Chris Oswald
commited on
Commit
·
9997395
1
Parent(s):
18d6eb1
flattened radiological gradings
Browse files
SPIDER.py
CHANGED
@@ -37,6 +37,7 @@ def import_csv_data(filepath: str) -> List[Dict[str, str]]:
|
|
37 |
|
38 |
# Define constants
|
39 |
N_PATIENTS = 257
|
|
|
40 |
MAX_IVD = 9
|
41 |
|
42 |
# TODO: Add BibTeX citation
|
@@ -181,96 +182,15 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
181 |
"WindowWidth": datasets.Value(dtype="string"),
|
182 |
},
|
183 |
"rad_gradings": {
|
184 |
-
"
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
},
|
194 |
-
"IVD2": {
|
195 |
-
"Modic": datasets.Value(dtype="string"),
|
196 |
-
"UP endplate": datasets.Value(dtype="string"),
|
197 |
-
"LOW endplate": datasets.Value(dtype="string"),
|
198 |
-
"Spondylolisthesis": datasets.Value(dtype="string"),
|
199 |
-
"Disc herniation": datasets.Value(dtype="string"),
|
200 |
-
"Disc narrowing": datasets.Value(dtype="string"),
|
201 |
-
"Disc bulging": datasets.Value(dtype="string"),
|
202 |
-
"Pfirrman grade": datasets.Value(dtype="string"),
|
203 |
-
},
|
204 |
-
"IVD3": {
|
205 |
-
"Modic": datasets.Value(dtype="string"),
|
206 |
-
"UP endplate": datasets.Value(dtype="string"),
|
207 |
-
"LOW endplate": datasets.Value(dtype="string"),
|
208 |
-
"Spondylolisthesis": datasets.Value(dtype="string"),
|
209 |
-
"Disc herniation": datasets.Value(dtype="string"),
|
210 |
-
"Disc narrowing": datasets.Value(dtype="string"),
|
211 |
-
"Disc bulging": datasets.Value(dtype="string"),
|
212 |
-
"Pfirrman grade": datasets.Value(dtype="string"),
|
213 |
-
},
|
214 |
-
"IVD4": {
|
215 |
-
"Modic": datasets.Value(dtype="string"),
|
216 |
-
"UP endplate": datasets.Value(dtype="string"),
|
217 |
-
"LOW endplate": datasets.Value(dtype="string"),
|
218 |
-
"Spondylolisthesis": datasets.Value(dtype="string"),
|
219 |
-
"Disc herniation": datasets.Value(dtype="string"),
|
220 |
-
"Disc narrowing": datasets.Value(dtype="string"),
|
221 |
-
"Disc bulging": datasets.Value(dtype="string"),
|
222 |
-
"Pfirrman grade": datasets.Value(dtype="string"),
|
223 |
-
},
|
224 |
-
"IVD5": {
|
225 |
-
"Modic": datasets.Value(dtype="string"),
|
226 |
-
"UP endplate": datasets.Value(dtype="string"),
|
227 |
-
"LOW endplate": datasets.Value(dtype="string"),
|
228 |
-
"Spondylolisthesis": datasets.Value(dtype="string"),
|
229 |
-
"Disc herniation": datasets.Value(dtype="string"),
|
230 |
-
"Disc narrowing": datasets.Value(dtype="string"),
|
231 |
-
"Disc bulging": datasets.Value(dtype="string"),
|
232 |
-
"Pfirrman grade": datasets.Value(dtype="string"),
|
233 |
-
},
|
234 |
-
"IVD6": {
|
235 |
-
"Modic": datasets.Value(dtype="string"),
|
236 |
-
"UP endplate": datasets.Value(dtype="string"),
|
237 |
-
"LOW endplate": datasets.Value(dtype="string"),
|
238 |
-
"Spondylolisthesis": datasets.Value(dtype="string"),
|
239 |
-
"Disc herniation": datasets.Value(dtype="string"),
|
240 |
-
"Disc narrowing": datasets.Value(dtype="string"),
|
241 |
-
"Disc bulging": datasets.Value(dtype="string"),
|
242 |
-
"Pfirrman grade": datasets.Value(dtype="string"),
|
243 |
-
},
|
244 |
-
"IVD7": {
|
245 |
-
"Modic": datasets.Value(dtype="string"),
|
246 |
-
"UP endplate": datasets.Value(dtype="string"),
|
247 |
-
"LOW endplate": datasets.Value(dtype="string"),
|
248 |
-
"Spondylolisthesis": datasets.Value(dtype="string"),
|
249 |
-
"Disc herniation": datasets.Value(dtype="string"),
|
250 |
-
"Disc narrowing": datasets.Value(dtype="string"),
|
251 |
-
"Disc bulging": datasets.Value(dtype="string"),
|
252 |
-
"Pfirrman grade": datasets.Value(dtype="string"),
|
253 |
-
},
|
254 |
-
"IVD8": {
|
255 |
-
"Modic": datasets.Value(dtype="string"),
|
256 |
-
"UP endplate": datasets.Value(dtype="string"),
|
257 |
-
"LOW endplate": datasets.Value(dtype="string"),
|
258 |
-
"Spondylolisthesis": datasets.Value(dtype="string"),
|
259 |
-
"Disc herniation": datasets.Value(dtype="string"),
|
260 |
-
"Disc narrowing": datasets.Value(dtype="string"),
|
261 |
-
"Disc bulging": datasets.Value(dtype="string"),
|
262 |
-
"Pfirrman grade": datasets.Value(dtype="string"),
|
263 |
-
},
|
264 |
-
"IVD9": {
|
265 |
-
"Modic": datasets.Value(dtype="string"),
|
266 |
-
"UP endplate": datasets.Value(dtype="string"),
|
267 |
-
"LOW endplate": datasets.Value(dtype="string"),
