810\uc744 $R$ \ud558\uace0, \\\\\n\uc810 $P$\uc5d0\uc11c \uad6c $S$\uc5d0 \uc811\ud558\ub294 \ud3c9\uba74\uc744 $\\alpha$\ub77c \ud558\uc790. \\\\\n\uad6c $S$\uc758 \ubc18\uc9c0\ub984\uc758 \uae38\uc774\uac00 6\uc77c \ub54c, \uc0bc\uac01\ud615 $PQR$\uc758 \ud3c9\uba74 $\\alpha$ \uc704\ub85c\uc758 \uc815\uc0ac\uc601\uc758 \ub113\uc774\ub294 $k$\uc774\ub2e4. $k^2$\uc758 \uac12\uc744 \uad6c\ud558\uc2dc\uc624. \\hfill [4\uc810]\n","answer":"147","score":4}
test_dataset.ipynb DELETED
@@ -1,104 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "metadata": {},
7
- "outputs": [],
8
- "source": [
9
- "from datasets import load_dataset\n",
10
- "\n",
11
- "ds = load_dataset(\"cfpark00/KoreanSAT\")"
12
- ]
13
- },
14
- {
15
- "cell_type": "code",
16
- "execution_count": 9,
17
- "metadata": {},
18
- "outputs": [
19
- {
20
- "data": {
21
- "text/plain": [
22
- "DatasetDict({\n",
23
- " 2023_math: Dataset({\n",
24
- " features: ['id', 'name', 'problem', 'answer', 'score', 'review'],\n",
25
- " num_rows: 46\n",
26
- " })\n",
27
- " 2024_math: Dataset({\n",
28
- " features: ['id', 'name', 'problem', 'answer', 'score', 'review'],\n",
29
- " num_rows: 46\n",
30
- " })\n",
31
- "})"
32
- ]
33
- },
34
- "execution_count": 9,
35
- "metadata": {},
36
- "output_type": "execute_result"
37
- }
38
- ],
39
- "source": [
40
- "ds"
41
- ]
42
- },
43
- {
44
- "cell_type": "code",
45
- "execution_count": 13,
46
- "metadata": {},
47
- "outputs": [
48
- {
49
- "data": {
50
- "text/plain": [
51
- "{'id': 31,\n",
52
- " 'name': '23_calc',\n",
53
- " 'problem': '23. \\\\lim_{x \\\\to 0} \\\\frac{\\\\ln(x+1)}{\\\\sqrt{x+4} - 2} \\\\text{์˜ ๊ฐ’์€? [2์ ]}\\n\\n\\\\begin{itemize}\\n \\\\item[1] 1\\n \\\\item[2] 2\\n \\\\item[3] 3\\n \\\\item[4] 4\\n \\\\item[5] 5\\n\\\\end{itemize}\\n',\n",
54
- " 'answer': 3,\n",
55
- " 'score': 2,\n",
56
- " 'review': None}"
57
- ]
58
- },
59
- "execution_count": 13,
60
- "metadata": {},
61
- "output_type": "execute_result"
62
- }
63
- ],
64
- "source": [
65
- "ds[\"2024_math\"][30]"
66
- ]
67
- },
68
- {
69
- "cell_type": "code",
70
- "execution_count": null,
71
- "metadata": {},
72
- "outputs": [],
73
- "source": []
74
- },
75
- {
76
- "cell_type": "code",
77
- "execution_count": null,
78
- "metadata": {},
79
- "outputs": [],
80
- "source": []
81
- }
82
- ],
83
- "metadata": {
84
- "kernelspec": {
85
- "display_name": "venv1",
86
- "language": "python",
87
- "name": "python3"
88
- },
89
- "language_info": {
90
- "codemirror_mode": {
91
- "name": "ipython",
92
- "version": 3
93
- },
94
- "file_extension": ".py",
95
- "mimetype": "text/x-python",
96
- "name": "python",
97
- "nbconvert_exporter": "python",
98
- "pygments_lexer": "ipython3",
99
- "version": "3.10.9"
100
- }
101
- },
102
- "nbformat": 4,
103
- "nbformat_minor": 2
104
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
to_parquet.ipynb CHANGED
@@ -2,16 +2,25 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
 
