KoreanSAT / data /json /2024 /math.json
cfpark00
v1
3a117ca
raw
history blame
25.3 kB
{"id":1,"name":"1","problem":"1. \\( \\sqrt[3]{24} \\times 3^{\\frac{2}{3}} \\) 의 값은? [2점]\n\n\\begin{itemize} \\item[1] 6 \\item[2] 7 \\item[3] 8 \\item[4] 9 \\item[5] 10 \\end{itemize}","answer":1,"score":2,"review":null}
{"id":2,"name":"2","problem":"2. ν•¨μˆ˜ $f(x) = 2x^3 - 5x^2 + 3$에 λŒ€ν•˜μ—¬\n\n\\[ \\lim_{h \\to 0} \\frac{f(2 + h) - f(2)}{h} \\]\n\n의 값은? [2점]\n\n\\begin{itemize} \\item[1] 1 \\item[2] 2 \\item[3] 3 \\item[4] 4 \\item[5] 5 \\end{itemize}","answer":4,"score":2,"review":null}
{"id":3,"name":"3","problem":"3. $(\\frac{3}{2}\\pi < \\theta < 2\\pi)$ 인 $\\theta$에 λŒ€ν•˜μ—¬ $\\sin(-\\theta) = \\frac{1}{3}$ 일 λ•Œ,\n\n$\\tan\\theta$의 값은? [3점]\n\n\\begin{itemize} \\item[1] -\\frac{\\sqrt{2}}{2} \\item[2] -\\frac{\\sqrt{2}}{4} \\item[3] -\\frac{1}{4} \\item[4] \\frac{1}{4} \\item[5] \\frac{\\sqrt{2}}{4} \\end{itemize}","answer":2,"score":3,"review":null}
{"id":4,"name":"4","problem":"4. ν•¨μˆ˜\n\n\\[ f(x) = \\begin{cases} 3x - a & (x < 2) \\\\ x^2 + a & (x \\geq 2) \\end{cases} \\]\n\nκ°€ μ‹€μˆ˜ μ „μ²΄μ˜ μ§‘ν•©μ—μ„œ 연속일 λ•Œ, μƒμˆ˜ $a$의 값은? [3점]\n\n\\begin{itemize} \\item[1] 1 \\item[2] 2 \\item[3] 3 \\item[4] 4 \\item[5] 5 \\end{itemize}","answer":1,"score":3,"review":null}
{"id":5,"name":"5","problem":"5. λ‹€ν•­ν•¨μˆ˜ $f(x)$κ°€\n\n\\[ f'(x) = 3x(x-2), \\quad f(1) = 6 \\]\n\n을 λ§Œμ‘±μ‹œν‚¬ λ•Œ, $f(2)$의 값은? [3점]\n\n\\begin{itemize} \\item[1] 1 \\item[2] 2 \\item[3] 3 \\item[4] 4 \\item[5] 5 \\end{itemize}","answer":4,"score":3,"review":null}
{"id":6,"name":"6","problem":"6. λ“±λΉ„μˆ˜μ—΄ $\\{a_n\\}$의 첫째항뢀터 제 $n$ν•­κΉŒμ§€μ˜ 합을 $S_n$이라 ν•˜μž.\n\n\\[ S_4 - S_2 = 3a_4, \\quad a_5 = \\frac{3}{4} \\]\n\n일 λ•Œ, $a_1 + a_2$의 값은? [3점]\n\n\\begin{itemize} \\item[1] 27 \\item[2] 24 \\item[3] 21 \\item[4] 18 \\item[5] 15 \\end{itemize}","answer":4,"score":3,"review":null}
{"id":7,"name":"7","problem":"7. ν•¨μˆ˜ $f(x) = \\frac{1}{3}x^3 - 2x^2 - 12x + 4$κ°€ $x = \\alpha$μ—μ„œ κ·ΉλŒ€μ΄κ³ \n\n$x = \\beta$μ—μ„œ κ·Ήμ†ŒμΌ λ•Œ, $\\beta - \\alpha$의 값은? (단, $\\alpha$와 $\\beta$λŠ” μƒμˆ˜μ΄λ‹€.) [3점]\n\n\\begin{itemize} \\item[1] -4 \\item[2] -1 \\item[3] 2 \\item[4] 5 \\item[5] 8 \\end{itemize}","answer":5,"score":3,"review":null}
{"id":8,"name":"8","problem":"8. μ‚Όμ°¨ν•¨μˆ˜ $f(x)$κ°€ λͺ¨λ“  μ‹€μˆ˜ $x$에 λŒ€ν•˜μ—¬\n\n\\[ x f(x) - f(x) = 3x^4 - 3x \\]\n\nλ₯Ό λ§Œμ‘±μ‹œν‚¬ λ•Œ, $\\int_{-2}^{2} f(x) \\, dx$의 값은? [3점]\n\n\\begin{itemize} \\item[1] 12 \\item[2] 16 \\item[3] 20 \\item[4] 24 \\item[5] 28 \\end{itemize}","answer":2,"score":3,"review":null}
{"id":9,"name":"9","problem":"9. μˆ˜μ§μ„  μœ„μ˜ 두 점 $\\mathrm{P}(\\log_{5} 3), \\ \\mathrm{Q}(\\log_{5} 12)$에 λŒ€ν•˜μ—¬ μ„ λΆ„ $\\mathrm{PQ}$λ₯Ό $m : (1 - m)$으둜 λ‚΄λΆ„ν•˜λŠ” 점의 μ’Œν‘œκ°€ 1일 λ•Œ, $4^m$의 값은? (단, $m$은 $0 < m < 1$인 μƒμˆ˜μ΄λ‹€.) [4점]\n\n\\begin{itemize} \\item[1] \\frac{7}{6} \\item[2] \\frac{4}{3} \\item[3] \\frac{3}{2} \\item[4] \\frac{5}{3} \\item[5] \\frac{11}{6} \\end{itemize}","answer":4,"score":4,"review":null}
