Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
asahi417 commited on
Commit
268c559
·
1 Parent(s): 9d23e99
Files changed (1) hide show
  1. lm_finetuning.py +170 -0
lm_finetuning.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import json
3
+ import logging
4
+ import os
5
+ import shutil
6
+ import urllib.request
7
+ import multiprocessing
8
+ from os.path import join as pj
9
+
10
+ import torch
11
+ import numpy as np
12
+ from huggingface_hub import create_repo
13
+ from datasets import load_dataset, load_metric
14
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
15
+ from ray import tune
16
+
17
+ logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S')
18
+
19
+ PARALLEL = bool(int(os.getenv("PARALLEL", 1)))
20
+ RAY_RESULTS = os.getenv("RAY_RESULTS", "ray_results")
21
+
22
+
23
+ def internet_connection(host='http://google.com'):
24
+ try:
25
+ urllib.request.urlopen(host)
26
+ return True
27
+ except:
28
+ return False
29
+
30
+
31
+ def get_metrics():
32
+ metric_accuracy = load_metric("accuracy")
33
+ metric_f1 = load_metric("f1")
34
+
35
+ def compute_metric_search(eval_pred):
36
+ logits, labels = eval_pred
37
+ predictions = np.argmax(logits, axis=-1)
38
+ return metric_f1.compute(predictions=predictions, references=labels, average='micro')
39
+
40
+ def compute_metric_all(eval_pred):
41
+ logits, labels = eval_pred
42
+ predictions = np.argmax(logits, axis=-1)
43
+ return {
44
+ 'f1': metric_f1.compute(predictions=predictions, references=labels, average='micro')['f1'],
45
+ 'f1_macro': metric_f1.compute(predictions=predictions, references=labels, average='macro')['f1'],
46
+ 'accuracy': metric_accuracy.compute(predictions=predictions, references=labels)['accuracy']
47
+ }
48
+ return compute_metric_search, compute_metric_all
49
+
50
+
51
+ def main():
52
+ parser = argparse.ArgumentParser(description='Fine-tuning language model.')
53
+ parser.add_argument('-m', '--model', help='transformer LM', default='roberta-base', type=str)
54
+ parser.add_argument('-d', '--dataset', help='', default='cardiffnlp/tweet_topic_single', type=str)
55
+ parser.add_argument('--dataset-name', help='huggingface dataset name', default='citation_intent', type=str)
56
+ parser.add_argument('-l', '--seq-length', help='', default=128, type=int)
57
+ parser.add_argument('--random-seed', help='', default=42, type=int)
58
+ parser.add_argument('--eval-step', help='', default=50, type=int)
59
+ parser.add_argument('-o', '--output-dir', help='Directory to output', default='ckpt_tmp', type=str)
60
+ parser.add_argument('-t', '--n-trials', default=10, type=int)
61
+ parser.add_argument('--push-to-hub', action='store_true')
62
+ parser.add_argument('--use-auth-token', action='store_true')
63
+ parser.add_argument('--hf-organization', default=None, type=str)
64
+ parser.add_argument('-a', '--model-alias', help='', default=None, type=str)
65
+ parser.add_argument('--summary-file', default='metric_summary.json', type=str)
66
+ parser.add_argument('--skip-train', action='store_true')
67
+ parser.add_argument('--skip-eval', action='store_true')
68
+ opt = parser.parse_args()
69
+ assert opt.summary_file.endswith('.json'), f'`--summary-file` should be a json file {opt.summary_file}'
70
+ # setup data
71
+ dataset = load_dataset(opt.dataset, opt.dataset_name)
72
+ network = internet_connection()
73
+ # setup model
74
+ tokenizer = AutoTokenizer.from_pretrained(opt.model, local_files_only=not network)
75
+ model = AutoModelForSequenceClassification.from_pretrained(
76
+ opt.model, num_labels=dataset['train'].features['label'].num_classes, local_files_only=not network)
77
+ tokenized_datasets = dataset.map(
78
+ lambda x: tokenizer(x["text"], padding="max_length", truncation=True, max_length=opt.seq_length),