5
  "execution_count": 19,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
9
  "from datasets import load_dataset\n",
10
  "import json"
 
 
 
 
 
 
 
11
  ]
12
  },
13
  {
14
  "cell_type": "code",
 
15
  "execution_count": 21,
16
  "metadata": {},
17
  "outputs": [],
@@ -32,11 +41,15 @@
32
  {
33
  "cell_type": "code",
34
  "execution_count": 22,
 
 
 
35
  "metadata": {},
36
  "outputs": [
37
  {
38
  "data": {
39
  "application/vnd.jupyter.widget-view+json": {
 
40
  "model_id": "462231fd51404fd290bffe90a8c0b158",
41
  "version_major": 2,
42
  "version_minor": 0
@@ -80,6 +93,9 @@
80
  "data": {
81
  "application/vnd.jupyter.widget-view+json": {
82
  "model_id": "3598e1ab98304d5a98a1cd7c322c7fa6",
 
 
 
83
  "version_major": 2,
84
  "version_minor": 0
85
  },
@@ -89,16 +105,140 @@
89
  },
90
  "metadata": {},
91
  "output_type": "display_data"
 
92
  }
93
  ],
94
  "source": [
95
  "dataset=load_dataset(\"json\",data_files={\"2022_math\":\"./data/json/2022/math.json\",\n",
96
  " \"2023_math\":\"./data/json/2023/math.json\"})"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
  ]
98
  },
99
  {
100
  "cell_type": "code",
 
101
  "execution_count": 25,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
  "metadata": {},
103
  "outputs": [
104
  {
@@ -106,6 +246,7 @@
106
  "text/plain": [
107
  "{'id': 1,\n",
108
  " 'name': '1',\n",
 
109
  " 'problem': '1. $\\\\left(2^{\\\\sqrt{3}} \\\\times 4\\\\right)^{\\\\sqrt{3} - 2}$ ์˜ ๊ฐ’์€? [2์ ] \\\\begin{itemize} \\\\item[1] \\\\frac{1}{4} \\\\item[2] \\\\frac{1}{2} \\\\item[3] 1 \\\\item[4] 2 \\\\item[5] 4 \\\\end{itemize}',\n",
110
  " 'answer': 2,\n",
111
  " 'score': 2,\n",
@@ -114,28 +255,73 @@
114
  ]
115
  },
116
  "execution_count": 25,
 
 
 
 
 
 
 
 
117
  "metadata": {},
118
  "output_type": "execute_result"
119
  }
120
  ],
121
  "source": [
 
122
  "dataset[\"2022_math\"][0]"
 
 
 
123
  ]
124
  },
125
  {
126
  "cell_type": "code",
 
127
  "execution_count": 24,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
  "metadata": {},
129
  "outputs": [
130
  {
131
  "data": {
132
  "application/vnd.jupyter.widget-view+json": {
 
133
  "model_id": "f612f040825040c6affa3b897f2633ef",
 
 
 
134
  "version_major": 2,
135
  "version_minor": 0
136
  },
137
  "text/plain": [
 
138
  "Pushing dataset shards to the dataset hub: 0%| | 0/1 [00:00<?, ?it/s]"
 
 
 
139
  ]
140
  },
141
  "metadata": {},
@@ -143,6 +329,7 @@
143
  },
144
  {
145
  "data": {
 
146
  "application/vnd.jupyter.widget-view+json": {
147
  "model_id": "f3cb1129210b4586bbb81b52357c424e",
148
  "version_major": 2,
@@ -215,6 +402,49 @@
215
  "source": [
216
  "#save as parquet\n",
217
  "dataset.push_to_hub(\"cfpark00/KoreanSAT\")"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
218
  ]
219
  },
220
  {
@@ -224,6 +454,113 @@
224
  "outputs": [],
225
  "source": []
226
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
227
  {
228
  "cell_type": "code",
229
  "execution_count": null,
@@ -248,7 +585,11 @@
248
  "name": "python",
249
  "nbconvert_exporter": "python",
250
  "pygments_lexer": "ipython3",
 