{"id":10,"name":"10","problem":"10. μ‹œκ° $( t = 0 )$일 λ•Œ λ™μ‹œμ— 원점을 μΆœλ°œν•˜μ—¬ μˆ˜μ§μ„  μœ„λ₯Ό μ›€μ§μ΄λŠ” 두 점 $( \\mathrm{P}, \\mathrm{Q} )$의 μ‹œκ° $( t (t \\geq 0) )$μ—μ„œμ˜ 속도가 각각\n\\[ v_1(t) = t^2 - 6t + 5, \\quad v_2(t) = 2t - 7 \\]\n이닀. μ‹œκ° $t$μ—μ„œμ˜ 두 점 $\\mathrm{P}, \\mathrm{Q}$ μ‚¬μ΄μ˜ 거리λ₯Ό $f(t)$라 ν•  λ•Œ, ν•¨μˆ˜ $f(t)$λŠ” ꡬ간 $[0, a]$μ—μ„œ μ¦κ°€ν•˜κ³ , ꡬ간 $[a, b]$μ—μ„œ κ°μ†Œν•˜κ³ , ꡬ간 $[b, \\infty)$μ—μ„œ μ¦κ°€ν•œλ‹€. μ‹œκ° $t = a$μ—μ„œ $t = b$κΉŒμ§€ 점 $\\mathrm{Q}$κ°€ 움직인 κ±°λ¦¬λŠ”? (단, $0 < a < b$) [4점]\n\n\\begin{itemize} \\item[1] \\frac{15}{2} \\item[2] \\frac{17}{2} \\item[3] \\frac{19}{2} \\item[4] \\frac{21}{2} \\item[5] \\frac{23}{2} \\end{itemize}","answer":2,"score":4,"review":null}
{"id":11,"name":"11","problem":"11. 곡차가 0이 μ•„λ‹Œ λ“±μ°¨μˆ˜μ—΄ $\\{a_n\\}$에 λŒ€ν•˜μ—¬\n\\[ |a_6| = a_8, \\quad \\sum_{k=1}^{5} \\frac{1}{a_k a_{k+1}} = \\frac{5}{96} \\]\n\n일 λ•Œ, $\\sum_{k=1}^{15} a_k$의 값은? [4점]\n\n\\begin{itemize} \\item[1] 60 \\item[2] 65 \\item[3] 70 \\item[4] 75 \\item[5] 80 \\end{itemize}","answer":1,"score":4,"review":null}
{"id":12,"name":"12","problem":"12. ν•¨μˆ˜ $( f(x) = \\frac{1}{9} x (x - 6)(x - 9) )$와 μ‹€μˆ˜ $( t \\ (0 < t < 6) )$에 λŒ€ν•˜μ—¬ ν•¨μˆ˜ $( g(x) )$λŠ”\n\n\\[ g(x) = \\begin{cases} f(x) & (x < t) \\\\ -(x - t) + f(t) & (x \\geq t) \\end{cases} \\]\n\n이닀. ν•¨μˆ˜ $y = g(x)$의 κ·Έλž˜ν”„μ™€ $x$μΆ•μœΌλ‘œ λ‘˜λŸ¬μ‹ΈμΈ μ˜μ—­μ˜ λ„“μ΄μ˜ μ΅œλŒ“κ°’μ€? [4점]\n\n\\begin{itemize} \\item[1] \\frac{125}{4} \\item[2] \\frac{127}{4} \\item[3] \\frac{129}{4} \\item[4] \\frac{131}{4} \\item[5] \\frac{133}{4} \\end{itemize}","answer":3,"score":4,"review":null}
{"id":13,"name":"13","problem":"13. \n\n\\[ \\overline{\\mathrm{AB}} = 3, \\quad \\overline{\\mathrm{BC}} = \\sqrt{13}, \\quad \\overline{\\mathrm{AD}} \\times \\overline{\\mathrm{CD}} = 9, \\quad \\angle \\mathrm{BAC} = \\frac{\\pi}{3} \\]\n\n인 μ‚¬κ°ν˜• $\\mathrm{ABCD}$κ°€ μžˆλ‹€. μ‚Όκ°ν˜• $\\mathrm{ABC}$의 넓이λ₯Ό $S_1$, μ‚Όκ°ν˜• $\\mathrm{ACD}$의 넓이λ₯Ό $S_2$라 ν•˜κ³ , μ‚Όκ°ν˜• $\\mathrm{ACD}$의 μ™Έμ ‘μ›μ˜ λ°˜μ§€λ¦„μ˜ 길이λ₯Ό $R$이라 ν•˜μž.\n$S_2 = \\frac{5}{6} S_1$일 λ•Œ, $\\frac{R}{\\sin(\\angle \\mathrm{ADC})}$의 값은? [4점]\n\n\\begin{itemize} \\item[1] \\frac{54}{25} \\item[2] \\frac{117}{50} \\item[3] \\frac{63}{25} \\item[4] \\frac{27}{10} \\item[5] \\frac{72}{25} \\end{itemize}","answer":1,"score":4,"review":"Removed figure and the statement referring to the figure."}
{"id":14,"name":"14","problem":"14. 두 μžμ—°μˆ˜ $a, b$에 λŒ€ν•˜μ—¬ ν•¨μˆ˜ $f(x)$λŠ”\n\\[ f(x) = \\begin{cases} 2x^3 - 6x + 1 & (x \\leq 2) \\\\ a(x-2)(x-b) + 9 & (x > 2) \\end{cases} \\]\n이닀. μ‹€μˆ˜ $t$에 λŒ€ν•˜μ—¬ ν•¨μˆ˜ $y = f(x)$의 κ·Έλž˜ν”„μ™€ 직선 $y = t$κ°€ λ§Œλ‚˜λŠ” 점의 개수λ₯Ό $g(t)$라 ν•˜μž.\n\n\\[ g(k) + \\lim_{t \\to k^-} g(t) + \\lim_{t \\to k^+} g(t) = 9 \\]\n\nλ₯Ό λ§Œμ‘±μ‹œν‚€λŠ” μ‹€μˆ˜ $k$의 κ°œμˆ˜κ°€ 1이 λ˜λ„λ‘ ν•˜λŠ” 두 μžμ—°μˆ˜ $a, b$의 μˆœμ„œμŒ $(a, b)$에 λŒ€ν•˜μ—¬ $a + b$의 μ΅œλŒ“κ°’μ€? [4점]\n\n\\begin{itemize} \\item[1] 51 \\item[2] 52 \\item[3] 53 \\item[4] 54 \\item[5] 55 \\end{itemize}","answer":1,"score":4,"review":null}
