|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""CovidQA, a question answering dataset specifically designed for COVID-19.""" |
|
|
|
|
|
import json |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@article{tang2020rapidly, |
|
title={Rapidly Bootstrapping a Question Answering Dataset for COVID-19}, |
|
author={Tang, Raphael and Nogueira, Rodrigo and Zhang, Edwin and Gupta, Nikhil and Cam, Phuong and Cho, Kyunghyun and Lin, Jimmy}, |
|
journal={arXiv preprint arXiv:2004.11339}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
CovidQA is the beginnings of a question answering dataset specifically designed for COVID-19, built by hand from \ |
|
knowledge gathered from Kaggle's COVID-19 Open Research Dataset Challenge. |
|
""" |
|
|
|
_HOMEPAGE = "http://covidqa.ai" |
|
|
|
_LICENSE = "Apache License 2.0" |
|
|
|
_URL = "https://raw.githubusercontent.com/castorini/pygaggle/master/data/" |
|
_URLs = {"covid_qa_castorini": _URL + "kaggle-lit-review-0.2.json"} |
|
|
|
|
|
class CovidQaCastorini(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("0.2.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="covid_qa_castorini", |
|
version=VERSION, |
|
description="CovidQA, a question answering dataset specifically designed for COVID-19", |
|
), |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"category_name": datasets.Value("string"), |
|
"question_query": datasets.Value("string"), |
|
"keyword_query": datasets.Value("string"), |
|
"answers": datasets.features.Sequence( |
|
{ |
|
"id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"exact_answer": datasets.Value("string"), |
|
} |
|
), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
url = _URLs[self.config.name] |
|
downloaded_filepath = dl_manager.download_and_extract(url) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": downloaded_filepath}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
covid_qa = json.load(f) |
|
for article_idx, article in enumerate(covid_qa["categories"]): |
|
category_name = article["name"] |
|
for paragraph_idx, paragraph in enumerate(article["sub_categories"]): |
|
question_query = paragraph["nq_name"] |
|
keyword_query = paragraph["kq_name"] |
|
|
|
ids = [answer["id"] for answer in paragraph["answers"]] |
|
titles = [answer["title"] for answer in paragraph["answers"]] |
|
exact_answers = [answer["exact_answer"] for answer in paragraph["answers"]] |
|
|
|
yield f"{article_idx}_{paragraph_idx}", { |
|
"category_name": category_name, |
|
"question_query": question_query, |
|
"keyword_query": keyword_query, |
|
"answers": { |
|
"id": ids, |
|
"title": titles, |
|
"exact_answer": exact_answers, |
|
}, |
|
} |
|
|