251
  "version": "3.10.9"
 
 
 
252
  }
253
  },
254
  "nbformat": 4,
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ <<<<<<< HEAD
6
  "execution_count": 19,
7
  "metadata": {},
8
  "outputs": [],
9
  "source": [
10
  "from datasets import load_dataset\n",
11
  "import json"
12
+ =======
13
+ "execution_count": 2,
14
+ "metadata": {},
15
+ "outputs": [],
16
+ "source": [
17
+ "from datasets import load_dataset"
18
+ >>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
19
  ]
20
  },
21
  {
22
  "cell_type": "code",
23
+ <<<<<<< HEAD
24
  "execution_count": 21,
25
  "metadata": {},
26
  "outputs": [],
 
41
  {
42
  "cell_type": "code",
43
  "execution_count": 22,
44
+ =======
45
+ "execution_count": 4,
46
+ >>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
47
  "metadata": {},
48
  "outputs": [
49
  {
50
  "data": {
51
  "application/vnd.jupyter.widget-view+json": {
52
+ <<<<<<< HEAD
53
  "model_id": "462231fd51404fd290bffe90a8c0b158",
54
  "version_major": 2,
55
  "version_minor": 0
 
93
  "data": {
94
  "application/vnd.jupyter.widget-view+json": {
95
  "model_id": "3598e1ab98304d5a98a1cd7c322c7fa6",
96
+ =======
97
+ "model_id": "b5d51386a14e407ca2bdd18926ef997c",
98
+ >>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
99
  "version_major": 2,
100
  "version_minor": 0
101
  },
 