{"id":15,"name":"15","problem":"15. 첫째항이 μžμ—°μˆ˜μΈ μˆ˜μ—΄ $\\{a_n\\}$이 λͺ¨λ“  μžμ—°μˆ˜ $n$에 λŒ€ν•˜μ—¬\n\n\\[ a_{n+1} = \\begin{cases} 2^{a_n} & (a_n \\text{이 ν™€μˆ˜μΈ 경우}) \\\\ \\frac{1}{2} a_n & (a_n \\text{이 짝수인 경우}) \\end{cases} \\]\n\nλ₯Ό λ§Œμ‘±μ‹œν‚¬ λ•Œ, $a_6 + a_7 = 3$이 λ˜λ„λ‘ ν•˜λŠ” λͺ¨λ“  $a_1$의 κ°’μ˜ 합은? [4점]\n\n\\begin{itemize} \\item[1] 139 \\item[2] 146 \\item[3] 153 \\item[4] 160 \\item[5] 167 \\end{itemize}","answer":3,"score":4,"review":null}
{"id":16,"name":"16","problem":"16. 방정식 $3^{x-8} = \\left(\\frac{1}{27}\\right)^x$을 λ§Œμ‘±μ‹œν‚€λŠ” μ‹€μˆ˜ $x$의 값을 κ΅¬ν•˜μ‹œμ˜€. [3점]","answer":2,"score":3,"review":null}
{"id":17,"name":"17","problem":"17. ν•¨μˆ˜ $f(x) = (x+1)(x^2 + 3)$에 λŒ€ν•˜μ—¬ $f'(1)$의 값을 κ΅¬ν•˜μ‹œμ˜€. [3점]","answer":8,"score":3,"review":null}
{"id":18,"name":"18","problem":"18. 두 μˆ˜μ—΄ $\\{a_n\\}, \\{b_n\\}$에 λŒ€ν•˜μ—¬\n\n\\[ \\sum_{k=1}^{10} a_k = \\sum_{k=1}^{10} (2b_k - 1), \\quad \\sum_{k=1}^{10} (3a_k + b_k) = 33 \\]\n\n일 λ•Œ, $\\sum_{k=1}^{10} b_k$의 값을 κ΅¬ν•˜μ‹œμ˜€. [3점]","answer":9,"score":3,"review":null}
{"id":19,"name":"19","problem":"19. ν•¨μˆ˜ $f(x) = \\sin \\frac{\\pi}{4} x$라 ν•  λ•Œ, $0 < x < 16$μ—μ„œ 뢀등식\n\n\\[ f(2+x) f(2-x) < \\frac{1}{4} \\]\n\n을 λ§Œμ‘±μ‹œν‚€λŠ” λͺ¨λ“  μžμ—°μˆ˜ $x$의 κ°’μ˜ 합을 κ΅¬ν•˜μ‹œμ˜€. [3점]","answer":32,"score":3,"review":null}
{"id":20,"name":"20","problem":"20. $a > \\sqrt{2}$ 인 μ‹€μˆ˜ $a$에 λŒ€ν•˜μ—¬ ν•¨μˆ˜ $f(x)$λ₯Ό\n\n\\[ f(x) = -x^3 + ax^2 + 2x \\]\n\n라 ν•˜μž. 곑선 $y = f(x)$ μœ„μ˜ 점 $\\mathrm{O}(0, 0)$μ—μ„œμ˜ 접선이 곑선 $y = f(x)$와 λ§Œλ‚˜λŠ” 점 쀑 $\\mathrm{O}$κ°€ μ•„λ‹Œ 점을 $\\mathrm{A}$라 ν•˜κ³ , 곑선 $y = f(x)$ μœ„μ˜ 점 $\\mathrm{A}$μ—μ„œμ˜ 접선이 $x$μΆ•κ³Ό λ§Œλ‚˜λŠ” 점을 $\\mathrm{B}$라 ν•˜μž. 점 $\\mathrm{A}$κ°€ μ„ λΆ„ $\\mathrm{OB}$λ₯Ό μ§€λ¦„μœΌλ‘œ ν•˜λŠ” 원 μœ„μ˜ 점일 λ•Œ, $\\overline{\\mathrm{OA}} \\times \\overline{\\mathrm{AB}}$의 값을 κ΅¬ν•˜μ‹œμ˜€. [4점]","answer":25,"score":4,"review":null}
{"id":21,"name":"21","problem":"21. μ–‘μˆ˜ $a$에 λŒ€ν•˜μ—¬ $x \\geq -1$μ—μ„œ μ •μ˜λœ ν•¨μˆ˜ $f(x)$λŠ”\n\\[ f(x) = \\begin{cases} -x^2 + 6x, & (-1 \\leq x < 6) \\\\ a \\log_4 (x - 5) & (x \\geq 6) \\end{cases} \\]\n이닀. $t \\geq 0$인 μ‹€μˆ˜ $t$에 λŒ€ν•˜μ—¬ λ‹«νžŒκ΅¬κ°„ $[t-1, t+1]$μ—μ„œμ˜ $f(x)$의 μ΅œλŒ“κ°’μ„ $g(t)$라 ν•˜μž. ꡬ간 $[0, \\infty)$μ—μ„œ ν•¨μˆ˜ $g(t)$의 μ΅œμ†Ÿκ°’μ΄ 5κ°€ λ˜λ„λ‘ ν•˜λŠ” μ–‘μˆ˜ $a$의 μ΅œμ†Ÿκ°’μ„ κ΅¬ν•˜μ‹œμ˜€. [4점]","answer":10,"score":4,"review":null}
{"id":22,"name":"22","problem":"22. μ΅œκ³ μ°¨ν•­μ˜ κ³„μˆ˜κ°€ 1인 μ‚Όμ°¨ν•¨μˆ˜ $( f(x) )$κ°€ λ‹€μŒ 쑰건을 λ§Œμ‘±μ‹œν‚¨λ‹€.\n\n\\[ \\boxed{\\begin{array}{c}\\text{ν•¨μˆ˜ } f(x) \\text{에 λŒ€ν•˜μ—¬} \\\\ f(k-1)f(k+1) < 0 \\\\\\text{을 λ§Œμ‘±μ‹œν‚€λŠ” μ •μˆ˜ } k \\text{λŠ” }\\underline{\\text{μ‘΄μž¬ν•˜μ§€ μ•ŠλŠ”λ‹€.}}\\end{array}} \\]\n\n\\[ f'\\left( -\\frac{1}{4} \\right) = -\\frac{1}{4}, \\quad f'\\left( \\frac{1}{4} \\right) < 0 \\text{일 λ•Œ,} \\quad f(8) \\text{의 값을 κ΅¬ν•˜μ‹œμ˜€. [4점]} \\]","answer":483,"score":4,"review":null}
