Chris Oswald commited on
Commit
cf605fe
1 Parent(s): 47626df

added load_data.ipynb tutorial

Browse files
Files changed (3) hide show
  1. README.md +149 -119
  2. SPIDER.py +1 -1
  3. tutorials/load_data.ipynb +0 -0
README.md CHANGED
@@ -11,18 +11,41 @@ tags:
11
 
12
  # Dataset Card for Spine Segmentation: Discs, Vertebrae and Spinal Canal (SPIDER)
13
 
14
- The SPIDER data set contains lumbar spine magnetic resonance images (MRI) and segmentation masks described in the following paper:
15
 
16
- Jasper W. van der Graaf, Miranda L. van Hooff, Constantinus F. M. Buckens, Matthieu Rutten,
17
- Job L. C. van Susante, Robert Jan Kroeze, Marinus de Kleuver, Bram van Ginneken, Nikolas Lessmann. (2023).
18
- *Lumbar spine segmentation in MR images: a dataset and a public benchmark.* https://arxiv.org/abs/2306.12217.
19
 
20
- The data were made publicly available through [Zenodo](https://zenodo.org/records/8009680), an open repository operated by CERN, and posted on
21
- [Grand Challenge](https://spider.grand-challenge.org/).
22
 
23
- (***Disclaimer**: I am not affiliated in any way with the aforementioned paper, researchers, or organizations. My only contribution is to curate the SPIDER data set
24
- here on Hugging Face to increase accessibility. While I have taken care to curate the data in a way that maintains the integrity of the original data, any findings using this
25
- particular data set should be validated against the original data provided by the researchers on [Zenodo](https://zenodo.org/records/8009680).*)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
  ## Table of Contents
28
 
@@ -30,127 +53,144 @@ particular data set should be validated against the original data provided by th
30
 
31
  ## Dataset Description
32
 
33
- - **Paper:** [Lumbar spine segmentation in MR images: a dataset and a public benchmark](https://arxiv.org/abs/2306.12217)
34
  - **Repository:** [Zenodo](https://zenodo.org/records/8009680)
 
35
 
36
  ### Dataset Summary
37
 
38
  The dataset includes 447 sagittal T1 and T2 MRI series collected from 218 patients across four hospitals.
39
  Segmentation masks indicating the vertebrae, intervertebral discs (IVDs), and spinal canal are also included.
40
- Segmentation masks were created manually by a medical trainee under the supervision of
41
- a medical imaging expert and an experienced musculoskeletal radiologist.
42
 
43
  In addition to MR images and segmentation masks, additional metadata (e.g., scanner manufacturer, pixel bandwidth, etc.), limited
44
  patient characteristics (biological sex and age, when available), and radiological gradings indicating specific degenerative
45
  changes can be loaded with the corresponding image data.
46
 
47
- ## Dataset Structure
48
-
49
- ### Data Instances
50
-
51
- There are 447 images and corresponding segmentation masks for 218 unique patients.
52
-
53
- ### Data Fields
54
-
55
- The following list includes the data fields available for importing:
56
-
57
- - Numeric representation of image
58
-
59
- - Numeric representation of segmentation mask
60
- - vertebrae
61
- - intervertebral discs
62
- - spinal canal
63
-
64
- - Image characteristics
65
- - number of vertebrae
66
- - number of discs
67
-
68
- - Patient characteristics
69
- - biological sex
70
- - age
71
-
72
- - Scanner characteristics
73
- - manufacturer
74
- - manufacturer model name
75
- - serial number
76
- - software version
77
- - echo numbers
78
- - echo time
79
- - echo train length
80
- - flip angle
81
- - imaged nucleus
82
- - imaging frequency
83
- - inplane phase encoding direction
84
- - MR acquisition type
85
- - magnetic field strength
86
- - number of phase encoding steps
87
- - percent phase field of view
88
- - percent sampling
89
- - photometric interpretation
90
- - pixel bandwidth
91
- - pixel spacing
92
- - repetition time
93
- - specific absorption rate (SAR)
94
- - samples per pixel
95
- - scanning sequence
96
- - sequence name
97
- - series description
98
- - slice thickness
99
- - spacing between slices
100
- - specific character set
101
- - transmit coil name
102
- - window center
103
- - window width
104
-
105
- (TODO: Will add variable descriptions after proposal approval)
106
-
107
- ### Data Splits
108
 
109
- The training set contains [x] images distributed as follows:
 
110
 
111
- - Unique individuals: [x]
 
 
 
112
 
113
- - Standard sagittal T1 images: [x]
114
- - Standard sagittal T2 images: [y]
115
- - Standard sagittal T2 SPACE images: [z]
116
- -
117
- The validation set contains 87 images distributed as follows:
118
 
119
- - Unique individuals: [x]
 
 
 
