Commit
•
25083e4
1
Parent(s):
b62568e
Delete loading script
Browse files- pubmed-summarization.py +0 -129
pubmed-summarization.py
DELETED
@@ -1,129 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
|
4 |
-
import datasets
|
5 |
-
from datasets.tasks import TextClassification
|
6 |
-
|
7 |
-
_CITATION = None
|
8 |
-
|
9 |
-
|
10 |
-
_DESCRIPTION = """
|
11 |
-
PubMed dataset for summarization.
|
12 |
-
From paper: A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents" by A. Cohan et al.
|
13 |
-
See: https://aclanthology.org/N18-2097.pdf
|
14 |
-
See: https://github.com/armancohan/long-summarization
|
15 |
-
"""
|
16 |
-
_CITATION = """\
|
17 |
-
@inproceedings{cohan-etal-2018-discourse,
|
18 |
-
title = "A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents",
|
19 |
-
author = "Cohan, Arman and
|
20 |
-
Dernoncourt, Franck and
|
21 |
-
Kim, Doo Soon and
|
22 |
-
Bui, Trung and
|
23 |
-
Kim, Seokhwan and
|
24 |
-
Chang, Walter and
|
25 |
-
Goharian, Nazli",
|
26 |
-
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)",
|
27 |
-
month = jun,
|
28 |
-
year = "2018",
|
29 |
-
address = "New Orleans, Louisiana",
|
30 |
-
publisher = "Association for Computational Linguistics",
|
31 |
-
url = "https://aclanthology.org/N18-2097",
|
32 |
-
doi = "10.18653/v1/N18-2097",
|
33 |
-
pages = "615--621",
|
34 |
-
abstract = "Neural abstractive summarization models have led to promising results in summarizing relatively short documents. We propose the first model for abstractive summarization of single, longer-form documents (e.g., research papers). Our approach consists of a new hierarchical encoder that models the discourse structure of a document, and an attentive discourse-aware decoder to generate the summary. Empirical results on two large-scale datasets of scientific papers show that our model significantly outperforms state-of-the-art models.",
|
35 |
-
}
|
36 |
-
"""
|
37 |
-
_ABSTRACT = "abstract"
|
38 |
-
_ARTICLE = "article"
|
39 |
-
|
40 |
-
class PubMedSummarizationConfig(datasets.BuilderConfig):
|
41 |
-
"""BuilderConfig for PubMedSummarization."""
|
42 |
-
|
43 |
-
def __init__(self, **kwargs):
|
44 |
-
"""BuilderConfig for PubMedSummarization.
|
45 |
-
Args:
|
46 |
-
**kwargs: keyword arguments forwarded to super.
|
47 |
-
"""
|
48 |
-
super(PubMedSummarizationConfig, self).__init__(**kwargs)
|
49 |
-
|
50 |
-
|
51 |
-
class PubMedSummarizationDataset(datasets.GeneratorBasedBuilder):
|
52 |
-
"""PubMedSummarization Dataset."""
|
53 |
-
|
54 |
-
_TRAIN_FILE = "train.zip"
|
55 |
-
_VAL_FILE = "val.zip"
|
56 |
-
_TEST_FILE = "test.zip"
|
57 |
-
|
58 |
-
BUILDER_CONFIGS = [
|
59 |
-
PubMedSummarizationConfig(
|
60 |
-
name="section",
|
61 |
-
version=datasets.Version("1.0.0"),
|
62 |
-
description="PubMed dataset for summarization, concat sections",
|
63 |
-
),
|
64 |
-
PubMedSummarizationConfig(
|
65 |
-
name="document",
|
66 |
-
version=datasets.Version("1.0.0"),
|
67 |
-
description="PubMed dataset for summarization, document",
|
68 |
-
),
|
69 |
-
]
|
70 |
-
|
71 |
-
DEFAULT_CONFIG_NAME = "section"
|
72 |
-
|
73 |
-
def _info(self):
|
74 |
-
# Should return a datasets.DatasetInfo object
|
75 |
-
return datasets.DatasetInfo(
|
76 |
-
description=_DESCRIPTION,
|
77 |
-
features=datasets.Features(
|
78 |
-
{
|
79 |
-
_ARTICLE: datasets.Value("string"),
|
80 |
-
_ABSTRACT: datasets.Value("string"),
|
81 |
-
#"id": datasets.Value("string"),
|
82 |
-
}
|
83 |
-
),
|
84 |
-
supervised_keys=None,
|
85 |
-
homepage="https://github.com/armancohan/long-summarization",
|
86 |
-
citation=_CITATION,
|
87 |
-
)
|
88 |
-
|
89 |
-
def _split_generators(self, dl_manager):
|
90 |
-
|
91 |
-
train_path = os.path.join(dl_manager.download_and_extract(self._TRAIN_FILE), "train.txt")
|
92 |
-
val_path = os.path.join(dl_manager.download_and_extract(self._VAL_FILE), "val.txt")
|
93 |
-
test_path = os.path.join(dl_manager.download_and_extract(self._TEST_FILE), "test.txt")
|
94 |
-
|
95 |
-
return [
|
96 |
-
datasets.SplitGenerator(
|
97 |
-
name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}
|
98 |
-
),
|
99 |
-
datasets.SplitGenerator(
|
100 |
-
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": val_path}
|
101 |
-
),
|
102 |
-
datasets.SplitGenerator(
|
103 |
-
name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}
|
104 |
-
),
|
105 |
-
]
|
106 |
-
|
107 |
-
def _generate_examples(self, filepath):
|
108 |
-
"""Generate PubMedSummarization examples."""
|
109 |
-
with open(filepath, encoding="utf-8") as f:
|
110 |
-
for id_, row in enumerate(f):
|
111 |
-
data = json.loads(row)
|
112 |
-
|
113 |
-
"""
|
114 |
-
'article_id': str,
|
115 |
-
'abstract_text': List[str],
|
116 |
-
'article_text': List[str],
|
117 |
-
'section_names': List[str],
|
118 |
-
'sections': List[List[str]]
|
119 |
-
"""
|
120 |
-
if self.config.name == "document":
|
121 |
-
article = [d.strip() for d in data["article_text"]]
|
122 |
-
article = " ".join(article)
|
123 |
-
else:
|
124 |
-
article = [item.strip() for sublist in data["sections"] for item in sublist]
|
125 |
-
article = " \n ".join(article)
|
126 |
-
|
127 |
-
abstract = [ab.replace("<S>", "").replace("</S>", "").strip() for ab in data["abstract_text"]]
|
128 |
-
abstract = " \n ".join(abstract)
|
129 |
-
yield id_, {"article": article, "abstract": abstract}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|