{"id":23,"name":"23_prob","problem":"23. 5개의 문자 $(x, x, y, y, z)$λ₯Ό λͺ¨λ‘ 일렬둜 λ‚˜μ—΄ν•˜λŠ” 경우의 μˆ˜λŠ”? [2점]\n\n\\begin{itemize} \\item[1] 10 \\item[2] 20 \\item[3] 30 \\item[4] 40 \\item[5] 50 \\end{itemize}","answer":3,"score":2,"review":null}
{"id":24,"name":"24_prob","problem":"24. 두 사건 $( A, B )$λŠ” μ„œλ‘œ 독립이고\n\n\\[ \\mathrm{P}(A \\cap B) = \\frac{1}{4}, \\quad \\mathrm{P}(A^C) = 2\\mathrm{P}(A) \\]\n\n일 λ•Œ, $( \\mathrm{P}(B) )$의 값은? (단, $A^C$은 $A$의 여사건이닀.) [3점]\n\n\\begin{itemize} \\item[1] \\frac{3}{8} \\item[2] \\frac{1}{2} \\item[3] \\frac{5}{8} \\item[4] \\frac{3}{4} \\item[5] \\frac{7}{8} \\end{itemize}","answer":4,"score":3,"review":null}
{"id":25,"name":"25_prob","problem":"25. 숫자 $1, 2, 3, 4, 5, 6$이 ν•˜λ‚˜μ”© μ ν˜€ μžˆλŠ” 6μž₯의 μΉ΄λ“œκ°€ μžˆλ‹€. 이 6μž₯의 μΉ΄λ“œλ₯Ό λͺ¨λ‘ ν•œ λ²ˆμ”© μ‚¬μš©ν•˜μ—¬ 일렬둜 μž„μ˜λ‘œ λ‚˜μ—΄ν•  λ•Œ, μ–‘ 끝에 놓인 μΉ΄λ“œμ— 적힌 두 수의 합이 10 μ΄ν•˜κ°€ λ˜λ„λ‘ μΉ΄λ“œκ°€ 놓일 ν™•λ₯ μ€? [3점]\n\n\\begin{itemize} \\item[1] \\frac{8}{15} \\item[2] \\frac{19}{30} \\item[3] \\frac{11}{15} \\item[4] \\frac{5}{6} \\item[5] \\frac{14}{15} \\end{itemize}","answer":5,"score":3,"review":"Removed figure."}
{"id":26,"name":"26_prob","problem":"26. 4개의 동전을 λ™μ‹œμ— λ˜μ Έμ„œ μ•žλ©΄μ΄ λ‚˜μ˜€λŠ” λ™μ „μ˜ 개수λ₯Ό ν™•λ₯ λ³€μˆ˜ $X$라 ν•˜κ³ , 이산확λ₯ λ³€μˆ˜ $Y$λ₯Ό\n\n\\[ Y = \\begin{cases} X & (X\\text{κ°€} \\ 0 \\ \\text{λ˜λŠ”} \\ 1\\text{의 값을 κ°€μ§€λŠ” 경우}) \\\\ 2 & (X\\text{κ°€} \\ 2 \\ \\text{μ΄μƒμ˜ 값을 κ°€μ§€λŠ” 경우}) \\end{cases} \\]\n\n라 ν•˜μž. $\\mathrm{E}(Y)$의 값은? [3점]\n\n\\begin{itemize} \\item[1] \\frac{25}{16} \\item[2] \\frac{13}{8} \\item[3] \\frac{27}{16} \\item[4] \\frac{7}{4} \\item[5] \\frac{29}{16} \\end{itemize}","answer":2,"score":3,"review":null}
{"id":27,"name":"27_prob","problem":"27. μ •κ·œλΆ„ν¬ $\\mathrm{N}(m, 5^2)$을 λ”°λ₯΄λŠ” λͺ¨μ§‘λ‹¨μ—μ„œ 크기가 49인 ν‘œλ³Έμ„ μž„μ˜μΆ”μΆœν•˜μ—¬ 얻은 ν‘œλ³Έν‰κ· μ΄ $\\bar{x}$일 λ•Œ, λͺ¨ν‰κ·  $m$에 λŒ€ν•œ 신뒰도 95\\%의 신뒰ꡬ간이 $a \\leq m \\leq \\frac{6}{5} a$이닀. $\\bar{x}$의 값은?\n\n(단, $Z$κ°€ ν‘œμ€€μ •κ·œλΆ„ν¬λ₯Ό λ”°λ₯΄λŠ” ν™•λ₯ λ³€μˆ˜μΌ λ•Œ, $\\mathrm{P}(|Z| \\leq 1.96) = 0.95$둜 κ³„μ‚°ν•œλ‹€.) [3점]\n\n\\begin{itemize} \\item[1] 15.2 \\item[2] 15.4 \\item[3] 15.6 \\item[4] 15.8 \\item[5] 16.0 \\end{itemize}","answer":2,"score":3,"review":null}
{"id":28,"name":"28_prob","problem":"28. ν•˜λ‚˜μ˜ μ£Όλ¨Έλ‹ˆμ™€ 두 μƒμž $\\mathrm{A}$, $\\mathrm{B}$κ°€ μžˆλ‹€. μ£Όλ¨Έλ‹ˆμ—λŠ” 숫자 $1, 2, 3, 4$κ°€ ν•˜λ‚˜μ”© 적힌 $4$μž₯의 μΉ΄λ“œκ°€ λ“€μ–΄ 있고, μƒμž $\\mathrm{A}$μ—λŠ” 흰 곡과 검은 곡이 각각 $8$개 이상 λ“€μ–΄ 있고, μƒμž $\\mathrm{B}$λŠ” λΉ„μ–΄ μžˆλ‹€. 이 μ£Όλ¨Έλ‹ˆμ™€ 두 μƒμž $\\mathrm{A}$, $\\mathrm{B}$λ₯Ό μ‚¬μš©ν•˜μ—¬ λ‹€μŒ μ‹œν–‰μ„ ν•œλ‹€.