120
 
121
- - Standard sagittal T1 images: [x]
122
- - Standard sagittal T2 images: [y]
123
- - Standard sagittal T2 SPACE images: [z]
124
 
125
- An additional hidden test set (not available through Hugging Face) is available on the [SPIDER Grand Challenge](spider.grand-challenge.org).
126
 
127
- ## Image Resolution
128
 
129
- Standard sagittal T1 and T2 image resolution ranges from 3.3 x 0.33 x 0.33 mm to 4.8 x 0.90 x 0.90 mm.
130
- Sagittal T2 SPACE sequence images had a near isotropic spatial resolution with a voxel size of 0.90 x 0.47 x 0.47 mm.
131
- [Source](https://spider.grand-challenge.org/data/)
132
 
133
- ## Dataset Curation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134
 
135
- The data have been curated to enable users to load any of the following:
136
 
137
- - Raw image files
138
- - Raw segmentation masks
139
- - Numeric representations of images in tensor format
140
- - Numeric representations of segmentation masks in tensor format
141
- - Linked patient characteristics (limited to sex and age, if available)
142
- - Linked scanner characteristics
143
-
144
- ### Source Data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145
 
146
- ### Processing Steps
147
 
148
- (Specifics to be determined, but will include:)
 
 
149
 
150
- 1. Conversion of .mha files to numeric representations
151
- 2. Linking of segmentation mask numeric representations to image files
152
- 3. Linking of patient and scanner characteristics to image files
153
- 4. Cleaning of patient and scanner characteristics
154
 
155
  ## Additional Information
156
 
@@ -160,19 +200,9 @@ The dataset is published under a CC-BY 4.0 license: https://creativecommons.org/
160
 
161
  ### Citation
162
 
163
- Jasper W. van der Graaf, Miranda L. van Hooff, Constantinus F. M. Buckens, Matthieu Rutten,
164
- Job L. C. van Susante, Robert Jan Kroeze, Marinus de Kleuver, Bram van Ginneken, Nikolas Lessmann. (2023).
165
- *Lumbar spine segmentation in MR images: a dataset and a public benchmark.* https://arxiv.org/abs/2306.12217.
166
-
167
-
168
-
169
-
170
- # Rescale mask intensities to [0, 255] and cast as UInt8 type
171
- mask = sitk.Cast(sitk.RescaleIntensity(sitk.ReadImage(mask_path)), sitk.sitkUInt8)
172
- # Rescale image intensities to [0, 255] and cast as UInt8 type
173
- image = sitk.Cast(sitk.RescaleIntensity(image), sitk.sitkUInt8)
174
 
175
- # NOTE: since the original array shape is not standardized, cannot return in dataset
176
 
177
- # Images and masks are resized to (512, 512, 30) and rescaled to [0, 255] (unisgned 8-bit integers); paths to original
178
- .mha images and masks are also provided if you would prefer to load original image (for example, using SimpleSITK library)
 
11
 
12
  # Dataset Card for Spine Segmentation: Discs, Vertebrae and Spinal Canal (SPIDER)
13
 
14
+ The SPIDER dataset contains (human) lumbar spine magnetic resonance images (MRI) and segmentation masks described in the following paper:
15
 
16
+ - van der Graaf, J.W., van Hooff, M.L., Buckens, C.F.M. et al. *Lumbar spine segmentation in MR images: a dataset and a public benchmark.*
17
+ Sci Data 11, 264 (2024). https://doi.org/10.1038/s41597-024-03090-w
 
18
 
19
+ Original data are available on [Zenodo](https://zenodo.org/records/8009680). More information can be found at [SPIDER Grand Challenge](https://spider.grand-challenge.org/).
 
20
 
21
+ <figure>
22
+ <img src="docs/ex1.png" alt="Example MRI Image" style="height:300px;">
23
+ <figcaption>Example MRI scan (at three different depths)</figcaption>
24
+ </figure>
25
+
26
+ <figure>
27
+ <img src="docs/ex2.png" alt="Example MRI Image with Segmentation Mask" style="height:300px;">
28
+ <figcaption>Example MRI scan with segmentation masks</figcaption>
29
+ </figure>
30
+
31
+ ## Getting Started
32
+
33
+ First, you will need to install the following dependencies:
34
+
35
+ * `datasets >= 2.18.0`
36
+ * `scikit-image >= 0.19.3`
37
+ * `SimpleITK >= 2.3.1`
38
+
39
+ Then you can load the SPIDER dataset as follows:
40
+
41
+ ```python
42
+ from datasets import load_dataset
43
+
44
+ dataset = load_dataset("cdoswald/SPIDER, name="default", trust_remote_code=True)
45
+ ```
46
+
47
+ More detailed examples for [loading](tutorials/load_data.ipynb) the dataset with different configurations
48
+ and using the dataset for [segmentation tasks](tutorials/segment_anything.ipynb) are provided in the [tutorials](tutorials) folder.
49
 