105
  },
106
  "metadata": {},
107
  "output_type": "display_data"
108
+ <<<<<<< HEAD
109
  }
110
  ],
111
  "source": [
112
  "dataset=load_dataset(\"json\",data_files={\"2022_math\":\"./data/json/2022/math.json\",\n",
113
  " \"2023_math\":\"./data/json/2023/math.json\"})"
114
+ =======
115
+ },
116
+ {
117
+ "data": {
118
+ "application/vnd.jupyter.widget-view+json": {
119
+ "model_id": "a3015bdd603e44c789b8347863bb94c8",
120
+ "version_major": 2,
121
+ "version_minor": 0
122
+ },
123
+ "text/plain": [
124
+ "Generating 2024_math split: 0 examples [00:00, ? examples/s]"
125
+ ]
126
+ },
127
+ "metadata": {},
128
+ "output_type": "display_data"
129
+ }
130
+ ],
131
+ "source": [
132
+ "dataset=load_dataset(\"json\",data_files={\"2023_math\":\"./data/json/2023/math.json\",\n",
133
+ " \"2024_math\":\"./data/json/2024/math.json\"})"
134
+ >>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
135
  ]
136
  },
137
  {
138
  "cell_type": "code",
139
+ <<<<<<< HEAD
140
  "execution_count": 25,
141
+ =======
142
+ "execution_count": 5,
143
+ "metadata": {},
144
+ "outputs": [
145
+ {
146
+ "data": {
147
+ "application/vnd.jupyter.widget-view+json": {
148
+ "model_id": "221c4bba0e78418b9686c1ba0a0fa668",
149
+ "version_major": 2,
150
+ "version_minor": 0
151
+ },
152
+ "text/plain": [
153
+ "Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
154
+ ]
155
+ },
156
+ "metadata": {},
157
+ "output_type": "display_data"
158
+ },
159
+ {
160
+ "data": {
161
+ "application/vnd.jupyter.widget-view+json": {
162
+ "model_id": "1763d5a9fc5c4c8099d0deb716f06c73",
163
+ "version_major": 2,
164
+ "version_minor": 0
165
+ },
166
+ "text/plain": [
167
+ "Creating parquet from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
168
+ ]
169
+ },
170
+ "metadata": {},
171
+ "output_type": "display_data"
172
+ },
173
+ {
174
+ "data": {
175
+ "application/vnd.jupyter.widget-view+json": {
176
+ "model_id": "04f7bfc0e76c438ab84048301cb0e10e",
177
+ "version_major": 2,
178
+ "version_minor": 0
179
+ },
180
+ "text/plain": [
181
+ "Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
182
+ ]
183
+ },
184
+ "metadata": {},
185
+ "output_type": "display_data"
186
+ },
187
+ {
188
+ "data": {
189
+ "application/vnd.jupyter.widget-view+json": {
190
+ "model_id": "8707c527afaf47d0928b5167c509d5f7",
191
+ "version_major": 2,
192
+ "version_minor": 0
193
+ },
194
+ "text/plain": [
195
+ "Creating parquet from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
196
+ ]
197
+ },
198
+ "metadata": {},
199
+ "output_type": "display_data"
200
+ },
201
+ {
202
+ "data": {
203
+ "text/plain": [
204
+ "CommitInfo(commit_url='https://huggingface.co/datasets/cfpark00/KoreanSAT/commit/8fdf990d118abc5511f7fe828a4ae482e4b67d07', commit_message='Upload dataset', commit_description='', oid='8fdf990d118abc5511f7fe828a4ae482e4b67d07', pr_url=None, repo_url=RepoUrl('https://huggingface.co/datasets/cfpark00/KoreanSAT', endpoint='https://huggingface.co', repo_type='dataset', repo_id='cfpark00/KoreanSAT'), pr_revision=None, pr_num=None)"
205
+ ]
206
+ },
207
+ "execution_count": 5,
208
+ "metadata": {},
209
+ "output_type": "execute_result"
210
+ }
211
+ ],
212
+ "source": [
213
+ "#save as parquet\n",
214
+ "dataset.push_to_hub(\"cfpark00/KoreanSAT\")"
215
+ ]
216
+ },
217
+ {
218
+ "cell_type": "code",
219
+ "execution_count": null,
220
+ "metadata": {},
221
+ "outputs": [],
222
+ "source": []
223
+ },
224
+ {
225
+ "cell_type": "code",
226
+ "execution_count": null,
227
+ "metadata": {},
228
+ "outputs": [],
229
+ "source": []
230
+ },
231
+ {
232
+ "cell_type": "code",
233
+ "execution_count": null,
234
+ "metadata": {},
235
+ "outputs": [],
236
+ "source": []
237
+ },
238
+ {
239
+ "cell_type": "code",
240
+ "execution_count": 4,
241
+ >>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
242
  "metadata": {},
243
  "outputs": [
244
  {
 
246
  "text/plain": [
247
  "{'id': 1,\n",
248
  " 'name': '1',\n",
249
+ <<<<<<< HEAD
250
  " 'problem': '1. $\\\\left(2^{\\\\sqrt{3}} \\\\times 4\\\\right)^{\\\\sqrt{3} - 2}$ ์˜ ๊ฐ’์€? [2์ ] \\\\begin{itemize} \\\\item[1] \\\\frac{1}{4} \\\\item[2] \\\\frac{1}{2} \\\\item[3] 1 \\\\item[4] 2 \\\\item[5] 4 \\\\end{itemize}',\n",
251
  " 'answer': 2,\n",
252
  " 'score': 2,\n",
 