\n\n\\[\\begin{tabular}{|l|} \\hline μ£Όλ¨Έλ‹ˆμ—μ„œ μž„μ˜λ‘œ ν•œ μž₯의 μΉ΄λ“œλ₯Ό κΊΌλ‚΄μ–΄ μΉ΄λ“œμ— 적힌 수λ₯Ό ν™•μΈν•œ ν›„ λ‹€μ‹œ μ£Όλ¨Έλ‹ˆμ— λ„£λŠ”λ‹€. \\\\ ν™•μΈν•œ μˆ˜κ°€ $1$이면 μƒμž $\\mathrm{A}$에 μžˆλŠ” 흰 곡 $1$개λ₯Ό μƒμž $\\mathrm{B}$에 λ„£κ³ , \\\\ ν™•μΈν•œ μˆ˜κ°€ $2$ λ˜λŠ” $3$이면 μƒμž $\\mathrm{A}$에 μžˆλŠ” 흰 곡 $1$κ°œμ™€ 검은 곡 $1$개λ₯Ό μƒμž $\\mathrm{B}$에 λ„£κ³ , \\\\ ν™•μΈν•œ μˆ˜κ°€ $4$이면 μƒμž $\\mathrm{A}$에 μžˆλŠ” 흰 곡 $2$κ°œμ™€ 검은 곡 $1$개λ₯Ό μƒμž $\\mathrm{B}$에 λ„£λŠ”λ‹€. \\\\ \\hline \\end{tabular}\\]\n\n이 μ‹œν–‰μ„ $4$번 λ°˜λ³΅ν•œ ν›„ μƒμž $\\mathrm{B}$에 λ“€μ–΄ μžˆλŠ” 곡의 κ°œμˆ˜κ°€ $8$일 λ•Œ, μƒμž $\\mathrm{B}$에 λ“€μ–΄ μžˆλŠ” 검은 곡의 κ°œμˆ˜κ°€ $2$일 ν™•λ₯ μ€? [4점]\n\n\\begin{itemize} \\item[1] \\frac{3}{70} \\item[2] \\frac{2}{35} \\item[3] \\frac{1}{14} \\item[4] \\frac{3}{35} \\item[5] \\frac{1}{10} \\end{itemize}","answer":4,"score":4,"review":"Removed figure."}
{"id":29,"name":"29_prob","problem":"29. λ‹€μŒ 쑰건을 λ§Œμ‘±μ‹œν‚€λŠ” 6 μ΄ν•˜μ˜ μžμ—°μˆ˜ $a, b, c, d$의 λͺ¨λ“  μˆœμ„œμŒ $(a, b, c, d)$의 개수λ₯Ό κ΅¬ν•˜μ‹œμ˜€. [4점]\n\n\\[ a \\leq c \\leq d \\quad \\text{이고} \\quad b \\leq c \\leq d \\text{이닀.} \\]","answer":196,"score":4,"review":null}
{"id":30,"name":"30_prob","problem":"30. μ–‘μˆ˜ $t$에 λŒ€ν•˜μ—¬ ν™•λ₯ λ³€μˆ˜ $X$κ°€ μ •κ·œλΆ„ν¬ $\\mathrm{N}(1, t^2)$을 λ”°λ₯Έλ‹€.\n\\[ \\mathrm{P}(X \\leq 5t) \\geq \\frac{1}{2} \\]\n이 λ˜λ„λ‘ ν•˜λŠ” λͺ¨λ“  μ–‘μˆ˜ $t$에 λŒ€ν•˜μ—¬\n\\[ \\mathrm{P}(t^2 - t + 1 \\leq X \\leq t^2 + t + 1) \\]\n의 μ΅œλŒ“κ°’μ„ λ‹€μŒ ν‘œμ€€μ •κ·œλΆ„ν¬ν‘œλ₯Ό μ΄μš©ν•˜μ—¬ κ΅¬ν•œ 값을 $k$라 ν•˜μž. \\\\\n1000$\\times k$의 값을 κ΅¬ν•˜μ‹œμ˜€. [4점]\n\n\\begin{table}[h!] \\centering \\begin{tabular}{|c|c|} \\hline $z$ & $\\mathrm{P}(0 \\leq Z \\leq z)$ \\\\ \\hline 0.6 & 0.226 \\\\ 0.8 & 0.288 \\\\ 1.0 & 0.341 \\\\ 1.2 & 0.385 \\\\ 1.4 & 0.419 \\\\ \\hline \\end{tabular} \\end{table}","answer":673,"score":4,"review":"'였λ₯Έμͺ½' changed to 'λ‹€μŒ'."}
{"id":31,"name":"23_calc","problem":"23. $\\lim_{x \\to 0} \\frac{\\ln(1+3x)}{\\ln(1+5x)}$ 의 값은? [2점]\n\n\\begin{itemize} \\item[1] \\frac{1}{5} \\item[2] \\frac{2}{5} \\item[3] \\frac{3}{5} \\item[4] \\frac{4}{5} \\item[5] 1 \\end{itemize}","answer":3,"score":2,"review":null}
{"id":32,"name":"24_calc","problem":"24. λ§€κ°œλ³€μˆ˜ $ t(t > 0) $둜 λ‚˜νƒ€λ‚΄μ–΄μ§„ 곑선\n\n\\[ x = \\ln(t^3 + 1), \\quad y = \\sin \\pi t \\]\n\nμ—μ„œ $ t = 1 $일 λ•Œ, $ \\frac{dy}{dx} $의 값은? [3점]\n\n\\begin{itemize} \\item[1] -\\frac{1}{3}\\pi \\item[2] -\\frac{2}{3}\\pi \\item[3] -\\pi \\item[4] -\\frac{4}{3}\\pi \\item[5] -\\frac{5}{3}\\pi \\end{itemize}","answer":2,"score":3,"review":null}
{"id":33,"name":"25_calc","problem":"25. μ–‘μ˜ μ‹€μˆ˜ μ „μ²΄μ˜ μ§‘ν•©μ—μ„œ μ •μ˜λ˜κ³  λ―ΈλΆ„κ°€λŠ₯ν•œ 두 ν•¨μˆ˜ $ f(x), g(x) $κ°€ μžˆλ‹€. $ g(x) $λŠ” $ f(x) $의 μ—­ν•¨μˆ˜μ΄κ³ , $ g'(x) $λŠ” μ–‘μ˜ μ‹€μˆ˜ μ „μ²΄μ˜ μ§‘ν•©μ—μ„œ 연속이닀. λͺ¨λ“  μ–‘μˆ˜ $ a $에 λŒ€ν•˜μ—¬\n\\[ \\int_{1}^{a} \\frac{1}{g'(f(x)) f(x)} \\, dx = 2 \\ln a + \\ln (a+1) - \\ln 2 \\]\n이고 $ f(1) = 8 $일 λ•Œ, $ f(2) $의 값은? [3점]\n\n\\begin{itemize} \\item[1] 36 \\item[2] 40 \\item[3] 44 \\item[4] 48 \\item[5] 52 \\end{itemize}","answer":4,"score":3,"review":null}
