Chris Oswald commited on
Commit
b9661d6
·
1 Parent(s): e2c0319
Files changed (1) hide show
  1. SPIDER.py +20 -17
SPIDER.py CHANGED
@@ -37,6 +37,7 @@ def import_csv_data(filepath: str) -> List[Dict[str, str]]:
37
 
38
  # Define constants
39
  N_PATIENTS = 257
 
40
 
41
  # TODO: Add BibTeX citation
42
  # Find for instance the citation on arxiv or on the dataset repo/website
@@ -439,12 +440,12 @@ class SPIDER(datasets.GeneratorBasedBuilder):
439
  if patient_grades:
440
  grades_dict[str(patient_id)] = patient_grades
441
 
442
- # Determine maximum number of radiological gradings per patient
443
- max_ivd = 0
444
- for temp_dict_1 in grades_dict.values():
445
- for temp_dict_2 in temp_dict_1:
446
- if int(temp_dict_2['IVD label']) > max_ivd:
447
- max_ivd = int(temp_dict_2['IVD label'])
448
 
449
  # Import image and mask data
450
  image_files = [
@@ -526,17 +527,19 @@ class SPIDER(datasets.GeneratorBasedBuilder):
526
 
527
  # Pad patient radiological gradings so that data for all patients
528
  # have the same dimensions
529
- for i in range(len(patient_grades_dict) + 1, max_ivd + 1):
530
- patient_grades_dict[f'IVD{i}'] = {
531
- "Modic": "",
532
- "UP endplate": "",
533
- "LOW endplate": "",
534
- "Spondylolisthesis": "",
535
- "Disc herniation": "",
536
- "Disc narrowing": "",
537
- "Disc bulging": "",
538
- "Pfirrman grade": "",
539
- }
 
 
540
 
541
  # Prepare example return dict
542
  return_dict = {'patient_id':patient_id, 'scan_type':scan_type}
 
37
 
38
  # Define constants
39
  N_PATIENTS = 257
40
+ MAX_IVD = 9
41
 
42
  # TODO: Add BibTeX citation
43
  # Find for instance the citation on arxiv or on the dataset repo/website
 
440
  if patient_grades:
441
  grades_dict[str(patient_id)] = patient_grades
442
 
443
+ # # Determine maximum number of radiological gradings per patient
444
+ # max_ivd = 0
445
+ # for temp_dict_1 in grades_dict.values():
446
+ # for temp_dict_2 in temp_dict_1:
447
+ # if int(temp_dict_2['IVD label']) > max_ivd:
448
+ # max_ivd = int(temp_dict_2['IVD label'])
449
 
450
  # Import image and mask data
451
  image_files = [
 
527
 
528
  # Pad patient radiological gradings so that data for all patients
529
  # have the same dimensions
530
+ if len(patient_grades_dict) < MAX_IVD:
531
+ for i in range(len(patient_grades_dict) + 1, MAX_IVD + 1):
532
+ print(i)
533
+ patient_grades_dict[f'IVD{i}'] = {
534
+ "Modic": "",
535
+ "UP endplate": "",
536
+ "LOW endplate": "",
537
+ "Spondylolisthesis": "",
538
+ "Disc herniation": "",
539
+ "Disc narrowing": "",
540
+ "Disc bulging": "",
541
+ "Pfirrman grade": "",
542
+ }
543
 
544
  # Prepare example return dict
545
  return_dict = {'patient_id':patient_id, 'scan_type':scan_type}