255
  ]
256
  },
257
  "execution_count": 25,
258
+ =======
259
+ " 'problem': '1. \\\\left( \\\\frac{4}{2^{\\\\sqrt{2}}} \\\\right)^{2 + \\\\sqrt{2}} \\\\text{์˜ ๊ฐ’์€? [2์ ]}\\n\\n\\\\begin{itemize}\\n \\\\item[1] $\\\\frac{1}{4}$\\n \\\\item[2] $\\\\frac{1}{2}$\\n \\\\item[3] $1$\\n \\\\item[4] $2$\\n \\\\item[5] $4$\\n\\\\end{itemize}\\n',\n",
260
+ " 'answer': -1,\n",
261
+ " 'score': -1}"
262
+ ]
263
+ },
264
+ "execution_count": 4,
265
+ >>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
266
  "metadata": {},
267
  "output_type": "execute_result"
268
  }
269
  ],
270
  "source": [
271
+ <<<<<<< HEAD
272
  "dataset[\"2022_math\"][0]"
273
+ =======
274
+ "dataset[\"2023_math\"][0]"
275
+ >>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
276
  ]
277
  },
278
  {
279
  "cell_type": "code",
280
+ <<<<<<< HEAD
281
  "execution_count": 24,
282
+ =======
283
+ "execution_count": null,
284
+ "metadata": {},
285
+ "outputs": [],
286
+ "source": []
287
+ },
288
+ {
289
+ "cell_type": "code",
290
+ "execution_count": null,
291
+ "metadata": {},
292
+ "outputs": [],
293
+ "source": []
294
+ },
295
+ {
296
+ "cell_type": "code",
297
+ "execution_count": null,
298
+ "metadata": {},
299
+ "outputs": [],
300
+ "source": []
301
+ },
302
+ {
303
+ "cell_type": "code",
304
+ "execution_count": 19,
305
+ >>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
306
  "metadata": {},
307
  "outputs": [
308
  {
309
  "data": {
310
  "application/vnd.jupyter.widget-view+json": {
311
+ <<<<<<< HEAD
312
  "model_id": "f612f040825040c6affa3b897f2633ef",
313
+ =======
314
+ "model_id": "ed6870fcaa5d4641ae911c05f8d5e1a3",
315
+ >>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
316
  "version_major": 2,
317
  "version_minor": 0
318
  },
319
  "text/plain": [
320
+ <<<<<<< HEAD
321
  "Pushing dataset shards to the dataset hub: 0%| | 0/1 [00:00<?, ?it/s]"
322
+ =======
323
+ "Creating json from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
324
+ >>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
325
  ]
326
  },
327
  "metadata": {},
 
329
  },
330
  {
331
  "data": {
332
+ <<<<<<< HEAD
333
  "application/vnd.jupyter.widget-view+json": {
334
  "model_id": "f3cb1129210b4586bbb81b52357c424e",
335
  "version_major": 2,
 
402
  "source": [
403
  "#save as parquet\n",
404
  "dataset.push_to_hub(\"cfpark00/KoreanSAT\")"
405
+ =======
406
+ "text/plain": [
407
+ "33057"
408
+ ]
409
+ },
410
+ "execution_count": 19,
411
+ "metadata": {},
412
+ "output_type": "execute_result"
413
+ }
414
+ ],
415
+ "source": [
416
+ "from datasets import load_dataset\n",
417
+ "\n",
418
+ "ds = load_dataset(\"cfpark00/KoreanSAT\")\n",
419
+ "ds[\"2024_math\"].to_json(\"./data/json/2024/math.json\")"
420
+ >>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
421
+ ]
422
+ },
423
+ {
424
+ "cell_type": "code",
425
+ <<<<<<< HEAD
426
+ =======
427
+ "execution_count": 46,
428
+ "metadata": {},
429
+ "outputs": [
430
+ {
431
+ "data": {
432
+ "text/plain": [
433
+ "DatasetDict({\n",
434
+ " 2024_math: Dataset({\n",
435
+ " features: ['id', 'name', 'problem', 'answer', 'score'],\n",
436
+ " num_rows: 46\n",
437
+ " })\n",
438
+ "})"
439
+ ]
440
+ },
441
+ "execution_count": 46,
442
+ "metadata": {},
443
+ "output_type": "execute_result"
444
+ }
445
+ ],
446
+ "source": [
447
+ "ds"
448
  ]
449
  },
450
  {
 