|
268 |
-
"Spondylolisthesis": datasets.Value(dtype="string"),
|
269 |
-
"Disc herniation": datasets.Value(dtype="string"),
|
270 |
-
"Disc narrowing": datasets.Value(dtype="string"),
|
271 |
-
"Disc bulging": datasets.Value(dtype="string"),
|
272 |
-
"Pfirrman grade": datasets.Value(dtype="string"),
|
273 |
-
},
|
274 |
}
|
275 |
})
|
276 |
|
@@ -444,10 +364,10 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
444 |
patient_grades = [
|
445 |
x for x in grades_data if x['Patient'] == str(patient_id)
|
446 |
]
|
447 |
-
# Pad
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
patient_grades.append({
|
452 |
"Patient": f"{patient_id}",
|
453 |
"IVD label": f"{i}",
|
@@ -460,9 +380,19 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
460 |
"Disc bulging": "",
|
461 |
"Pfirrman grade": "",
|
462 |
})
|
463 |
-
assert len(patient_grades) == MAX_IVD
|
464 |
-
|
465 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
466 |
|
467 |
# Import image and mask data
|
468 |
image_files = [
|
@@ -534,14 +464,7 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
534 |
image_overview = overview_dict[scan_id]
|
535 |
|
536 |
# Extract patient radiological gradings corresponding to patient
|
537 |
-
patient_grades_dict =
|
538 |
-
for item in grades_dict[patient_id]:
|
539 |
-
key = f'IVD{item["IVD label"]}'
|
540 |
-
value = {
|
541 |
-
k:v for k,v in item.items()
|
542 |
-
if k not in ['Patient', 'IVD label']
|
543 |
-
}
|
544 |
-
patient_grades_dict[key] = value
|
545 |
|
546 |
# Prepare example return dict
|
547 |
return_dict = {'patient_id':patient_id, 'scan_type':scan_type}
|
@@ -555,4 +478,4 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
555 |
return_dict['rad_gradings'] = patient_grades_dict
|
556 |
|
557 |
# Yield example
|
558 |
-
yield
|
|
|
37 |
|
38 |
# Define constants
|
39 |
N_PATIENTS = 257
|
40 |
+
MIN_IVD = 0
|
41 |
MAX_IVD = 9
|
42 |
|
43 |
# TODO: Add BibTeX citation
|
|
|
182 |
"WindowWidth": datasets.Value(dtype="string"),
|
183 |
},
|
184 |
"rad_gradings": {
|
185 |
+
"IVD label": datasets.Sequence(datasets.Value("string")),
|
186 |
+
"Modic": datasets.Sequence(datasets.Value("string")),
|
187 |
+
"UP endplate": datasets.Sequence(datasets.Value("string")),
|
188 |
+
"LOW endplate": datasets.Sequence(datasets.Value("string")),
|
189 |
+
"Spondylolisthesis": datasets.Sequence(datasets.Value("string")),
|
190 |
+
"Disc herniation": datasets.Sequence(datasets.Value("string")),
|
191 |
+
"Disc narrowing": datasets.Sequence(datasets.Value("string")),
|
192 |
+
"Disc bulging": datasets.Sequence(datasets.Value("string")),
|
193 |
+
"Pfirrman grade": datasets.Sequence(datasets.Value("string")),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
}
|
195 |
})
|
196 |
|
|
|
364 |
patient_grades = [
|
365 |
x for x in grades_data if x['Patient'] == str(patient_id)
|
366 |
]
|
367 |
+
# Pad so that all patients have same number of IVD observations
|
368 |
+
IVD_values = [x['IVD label'] for x in patient_grades]
|
369 |
+
for i in range(MIN_IVD, MAX_IVD + 1):
|
370 |
+
if str(i) not in IVD_values:
|
371 |
patient_grades.append({
|
372 |
"Patient": f"{patient_id}",
|
373 |
"IVD label": f"{i}",
|
|
|
380 |
"Disc bulging": "",
|
381 |
"Pfirrman grade": "",
|
382 |
})
|
383 |
+
assert len(patient_grades) == (MAX_IVD - MIN_IVD + 1), "Radiological\
|
384 |
+
gradings not padded correctly"
|
385 |
+
|
386 |
+
# Convert to sequences
|
387 |
+
df = (
|
388 |
+
pd.DataFrame(patient_grades)
|
389 |
+
.sort_values("IVD label")
|
390 |
+
.reset_index(drop=True)
|
391 |
+
)
|
392 |
+
grades_dict[str(patient_id)] = {
|
393 |
+
col:df[col].tolist() for col in df.columns
|
394 |
+
if col not in ['Patient']
|
395 |
+
}
|
396 |
|
397 |
# Import image and mask data
|
398 |
image_files = [
|
|
|
464 |
image_overview = overview_dict[scan_id]
|
465 |
|
466 |
# Extract patient radiological gradings corresponding to patient
|
467 |
+
patient_grades_dict = grades_dict[patient_id]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
468 |
|
469 |
# Prepare example return dict
|
470 |
return_dict = {'patient_id':patient_id, 'scan_type':scan_type}
|
|
|
478 |
return_dict['rad_gradings'] = patient_grades_dict
|
479 |
|
480 |
# Yield example
|
481 |
+
yield scan_id, return_dict
|