Upload glosas_etiquetadas.py
Browse files- glosas_etiquetadas.py +47 -47
glosas_etiquetadas.py
CHANGED
@@ -1,47 +1,47 @@
|
|
1 |
-
import csv
|
2 |
-
import datasets
|
3 |
-
|
4 |
-
_DOWNLOAD_URL = "https://huggingface.co/datasets/cfigueroa/glosas_etiquetadas/resolve/main/dataset4.csv"
|
5 |
-
|
6 |
-
class GlosasEtiquetadas(datasets.GeneratorBasedBuilder):
|
7 |
-
"""Glosas Etiquetadas classification dataset."""
|
8 |
-
|
9 |
-
def _info(self):
|
10 |
-
return datasets.DatasetInfo(
|
11 |
-
features=datasets.Features(
|
12 |
-
{
|
13 |
-
"text": datasets.Value("string"),
|
14 |
-
"label": datasets.ClassLabel(names = ["ACCESORIOS","ALIMENTOS","ANTEOJOS","ASEOPERSONAL","AUTOMOTOR",
|
15 |
-
"BANO","BEBE","BEBIDAS","BICICLETAS","CALEFONT","CARNE","CERVEZA","CONSTRUCCION",
|
16 |
-
"DECORACION","DEPORTE","DORMITORIO","ELECTRONICA","EQUIPAJE","FERRETERIA",
|
17 |
-
"GRIFERIA","ILUMINACION","JARDIN","JOYERIA","JUGUETERIA","LACTEO","LAVANDERIA",
|
18 |
-
"LIBRO","LICORES","LIMPIEZA","MASCOTAS","MENAJE","MOBILIARIO","MUSICA","NIEVE",
|
19 |
-
"ORGANIZACION","OUTDOOR","PANADERIA","PARRILLAS","PESCADERIA","PISCINAS","PISOSMUROS","PUERTASVENTANAS",
|
20 |
-
"RODADOS","SERVICIOS","TECNOLOGIA","TERRAZAS","UTILES","VESTUARIO","VINOS","ZAPATERIA"] ),
|
21 |
-
}
|
22 |
-
)
|
23 |
-
)
|
24 |
-
|
25 |
-
def _split_generators(self, dl_manager):
|
26 |
-
path = dl_manager.download_and_extract(_DOWNLOAD_URL)
|
27 |
-
return [
|
28 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": path, "is_test": False}),
|
29 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": path, "is_test": True}),
|
30 |
-
]
|
31 |
-
|
32 |
-
def _generate_examples(self, filepath, is_test, test_size = 0.3):
|
33 |
-
"""Generate Glosas Etiquetadas examples."""
|
34 |
-
with open(filepath, 'r', encoding='latin-1') as csv_file:
|
35 |
-
train_threshold = 40001
|
36 |
-
csv_reader = csv.reader(
|
37 |
-
csv_file, delimiter=';'
|
38 |
-
)
|
39 |
-
# next(csv_reader, None) # skip the headers
|
40 |
-
for id_, row in enumerate(csv_reader):
|
41 |
-
if id_ > 0:
|
42 |
-
text, label = row
|
43 |
-
current_row = id_, {"text": text, "label": int(label)}
|
44 |
-
if (id_ < train_threshold) & (not is_test):
|
45 |
-
yield current_row
|
46 |
-
if (id_ >= train_threshold) & (is_test):
|
47 |
-
yield current_row
|
|
|
1 |
+
import csv
|
2 |
+
import datasets
|
3 |
+
|
4 |
+
_DOWNLOAD_URL = "https://huggingface.co/datasets/cfigueroa/glosas_etiquetadas/resolve/main/dataset4.csv"
|
5 |
+
|
6 |
+
class GlosasEtiquetadas(datasets.GeneratorBasedBuilder):
|
7 |
+
"""Glosas Etiquetadas classification dataset."""
|
8 |
+
|
9 |
+
def _info(self):
|
10 |
+
return datasets.DatasetInfo(
|
11 |
+
features=datasets.Features(
|
12 |
+
{
|
13 |
+
"text": datasets.Value("string"),
|
14 |
+
"label": datasets.ClassLabel(names = ["ACCESORIOS","ALIMENTOS","ANTEOJOS","ASEOPERSONAL","AUTOMOTOR",
|
15 |
+
"BANO","BEBE","BEBIDAS","BICICLETAS","CALEFONT","CARNE","CERVEZA","CONSTRUCCION",
|
16 |
+
"DECORACION","DEPORTE","DORMITORIO","ELECTRONICA","EQUIPAJE","FERRETERIA",
|
17 |
+
"GRIFERIA","ILUMINACION","JARDIN","JOYERIA","JUGUETERIA","LACTEO","LAVANDERIA",
|
18 |
+
"LIBRO","LICORES","LIMPIEZA","MASCOTAS","MENAJE","MOBILIARIO","MUSICA","NIEVE",
|
19 |
+
"ORGANIZACION","OUTDOOR","PANADERIA","PARRILLAS","PESCADERIA","PISCINAS","PISOSMUROS","PUERTASVENTANAS",
|
20 |
+
"RODADOS","SERVICIOS","TECNOLOGIA","TERRAZAS","UTILES","VESTUARIO","VINOS","ZAPATERIA"] ),
|
21 |
+
}
|
22 |
+
)
|
23 |
+
)
|
24 |
+
|
25 |
+
def _split_generators(self, dl_manager):
|
26 |
+
path = dl_manager.download_and_extract(_DOWNLOAD_URL)
|
27 |
+
return [
|
28 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": path, "is_test": False}),
|
29 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": path, "is_test": True}),
|
30 |
+
]
|
31 |
+
|
32 |
+
def _generate_examples(self, filepath, is_test, test_size = 0.3):
|
33 |
+
"""Generate Glosas Etiquetadas examples."""
|
34 |
+
with open(filepath, 'r', encoding='latin-1') as csv_file:
|
35 |
+
train_threshold = 40001
|
36 |
+
csv_reader = csv.reader(
|
37 |
+
csv_file, delimiter=';'
|
38 |
+
)
|
39 |
+
# next(csv_reader, None) # skip the headers
|
40 |
+
for id_, row in enumerate(csv_reader):
|
41 |
+
if id_ > 0:
|
42 |
+
text, label = row
|
43 |
+
current_row = id_, {"text": text, "label": int(label)}
|
44 |
+
if (id_ < train_threshold) & (not is_test):
|
45 |
+
yield current_row
|
46 |
+
if (id_ >= train_threshold) & (is_test):
|
47 |
+
yield current_row
|