{"id":34,"name":"26_calc","problem":"26. 곑선 $ y = \\sqrt{(1 - 2x) \\cos x} \\left( \\frac{3}{4} \\pi \\leq x \\leq \\frac{5}{4} \\pi \\right) $와\n\n$ x $μΆ• 및 두 직선 $ x = \\frac{3}{4} \\pi, \\ x = \\frac{5}{4} \\pi $둜 λ‘˜λŸ¬μ‹ΈμΈ 뢀뢄을 λ°‘λ©΄μœΌλ‘œ ν•˜λŠ” μž…μ²΄λ„ν˜•μ΄ μžˆλ‹€. 이 μž…μ²΄λ„ν˜•μ„ $ x $좕에 수직인 ν‰λ©΄μœΌλ‘œ 자λ₯Έ 단면이 λͺ¨λ‘ μ •μ‚¬κ°ν˜•μΌ λ•Œ, 이 μž…μ²΄λ„ν˜•μ˜ λΆ€ν”ΌλŠ”? [3점]\n\n\\begin{itemize} \\item[1] \\sqrt{2}\\pi - \\sqrt{2} \\item[2] \\sqrt{2}\\pi - 1 \\item[3] 2 \\sqrt{2}\\pi - \\sqrt{2} \\item[4] 2 \\sqrt{2}\\pi - 1 \\item[5] 2 \\sqrt{2}\\pi \\end{itemize}","answer":3,"score":3,"review":"Removed figure and the statement referring to the figure."}
{"id":35,"name":"27_calc","problem":"27. μ‹€μˆ˜ $ t $에 λŒ€ν•˜μ—¬ 원점을 μ§€λ‚˜κ³  곑선 $ y = \\frac{1}{e^x} + e^t $에 μ ‘ν•˜λŠ” μ§μ„ μ˜ 기울기λ₯Ό $ f(t) $라 ν•˜μž. $ f(a) = -e \\sqrt{e} $λ₯Ό λ§Œμ‘±μ‹œν‚€λŠ” μƒμˆ˜ $ a $에 λŒ€ν•˜μ—¬ $ f'(a) $의 값은? [3점]\n\n\\begin{itemize} \\item[1] -\\frac{1}{3} e \\sqrt{e} \\item[2] -\\frac{1}{2} e \\sqrt{e} \\item[3] -\\frac{2}{3} e \\sqrt{e} \\item[4] -\\frac{5}{6} e \\sqrt{e} \\item[5] -e \\sqrt{e} \\end{itemize}","answer":1,"score":3,"review":null}
{"id":36,"name":"28_calc","problem":"28. μ‹€μˆ˜ μ „μ²΄μ˜ μ§‘ν•©μ—μ„œ 연속인 ν•¨μˆ˜ $f(x)$κ°€ λͺ¨λ“  μ‹€μˆ˜ $x$에 λŒ€ν•˜μ—¬ $f(x) \\geq 0$이고, $x < 0$일 λ•Œ $f(x) = -4xe^{4x^2}$이닀.\nλͺ¨λ“  μ–‘μˆ˜ $t$에 λŒ€ν•˜μ—¬ $x$에 λŒ€ν•œ 방정식 $f(x) = t$의 μ„œλ‘œ λ‹€λ₯Έ μ‹€κ·Όμ˜ κ°œμˆ˜λŠ” 2이고, 이 λ°©μ •μ‹μ˜ 두 μ‹€κ·Ό 쀑 μž‘μ€ 값을 $g(t)$, 큰 값을 $h(t)$라 ν•˜μž.\n두 ν•¨μˆ˜ $g(t), h(t)$λŠ” λͺ¨λ“  μ–‘μˆ˜ $t$에 λŒ€ν•˜μ—¬ \n\\[ 2g(t) + h(t) = k \\quad (k \\text{λŠ” μƒμˆ˜}) \\]\nλ₯Ό λ§Œμ‘±μ‹œν‚¨λ‹€. $\\int_0^7 f(x) \\, dx = e^4 - 1$일 λ•Œ, $\\frac{f(9)}{f(8)}$의 값은? [4점]\n\n\\begin{itemize}\n \\item[1] $\\frac{3}{2} e^5$\n \\item[2] $\\frac{4}{3} e^7$\n \\item[3] $\\frac{5}{4} e^9$\n \\item[4] $\\frac{6}{5} e^{11}$\n \\item[5] $\\frac{7}{6} e^{13}$\n\\end{itemize}","answer":2,"score":4,"review":null}
{"id":37,"name":"29_calc","problem":"29. 첫째항과 곡비가 각각 0이 μ•„λ‹Œ 두 λ“±λΉ„μˆ˜μ—΄ $\\{a_n\\}, \\{b_n\\}$에 λŒ€ν•˜μ—¬ 두 κΈ‰μˆ˜ $\\sum_{n=1}^{\\infty} a_n$, $\\sum_{n=1}^{\\infty} b_n$이 각각 μˆ˜λ ΄ν•˜κ³ \n\n\\[\\sum_{n=1}^{\\infty} a_n b_n = \\left( \\sum_{n=1}^{\\infty} a_n \\right) \\times \\left( \\sum_{n=1}^{\\infty} b_n \\right),\\]\n\n\\[3 \\times \\sum_{n=1}^{\\infty} |a_{2n}| = 7 \\times \\sum_{n=1}^{\\infty} |a_{3n}|\\]\n\n이 μ„±λ¦½ν•œλ‹€. $\\sum_{n=1}^{\\infty} \\frac{b_{2n-1} + b_{3n+1}}{b_n} = S$일 λ•Œ, $120S$의 값을 κ΅¬ν•˜μ‹œμ˜€. [4점]","answer":162,"score":4,"review":null}
{"id":38,"name":"30_calc","problem":"30. μ‹€μˆ˜ μ „μ²΄μ˜ μ§‘ν•©μ—μ„œ λ―ΈλΆ„κ°€λŠ₯ν•œ ν•¨μˆ˜ $f(x)$의 λ„ν•¨μˆ˜ $f'(x)$κ°€\n\n\\[ f'(x) = |\\sin x| \\cos x \\]\n\n이닀. μ–‘μˆ˜ $a$에 λŒ€ν•˜μ—¬ 곑선 $y=f(x)$ μœ„μ˜ 점 $(a, f(a))$μ—μ„œμ˜ μ ‘μ„ μ˜ 방정식을 $y = g(x)$라 ν•˜μž. ν•¨μˆ˜\n\n\\[ h(x) = \\int_{0}^{x} \\{f(t) - g(t)\\} \\, dt \\]\n\nκ°€ $x = a$μ—μ„œ κ·ΉλŒ€ λ˜λŠ” κ·Ήμ†Œκ°€ λ˜λ„λ‘ ν•˜λŠ” λͺ¨λ“  μ–‘μˆ˜ $a$λ₯Ό μž‘μ€ μˆ˜λΆ€ν„° 크기순으둜 λ‚˜μ—΄ν•  λ•Œ, $n$번째 수λ₯Ό $a_n$이라 ν•˜μž.\n\n\\[ \\frac{100}{\\pi} \\times (a_6 - a_2) \\]\n\n의 값을 κ΅¬ν•˜μ‹œμ˜€. [4점]","answer":125,"score":4,"review":null}
