Chris Oswald
commited on
Commit
•
508d191
1
Parent(s):
01d5f4f
added image standardization
Browse files
SPIDER.py
CHANGED
@@ -24,6 +24,7 @@ import numpy as np
|
|
24 |
import pandas as pd
|
25 |
|
26 |
import datasets
|
|
|
27 |
import SimpleITK as sitk
|
28 |
|
29 |
# Define functions
|
@@ -36,12 +37,20 @@ def import_csv_data(filepath: str) -> List[Dict[str, str]]:
|
|
36 |
results.append(line)
|
37 |
return results
|
38 |
|
39 |
-
def standardize_3D_image(
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
41 |
if image.shape[0] < image.shape[2]:
|
42 |
image = np.transpose(image, axes=[1, 2, 0])
|
|
|
|
|
43 |
return image
|
44 |
|
|
|
45 |
# Define constants
|
46 |
N_PATIENTS = 218
|
47 |
MIN_IVD = 0
|
@@ -91,11 +100,11 @@ class CustomBuilderConfig(datasets.BuilderConfig):
|
|
91 |
data_files: Optional[Union[str, Sequence, Mapping]] = None,
|
92 |
description: Optional[str] = None,
|
93 |
scan_types: List[str] = DEFAULT_SCAN_TYPES,
|
94 |
-
|
95 |
):
|
96 |
super().__init__(name, version, data_dir, data_files, description)
|
97 |
self.scan_types = scan_types
|
98 |
-
self.
|
99 |
|
100 |
|
101 |
class SPIDER(datasets.GeneratorBasedBuilder):
|
@@ -111,28 +120,28 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
111 |
# version=VERSION,
|
112 |
# description="Use images of all scan types (t1, t2, t2 SPACE)",
|
113 |
# scan_types=['t1', 't2', 't2_SPACE'],
|
114 |
-
#
|
115 |
# ),
|
116 |
# CustomBuilderConfig(
|
117 |
# name="t1_scan_types",
|
118 |
# version=VERSION,
|
119 |
# description="Use images of t1 scan types only",
|
120 |
# scan_types=['t1'],
|
121 |
-
#
|
122 |
# ),
|
123 |
# CustomBuilderConfig(
|
124 |
# name="t2_scan_types",
|
125 |
# version=VERSION,
|
126 |
# description="Use images of t2 scan types only",
|
127 |
# scan_types=['t2'],
|
128 |
-
#
|
129 |
# ),
|
130 |
# CustomBuilderConfig(
|
131 |
# name="t2_SPACE_scan_types",
|
132 |
# version=VERSION,
|
133 |
# description="Use images of t2 SPACE scan types only",
|
134 |
# scan_types=['t2_SPACE'],
|
135 |
-
#
|
136 |
# ),
|
137 |
# ]
|
138 |
|
@@ -142,12 +151,12 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
142 |
self,
|
143 |
*args,
|
144 |
scan_types: List[str] = DEFAULT_SCAN_TYPES,
|
145 |
-
|
146 |
**kwargs,
|
147 |
):
|
148 |
super().__init__(*args, **kwargs)
|
149 |
self.scan_types = scan_types
|
150 |
-
self.
|
151 |
|
152 |
def _info(self):
|
153 |
"""
|
@@ -158,7 +167,7 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
158 |
"patient_id": datasets.Value("string"),
|
159 |
"scan_type": datasets.Value("string"),
|
160 |
# "raw_image": datasets.Image(),
|
161 |
-
"numeric_array": datasets.Array3D(shape=self.
|
162 |
"metadata": {
|
163 |
"num_vertebrae": datasets.Value(dtype="string"),
|
164 |
"num_discs": datasets.Value(dtype="string"),
|
@@ -246,7 +255,7 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
246 |
"paths_dict": paths_dict,
|
247 |
"split": "train",
|
248 |
"scan_types": self.scan_types,
|
249 |
-
"
|
250 |
},
|
251 |
),
|
252 |
datasets.SplitGenerator(
|
@@ -255,7 +264,7 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
255 |
"paths_dict": paths_dict,
|
256 |
"split": "validate",
|
257 |
"scan_types": self.scan_types,
|
258 |
-
"
|
259 |
},
|
260 |
),
|
261 |
datasets.SplitGenerator(
|
@@ -264,7 +273,7 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
264 |
"paths_dict": paths_dict,
|
265 |
"split": "test",
|
266 |
"scan_types": self.scan_types,
|
267 |
-
"
|
268 |
},
|
269 |
),
|
270 |
]
|
@@ -274,7 +283,7 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
274 |
paths_dict: Dict[str, str],
|
275 |
split: str,
|
276 |
scan_types: List[str],
|
277 |
-
|
278 |
validate_share: float = 0.3,
|
279 |
test_share: float = 0.2,
|
280 |
raw_image: bool = True,
|
@@ -475,9 +484,11 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
475 |
image_path = os.path.join(paths_dict['images'], 'images', example)
|
476 |
image = sitk.ReadImage(image_path)
|
477 |
|
478 |
-
# Convert .mha image to numeric array
|
479 |
-
image_array =
|
480 |
-
|
|
|
|
|
481 |
#TODO: load mask file and numeric array
|
482 |
|
483 |
# Extract overview data corresponding to image
|
|
|
24 |
import pandas as pd
|
25 |
|
26 |
import datasets
|
27 |
+
import skimage
|
28 |
import SimpleITK as sitk
|
29 |
|
30 |
# Define functions
|
|
|
37 |
results.append(line)
|
38 |
return results
|
39 |
|
40 |
+
def standardize_3D_image(
|
41 |
+
image: np.ndarray,
|
42 |
+
resize_shape: Tuple[int, int, int]
|
43 |
+
) -> np.ndarray:
|
44 |
+
"""Aligns dimensions of image to be (height, width, channels) and resizes
|
45 |
+
images to values specified in resize_shape."""