454
  "outputs": [],
455
  "source": []
456
  },
457
+ {
458
+ "cell_type": "code",
459
+ "execution_count": 37,
460
+ "metadata": {},
461
+ "outputs": [
462
+ {
463
+ "data": {
464
+ "application/vnd.jupyter.widget-view+json": {
465
+ "model_id": "56b0357800c24f42af02e56bcd9f9133",
466
+ "version_major": 2,
467
+ "version_minor": 0
468
+ },
469
+ "text/plain": [
470
+ "Creating json from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]"
471
+ ]
472
+ },
473
+ "metadata": {},
474
+ "output_type": "display_data"
475
+ },
476
+ {
477
+ "data": {
478
+ "text/plain": [
479
+ "33057"
480
+ ]
481
+ },
482
+ "execution_count": 37,
483
+ "metadata": {},
484
+ "output_type": "execute_result"
485
+ }
486
+ ],
487
+ "source": [
488
+ "dataset[\"2024_math\"].to_json(\"./data/json/2024/math.json\")"
489
+ ]
490
+ },
491
+ {
492
+ "cell_type": "code",
493
+ "execution_count": 29,
494
+ "metadata": {},
495
+ "outputs": [],
496
+ "source": [
497
+ "import json\n",
498
+ "jsons=[]\n",
499
+ "for line in open(\"./data/json/2024/math.json\"):\n",
500
+ " jsons.append(json.loads(line))"
501
+ ]
502
+ },
503
+ {
504
+ "cell_type": "code",
505
+ "execution_count": 31,
506
+ "metadata": {},
507
+ "outputs": [
508
+ {
509
+ "name": "stdout",
510
+ "output_type": "stream",
511
+ "text": [
512
+ "16. ๋ฐฉ์ •์‹\n",
513
+ "\\[\n",
514
+ "\\log_2{(3x+2)} = 2 + \\log_2{(x-2)}\n",
515
+ "\\]\n",
516
+ "\\text{๋ฅผ ๋งŒ์กฑ์‹œํ‚ค๋Š” ์‹ค์ˆ˜ } \\( x \\) \\text{์˜ ๊ฐ’์„ ๏ฟฝ๏ฟฝํ•˜์‹œ์˜ค. [3์ ]}\n",
517
+ "\n"
518
+ ]
519
+ }
520
+ ],
521
+ "source": [
522
+ "print(jsons[15][\"problem\"])"
523
+ ]
524
+ },
525
+ {
526
+ "cell_type": "code",
527
+ "execution_count": 30,
528
+ "metadata": {},
529
+ "outputs": [
530
+ {
531
+ "data": {
532
+ "text/plain": [
533
+ "{'id': 16,\n",
534
+ " 'name': '16',\n",
535
+ " 'problem': '16. ๋ฐฉ์ •์‹\\n\\\\[\\n\\\\log_2{(3x+2)} = 2 + \\\\log_2{(x-2)}\\n\\\\]\\n\\\\text{๋ฅผ ๋งŒ์กฑ์‹œํ‚ค๋Š” ์‹ค์ˆ˜ } \\\\( x \\\\) \\\\text{์˜ ๊ฐ’์„ ๊ตฌํ•˜์‹œ์˜ค. [3์ ]}\\n',\n",
536
+ " 'answer': '2',\n",
537
+ " 'score': 3}"
538
+ ]
539
+ },
540
+ "execution_count": 30,
541
+ "metadata": {},
542
+ "output_type": "execute_result"
543
+ }
544
+ ],
545
+ "source": [
546
+ "jsons[15]"
547
+ ]
548
+ },
549
+ {
550
+ "cell_type": "code",
551
+ "execution_count": null,
552
+ "metadata": {},
553
+ "outputs": [],
554
+ "source": []
555
+ },
556
+ {
557
+ "cell_type": "code",
558
+ >>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
559
+ "execution_count": null,
560
+ "metadata": {},
561
+ "outputs": [],
562
+ "source": []
563
+ },
564
  {
565
  "cell_type": "code",
566
  "execution_count": null,
 
585
  "name": "python",
586
  "nbconvert_exporter": "python",
587
  "pygments_lexer": "ipython3",
588
+ <<<<<<< HEAD
589
  "version": "3.10.9"
590
+ =======
591
+ "version": "3.8.9"
592
+ >>>>>>> 41af016e94a20b80de932855d2fd5110dfdd4df6
593
  }
594
  },
595
  "nbformat": 4,