{"id":39,"name":"23_geom","problem":"23. μ’Œν‘œκ³΅κ°„μ˜ 두 점 \\(\\mathrm{A}(a, -2, 6)\\), \\(\\mathrm{B}(9, 2, b)\\)에 λŒ€ν•˜μ—¬\n\nμ„ λΆ„ \\(\\mathrm{AB}\\)의 μ€‘μ μ˜ μ’Œν‘œκ°€ \\((4, 0, 7)\\)일 λ•Œ, \\(a + b\\)의 값은? [2점]\n\n\\begin{itemize}\n \\item[1] 1\n \\item[2] 3\n \\item[3] 5\n \\item[4] 7\n \\item[5] 9\n\\end{itemize}","answer":4,"score":2,"review":null}
{"id":40,"name":"24_geom","problem":"24. 타원 $\\frac{x^2}{a^2} + \\frac{y^2}{6} = 1$ μœ„μ˜ 점 $\\left( \\sqrt{3}, -2 \\right)$ μ—μ„œμ˜ μ ‘μ„ μ˜ κΈ°μšΈκΈ°λŠ”? (단, $a$λŠ” μ–‘μˆ˜μ΄λ‹€.) [3점]\n\n\\begin{itemize}\n \\item[1] $\\sqrt{3}$\n \\item[2] $\\frac{\\sqrt{3}}{2}$\n \\item[3] $\\frac{\\sqrt{3}}{3}$\n \\item[4] $\\frac{\\sqrt{3}}{4}$\n \\item[5] $\\frac{\\sqrt{3}}{5}$\n\\end{itemize}","answer":3,"score":3,"review":null}
{"id":41,"name":"25_geom","problem":"25. 두 벑터 $\\vec{a}$, $\\vec{b}$ 에 λŒ€ν•˜μ—¬\n\n\\[|\\vec{a}| = \\sqrt{11}, \\quad |\\vec{b}| = 3, \\quad |2\\vec{a} - \\vec{b}| = \\sqrt{17}\\]\n\n일 λ•Œ, $|\\vec{a} - \\vec{b}|$ 의 값은? [3점]\n\n\\begin{itemize}\n \\item[1] $\\frac{\\sqrt{2}}{2}$\n \\item[2] $\\sqrt{2}$\n \\item[3] $\\frac{3\\sqrt{2}}{2}$\n \\item[4] $2\\sqrt{2}$\n \\item[5] $\\frac{5\\sqrt{2}}{2}$\n\\end{itemize}","answer":2,"score":3,"review":null}
{"id":42,"name":"26_geom","problem":"26. μ’Œν‘œκ³΅κ°„μ— 평면 $\\alpha$κ°€ μžˆλ‹€. 평면 $\\alpha$ μœ„μ— μžˆμ§€ μ•Šμ€ μ„œλ‘œ λ‹€λ₯Έ 두 점 $\\mathrm{A}$, $\\mathrm{B}$의 평면 $\\alpha$ μœ„λ‘œμ˜ μ •μ‚¬μ˜μ„ 각각 $\\mathrm{A'}$, $\\mathrm{B'}$이라 ν•  λ•Œ,\n\n\\[\\overline{\\mathrm{AB}} = \\overline{\\mathrm{A'B'}} = 6\\]\n\n이닀. μ„ λΆ„ $\\mathrm{AB}$의 쀑점 $\\mathrm{M}$의 평면 $\\alpha$ μœ„λ‘œμ˜ μ •μ‚¬μ˜μ„ $\\mathrm{M'}$이라 ν•  λ•Œ,\n\n\\[\\overline{\\mathrm{PM'}} \\perp \\overline{\\mathrm{A'B'}}, \\quad \\overline{\\mathrm{PM'}} = 6\\]\n\n이 λ˜λ„λ‘ 평면 $\\alpha$ μœ„μ— 점 $\\mathrm{P}$λ₯Ό μž‘λŠ”λ‹€.\n\nμ‚Όκ°ν˜• $\\mathrm{A'B'P}$의 평면 $\\mathrm{ABP}$ μœ„λ‘œμ˜ μ •μ‚¬μ˜μ˜ 넓이가 $\\frac{9}{2}$일 λ•Œ, μ„ λΆ„ $\\mathrm{PM}$의 κΈΈμ΄λŠ”? [3점]\n\n\\begin{itemize}\n \\item[1] 12\n \\item[2] 15\n \\item[3] 18\n \\item[4] 21\n \\item[5] 24\n\\end{itemize}","answer":5,"score":3,"review":null}
{"id":43,"name":"27_geom","problem":"27. 초점이 \\( \\mathrm{F} \\)인 포물선 \\( y^2 = 8x \\) μœ„μ˜ ν•œ 점 \\( \\mathrm{A} \\)μ—μ„œ ν¬λ¬Όμ„ μ˜ 쀀선에 λ‚΄λ¦° μˆ˜μ„ μ˜ λ°œμ„ \\( \\mathrm{B} \\)라 ν•˜κ³ , 직선 \\( \\mathrm{BF} \\)와 포물선이 λ§Œλ‚˜λŠ” 두 점을 각각 \\( \\mathrm{C}, \\mathrm{D} \\)라 ν•˜μž. \\( \\overline{\\mathrm{BC}} = \\overline{\\mathrm{CD}} \\)일 λ•Œ, μ‚Όκ°ν˜• \\( \\mathrm{ABD} \\)의 λ„“μ΄λŠ”? (단, \\( \\overline{\\mathrm{CF}} < \\overline{\\mathrm{DF}} \\)이고, 점 \\( \\mathrm{A} \\)λŠ” 원점이 μ•„λ‹ˆλ‹€.) [3점]\n\n\\begin{itemize}\n \\item[1] \\( 100 \\sqrt{2} \\)\n \\item[2] \\( 104 \\sqrt{2} \\)\n \\item[3] \\( 108 \\sqrt{2} \\)\n \\item[4] \\( 112 \\sqrt{2} \\)\n \\item[5] \\( 116 \\sqrt{2} \\)\n\\end{itemize}","answer":3,"score":3,"review":null}