|
46 |
+
# Align height, width, channel dims
|
47 |
if image.shape[0] < image.shape[2]:
|
48 |
image = np.transpose(image, axes=[1, 2, 0])
|
49 |
+
# Resize image
|
50 |
+
image = skimage.transform.resize(image, resize_shape)
|
51 |
return image
|
52 |
|
53 |
+
|
54 |
# Define constants
|
55 |
N_PATIENTS = 218
|
56 |
MIN_IVD = 0
|
|
|
100 |
data_files: Optional[Union[str, Sequence, Mapping]] = None,
|
101 |
description: Optional[str] = None,
|
102 |
scan_types: List[str] = DEFAULT_SCAN_TYPES,
|
103 |
+
resize_shape: Tuple[int, int, int] = DEFAULT_RESIZE,
|
104 |
):
|
105 |
super().__init__(name, version, data_dir, data_files, description)
|
106 |
self.scan_types = scan_types
|
107 |
+
self.resize_shape = resize_shape
|
108 |
|
109 |
|
110 |
class SPIDER(datasets.GeneratorBasedBuilder):
|
|
|
120 |
# version=VERSION,
|
121 |
# description="Use images of all scan types (t1, t2, t2 SPACE)",
|
122 |
# scan_types=['t1', 't2', 't2_SPACE'],
|
123 |
+
# resize_shape=DEFAULT_RESIZE,
|
124 |
# ),
|
125 |
# CustomBuilderConfig(
|
126 |
# name="t1_scan_types",
|
127 |
# version=VERSION,
|
128 |
# description="Use images of t1 scan types only",
|
129 |
# scan_types=['t1'],
|
130 |
+
# resize_shape=DEFAULT_RESIZE,
|
131 |
# ),
|
132 |
# CustomBuilderConfig(
|
133 |
# name="t2_scan_types",
|
134 |
# version=VERSION,
|
135 |
# description="Use images of t2 scan types only",
|
136 |
# scan_types=['t2'],
|
137 |
+
# resize_shape=DEFAULT_RESIZE,
|
138 |
# ),
|
139 |
# CustomBuilderConfig(
|
140 |
# name="t2_SPACE_scan_types",
|
141 |
# version=VERSION,
|
142 |
# description="Use images of t2 SPACE scan types only",
|
143 |
# scan_types=['t2_SPACE'],
|
144 |
+
# resize_shape=DEFAULT_RESIZE,
|
145 |
# ),
|
146 |
# ]
|
147 |
|
|
|
151 |
self,
|
152 |
*args,
|
153 |
scan_types: List[str] = DEFAULT_SCAN_TYPES,
|
154 |
+
resize_shape: Tuple[int, int, int] = DEFAULT_RESIZE,
|
155 |
**kwargs,
|
156 |
):
|
157 |
super().__init__(*args, **kwargs)
|
158 |
self.scan_types = scan_types
|
159 |
+
self.resize_shape = resize_shape
|
160 |
|
161 |
def _info(self):
|
162 |
"""
|
|
|
167 |
"patient_id": datasets.Value("string"),
|
168 |
"scan_type": datasets.Value("string"),
|
169 |
# "raw_image": datasets.Image(),
|
170 |
+
"numeric_array": datasets.Array3D(shape=self.resize_shape, dtype='int16'),
|
171 |
"metadata": {
|
172 |
"num_vertebrae": datasets.Value(dtype="string"),
|
173 |
"num_discs": datasets.Value(dtype="string"),
|
|
|
255 |
"paths_dict": paths_dict,
|
256 |
"split": "train",
|
257 |
"scan_types": self.scan_types,
|
258 |
+
"resize_shape": self.resize_shape,
|
259 |
},
|
260 |
),
|
261 |
datasets.SplitGenerator(
|
|
|
264 |
"paths_dict": paths_dict,
|
265 |
"split": "validate",
|
266 |
"scan_types": self.scan_types,
|
267 |
+
"resize_shape": self.resize_shape,
|
268 |
},
|
269 |
),
|
270 |
datasets.SplitGenerator(
|
|
|
273 |
"paths_dict": paths_dict,
|
274 |
"split": "test",
|
275 |
"scan_types": self.scan_types,
|
276 |
+
"resize_shape": self.resize_shape,
|
277 |
},
|
278 |
),
|
279 |
]
|
|
|
283 |
paths_dict: Dict[str, str],
|
284 |
split: str,
|
285 |
scan_types: List[str],
|
286 |
+
resize_shape: Tuple[int, int, int],
|
287 |
validate_share: float = 0.3,
|
288 |
test_share: float = 0.2,
|
289 |
raw_image: bool = True,
|
|
|
484 |
image_path = os.path.join(paths_dict['images'], 'images', example)
|
485 |
image = sitk.ReadImage(image_path)
|
486 |
|
487 |
+
# Convert .mha image to standardized numeric array
|
488 |
+
image_array = standardize_3D_image(
|
489 |
+
sitk.GetArrayFromImage(image), resize_shape
|
490 |
+
)
|
491 |
+
|
492 |
#TODO: load mask file and numeric array
|
493 |
|
494 |
# Extract overview data corresponding to image
|