50
  ## Table of Contents
51
 
 
53
 
54
  ## Dataset Description
55
 
56
+ - **Paper:** [Lumbar spine segmentation in MR images: a dataset and a public benchmark](https://www.nature.com/articles/s41597-024-03090-w)
57
  - **Repository:** [Zenodo](https://zenodo.org/records/8009680)
58
+ - **Grand Challenge:** [SPIDER Grand Challenge](https://spider.grand-challenge.org/)
59
 
60
  ### Dataset Summary
61
 
62
  The dataset includes 447 sagittal T1 and T2 MRI series collected from 218 patients across four hospitals.
63
  Segmentation masks indicating the vertebrae, intervertebral discs (IVDs), and spinal canal are also included.
64
+ Segmentation masks were created manually by a medical trainee under the supervision of a medical imaging expert and an experienced musculoskeletal radiologist.
 
65
 
66
  In addition to MR images and segmentation masks, additional metadata (e.g., scanner manufacturer, pixel bandwidth, etc.), limited
67
  patient characteristics (biological sex and age, when available), and radiological gradings indicating specific degenerative
68
  changes can be loaded with the corresponding image data.
69
 
70
+ ### Modifications to Original Data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
 
72
+ This version of the SPIDER dataset (i.e., available through the HuggingFace `datasets` library) differs from the original
73
+ data available on [Zenodo](https://zenodo.org/records/8009680) in two key ways:
74
 
75
+ 1. Image Rescaling/Resizing: The original 3D volumetric MRI data (images and masks) are stored as .mha files and do not have a standardized height, width, depth, and image resolution.
76
+ To enable the data to be loaded through the HuggingFace `datasets` library, all 447 MRI series and masks are standardized to have size `(512, 512, 30)` and resolution `[0, 255]` (unisgned 8-bit integers); therefore,
77
+ n-dimensional interpolation is used to resize and/or rescale the images (via the `skimage.transform.resize` and `skimage.img_as_ubyte` functions).
78
+ If you need a different standardization, you have two options:
79
 
80
+ i. Pass your preferred standardization size as a `Tuple[int, int, int]` to the `resize_shape` argument in `load_dataset` (see the [LoadData Tutorial](placeholder)); OR
81
+
82
+ ii. After loading the dataset from HuggingFace, use the `SimpleITK` library to import each image using the file path of the locally cached .mha file.
83
+ The local cache file path is provided for each example when iterating over the dataset (again, see the [LoadData Tutorial](placeholder)).
 
84
 
85
+ 2. Train, Validation, and Test Set: The original dataset contained 257 unique studies (i.e., patients) that were partitioned into 218 (85%) studies for the public training/validation set
86
+ and 39 (15%) studies for the SPIDER Grand Challenge [hidden test set](https://spider.grand-challenge.org/data/). To enable users to train, validate, and test their models prior to submitting
87
+ their models to the SPIDER Grand Challenge, the original 218 studies that comprised the public training/validation set were further partitioned using a 60%/20%/20% split. The original split
88
+ for each study (i.e., training or validation set) is recorded in the `OrigSubset` variable in the study's linked metadata.
89
 
 
 
 
90
 
91
+ ## Dataset Structure
92
 
93
+ ### Data Instances
94
 
95
+ There are 447 images and corresponding segmentation masks for 218 unique patients.
 
 
96
 
97
+ ### Data Format/Fields
98
+
99
+ The format for each generated data instance is as follows:
100
+
101
+ 1. **patient_id**: a unique ID number indicating the specific patient (note that many patients have more than one scan in the data)
102
+
103
+ 2. **scan_type**: an indicator for whether the image is a T1-weighted, T2-weighted, or T2-SPACE MRI
104
+
105
+ 3. **image**: a 3-dimensional volumetric array (height, width, depth) of values indicating pixel intensities of MRI scan
106
+
107
+ 4. **mask**: a 3-dimensional volumetric array (height, width, depth) of values indicating manually segmented feature of interest
108
+
109
+ 5. **image_path**: path to the local cache containing the original (non-rescaled and non-resized) MRI image
110
+
111
+ 6. **mask_path**: path to the local cache containing the original (non-rescaled and non-resized) segementation mask
112
+
113
+ 7. **metadata**: a dictionary of metadata of image, patient, and scanner characteristics:
114
+
115
+ - number of vertebrae
116
+ - number of discs
117
+ - biological sex
118
+ - age
119
+ - manufacturer
120
+ - manufacturer model name
121
+ - serial number
122
+ - software version
123
+ - echo numbers
124
+ - echo time
125
+ - echo train length
126
+ - flip angle
127
+ - imaged nucleus
128
+ - imaging frequency
129
+ - inplane phase encoding direction
130
+ - MR acquisition type
131
+ - magnetic field strength
132
+ - number of phase encoding steps
133
+ - percent phase field of view
134
+ - percent sampling
135
+ - photometric interpretation
136
+ - pixel bandwidth
137
+ - pixel spacing
138
+ - repetition time
139
+ - specific absorption rate (SAR)
140
+ - samples per pixel
141
+ - scanning sequence
142
+ - sequence name
143
+ - series description
144
+ - slice thickness
145
+ - spacing between slices
146
+ - specific character set
147
+ - transmit coil name
148
+ - window center
149
+ - window width
150
+
151
+ 9. **rad_gradings**: radiological gradings by an expert musculoskeletal radiologist indicating specific degenerative
152
+ changes at all intervertebral disc (IVD) levels (see page 3 of the [original paper](https://www.nature.com/articles/s41597-024-03090-w)
153
+ for more details). The data are provided as a dictionary of lists; an element's position in the list indicates the IVD level. Some elements
154
+ are ratings while others are binary indicators. For consistency, each list will have 10 elements, but some IVD levels may not be applicable
155
+ to every image (which will be indicated with an empty string).
156
 