{"id":44,"name":"28_geom","problem":"28. μ„œλ‘œ λ‹€λ₯Έ 두 평면 $\\alpha$, $\\beta$의 ꡐ선 μœ„μ— $\\overline{\\mathrm{AB}} = 18$인 두 점 $\\mathrm{A}$, $\\mathrm{B}$κ°€ μžˆλ‹€. μ„ λΆ„ $\\mathrm{AB}$λ₯Ό μ§€λ¦„μœΌλ‘œ ν•˜λŠ” 원 $C_1$이 평면 $\\alpha$ μœ„μ— 있고, μ„ λΆ„ $\\mathrm{AB}$λ₯Ό μž₯μΆ•μœΌλ‘œ ν•˜κ³  두 점 $\\mathrm{F}$, $\\mathrm{F'}$λ₯Ό 초점으둜 ν•˜λŠ” 타원 $C_2$κ°€ 평면 $\\beta$ μœ„μ— μžˆλ‹€. 원 $C_1$ μœ„μ˜ ν•œ 점 $\\mathrm{P}$μ—μ„œ 평면 $\\beta$에 λ‚΄λ¦° μˆ˜μ„ μ˜ λ°œμ„ $\\mathrm{H}$라 ν•  λ•Œ,\n\\[\n\\overline{\\mathrm{HF'}} < \\overline{\\mathrm{HF}} \\quad \\text{이고} \\quad \\angle \\mathrm{HFF'} = \\frac{\\pi}{6}\n\\]\n이닀. 직선 $\\mathrm{HF}$와 타원 $C_2$κ°€ λ§Œλ‚˜λŠ” 점 쀑 점 $\\mathrm{H}$와 κ°€κΉŒμš΄ 점을 $\\mathrm{Q}$라 ν•˜λ©΄, $\\overline{\\mathrm{FH}} < \\overline{\\mathrm{FQ}}$이닀. 점 $\\mathrm{H}$λ₯Ό μ€‘μ‹¬μœΌλ‘œ ν•˜κ³  점 $\\mathrm{Q}$λ₯Ό μ§€λ‚˜λŠ” 평면 $\\beta$ μœ„μ˜ 원은 λ°˜μ§€λ¦„μ˜ 길이가 4이고 직선 $\\mathrm{AB}$에 μ ‘ν•œλ‹€. 두 평면 $\\alpha$, $\\beta$κ°€ μ΄λ£¨λŠ” 각의 크기λ₯Ό $\\theta$라 ν•  λ•Œ, $\\cos \\theta$의 값은?\n(단, 점 $\\mathrm{P}$λŠ” 평면 $\\beta$ μœ„μ— μžˆμ§€ μ•Šλ‹€.) [4점]\n\n\\begin{itemize} \\item[1] $\\frac{2 \\sqrt{66}}{33}$ \\item[2] $\\frac{4 \\sqrt{69}}{69}$ \\item[3] $\\frac{\\sqrt{2}}{3}$ \\item[4] $\\frac{4 \\sqrt{3}}{15}$ \\item[5] $\\frac{2 \\sqrt{78}}{39}$ \\end{itemize}","answer":5,"score":4,"review":"Removed figure and the statement referring to the figure."}
{"id":45,"name":"29_geom","problem":"29. μ–‘μˆ˜ $c$에 λŒ€ν•˜μ—¬ 두 점 $\\mathrm{F}(c, 0), \\ \\mathrm{F'}(-c, 0)$을 초점으둜 ν•˜κ³ , μ£ΌμΆ•μ˜ 길이가 6인 μŒκ³‘μ„ μ΄ μžˆλ‹€. 이 μŒκ³‘μ„  μœ„μ— λ‹€μŒ 쑰건을 λ§Œμ‘±μ‹œν‚€λŠ” μ„œλ‘œ λ‹€λ₯Έ 두 점 $\\mathrm{P}, \\ \\mathrm{Q}$κ°€ μ‘΄μž¬ν•˜λ„λ‘ ν•˜λŠ” λͺ¨λ“  $c$의 κ°’μ˜ 합을 κ΅¬ν•˜μ‹œμ˜€. [4점]\n\n\\begin{enumerate}\n \\item[(κ°€)] 점 $\\mathrm{P}$λŠ” 제1사뢄면 μœ„μ— 있고, 점 $\\mathrm{Q}$λŠ” 직선 $\\mathrm{PF'}$ μœ„μ— μžˆλ‹€.\n \\item[(λ‚˜)] μ‚Όκ°ν˜• $\\mathrm{PF'F}$λŠ” μ΄λ“±λ³€μ‚Όκ°ν˜•μ΄λ‹€.\n \\item[(λ‹€)] μ‚Όκ°ν˜• $\\mathrm{PQF}$의 λ‘˜λ ˆμ˜ κΈΈμ΄λŠ” 28이닀.\n\\end{enumerate}","answer":11,"score":4,"review":null}
{"id":46,"name":"30_geom","problem":"30. μ’Œν‘œν‰λ©΄μ— ν•œ λ³€μ˜ 길이가 4인 μ •μ‚Όκ°ν˜• $\\mathrm{ABC}$κ°€ μžˆλ‹€. μ„ λΆ„ $\\mathrm{AB}$λ₯Ό 1:3으둜 λ‚΄λΆ„ν•˜λŠ” 점을 $\\mathrm{D}$, μ„ λΆ„ $\\mathrm{BC}$λ₯Ό 1:3으둜 λ‚΄λΆ„ν•˜λŠ” 점을 $\\mathrm{E}$, μ„ λΆ„ $\\mathrm{CA}$λ₯Ό 1:3으둜 λ‚΄λΆ„ν•˜λŠ” 점을 $\\mathrm{F}$라 ν•˜μž. λ„€ 점 $\\mathrm{P}, \\mathrm{Q}, \\mathrm{R}, \\mathrm{X}$κ°€ λ‹€μŒ 쑰건을 λ§Œμ‘±μ‹œν‚¨λ‹€.\n\n\\begin{itemize}\n \\item[(κ°€)] $|\\overrightarrow{\\mathrm{DP}}| = |\\overrightarrow{\\mathrm{EQ}}| = |\\overrightarrow{\\mathrm{FR}}| = 1$\n \\item[(λ‚˜)] $\\overrightarrow{\\mathrm{AX}} = \\overrightarrow{\\mathrm{PB}} + \\overrightarrow{\\mathrm{QC}} + \\overrightarrow{\\mathrm{RA}}$\n\\end{itemize}\n\n$|\\overrightarrow{\\mathrm{AX}}|$의 값이 μ΅œλŒ€μΌ λ•Œ, μ‚Όκ°ν˜• $\\mathrm{PQR}$의 넓이λ₯Ό $S$라 ν•˜μž. $16S^2$의 값을 κ΅¬ν•˜μ‹œμ˜€. [4점]","answer":147,"score":4,"review":null}