79
+ batched=True)
80
+ # setup metrics
81
+ compute_metric_search, compute_metric_all = get_metrics()
82
+
83
+ if not opt.skip_train:
84
+ # setup trainer
85
+ trainer = Trainer(
86
+ model=model,
87
+ args=TrainingArguments(
88
+ output_dir=opt.output_dir,
89
+ evaluation_strategy="steps",
90
+ eval_steps=opt.eval_step,
91
+ seed=opt.random_seed
92
+ ),
93
+ train_dataset=tokenized_datasets["train"],
94
+ eval_dataset=tokenized_datasets["validation"],
95
+ compute_metrics=compute_metric_search,
96
+ model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
97
+ opt.model, return_dict=True, num_labels=dataset['train'].features['label'].num_classes)
98
+ )
99
+ # parameter search
100
+ if PARALLEL:
101
+ best_run = trainer.hyperparameter_search(
102
+ hp_space=lambda x: {
103
+ "learning_rate": tune.loguniform(1e-6, 1e-4),
104
+ "num_train_epochs": tune.choice(list(range(1, 6))),
105
+ "per_device_train_batch_size": tune.choice([4, 8, 16, 32, 64]),
106
+ },
107
+ local_dir=RAY_RESULTS, direction="maximize", backend="ray", n_trials=opt.n_trials,
108
+ resources_per_trial={'cpu': multiprocessing.cpu_count(), "gpu": torch.cuda.device_count()},
109
+
110
+ )
111
+ else:
112
+ best_run = trainer.hyperparameter_search(
113
+ hp_space=lambda x: {
114
+ "learning_rate": tune.loguniform(1e-6, 1e-4),
115
+ "num_train_epochs": tune.choice(list(range(1, 6))),
116
+ "per_device_train_batch_size": tune.choice([4, 8, 16, 32, 64]),
117
+ },
118
+ local_dir=RAY_RESULTS, direction="maximize", backend="ray", n_trials=opt.n_trials
119
+ )
120
+ # finetuning
121
+ for n, v in best_run.hyperparameters.items():
122
+ setattr(trainer.args, n, v)
123
+ trainer.train()
124
+ trainer.save_model(pj(opt.output_dir, 'best_model'))
125
+ best_model_path = pj(opt.output_dir, 'best_model')
126
+ else:
127
+ best_model_path = opt.output_dir
128
+
129
+ # evaluation
130
+ model = AutoModelForSequenceClassification.from_pretrained(
131
+ best_model_path,
132
+ num_labels=dataset['train'].features['label'].num_classes,
133
+ local_files_only=not network)
134
+ trainer = Trainer(
135
+ model=model,
136
+ args=TrainingArguments(
137
+ output_dir=opt.output_dir,
138
+ evaluation_strategy="no",
139
+ seed=opt.random_seed
140
+ ),
141
+ train_dataset=tokenized_datasets["train"],
142
+ eval_dataset=tokenized_datasets["test"],
143
+ compute_metrics=compute_metric_all,
144
+ model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
145
+ opt.model, return_dict=True, num_labels=dataset['train'].features['label'].num_classes)
146
+ )
147
+ summary_file = pj(opt.output_dir, opt.summary_file)
148
+ if not opt.skip_eval:
149
+ result = {f'test/{k}': v for k, v in trainer.evaluate().items()}
150
+ logging.info(json.dumps(result, indent=4))
151
+ with open(summary_file, 'w') as f:
152
+ json.dump(result, f)
153
+
154
+ if opt.push_to_hub:
155
+ assert opt.hf_organization is not None, f'specify hf organization `--hf-organization`'
156
+ assert opt.model_alias is not None, f'specify hf organization `--model-alias`'
157
+ url = create_repo(opt.model_alias, organization=opt.hf_organization, exist_ok=True)
158
+ # if not opt.skip_train:
159
+ args = {"use_auth_token": opt.use_auth_token, "repo_url": url, "organization": opt.hf_organization}
160
+ trainer.model.push_to_hub(opt.model_alias, **args)
161
+ tokenizer.push_to_hub(opt.model_alias, **args)
162
+ if os.path.exists(summary_file):
163
+ shutil.copy2(summary_file, opt.model_alias)
164
+ os.system(
165
+ f"cd {opt.model_alias} && git lfs install && git add . && git commit -m 'model update' && git push && cd ../")
166
+ shutil.rmtree(f"{opt.model_alias}") # clean up the cloned repo
167
+
168
+
169
+ if __name__ == '__main__':
170
+ main()