157
+ ### Data Splits
158
 
159
+ The dataset is split as follows:
160
+
161
+ - Training set:
162
+ - 149 unique patients
163
+ - 304 images
164
+ - T1: 133 images
165
+ - T2: 145 images
166
+ - T2-SPACE: 26 images
167
+ - Validation set:
168
+ - 37 unique patients
169
+ - 75 images
170
+ - T1: 34 images
171
+ - T2: 34 images
172
+ - T2-SPACE: 7 images
173
+ - Test set:
174
+ - 32 unique patients
175
+ - 68 images
176
+ - T1: 29 images
177
+ - T2: 31 images
178
+ - T2-SPACE: 8 images
179
+
180
+ An additional hidden test set provided by the paper authors
181
+ (i.e., not available via HuggingFace) is available on the
182
+ [SPIDER Grand Challenge](https://spider.grand-challenge.org/spiders-challenge/).
183
 
184
+ ## Image Resolution
185
 
186
+ > Standard sagittal T1 and T2 image resolution ranges from 3.3 x 0.33 x 0.33 mm to 4.8 x 0.90 x 0.90 mm.
187
+ > Sagittal T2 SPACE sequence images had a near isotropic spatial resolution with a voxel size of 0.90 x 0.47 x 0.47 mm.
188
+ > (https://spider.grand-challenge.org/data/)
189
 
190
+ Note that all images are rescaled to have pixel intensities in the range `[0, 255]` (i.e., unsigned 8-bit integers)
191
+ for compatibility with the HuggingFace `datasets` library. If you want to use the original resolution, you can
192
+ load the original images from the local cache indicated in each example's `image_path` and `mask_path` features.
193
+ See the data loading [tutorial](tutorials/load_data.ipynb) for more information.
194
 
195
  ## Additional Information
196
 
 
200
 
201
  ### Citation
202
 
203
+ - van der Graaf, J.W., van Hooff, M.L., Buckens, C.F.M. et al. Lumbar spine segmentation in MR images: a dataset and a public benchmark. Sci Data 11, 264 (2024). https://doi.org/10.1038/s41597-024-03090-w.
 
 
 
 
 
 
 
 
 
 
204
 
205
+ ### Disclaimer
206
 
207
+ I am not affiliated in any way with the aforementioned paper, researchers, or organizations. Please validate any findings using this curated dataset
208
+ against the original data provided by the researchers on [Zenodo](https://zenodo.org/records/8009680).)
SPIDER.py CHANGED
@@ -129,7 +129,7 @@ _URLS = {
129
  "masks":"https://zenodo.org/records/10159290/files/masks.zip",
130
  "overview":"https://zenodo.org/records/10159290/files/overview.csv",
131
  "gradings":"https://zenodo.org/records/10159290/files/radiological_gradings.csv",
132
- "var_types": "https://huggingface.co/datasets/cdoswald/SPIDER/raw/main/TextFiles/var_types.json",
133
  }
134
 
135
  class CustomBuilderConfig(datasets.BuilderConfig):
 
129
  "masks":"https://zenodo.org/records/10159290/files/masks.zip",
130
  "overview":"https://zenodo.org/records/10159290/files/overview.csv",
131
  "gradings":"https://zenodo.org/records/10159290/files/radiological_gradings.csv",
132
+ "var_types": "https://huggingface.co/datasets/cdoswald/SPIDER/raw/main/textfiles/var_types.json",
133
  }
134
 
135
  class CustomBuilderConfig(datasets.BuilderConfig):
tutorials/load_data.ipynb ADDED
The diff for this file is too large to render. See raw diff