Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
sentiment-classification
Languages:
English
Size:
10K - 100K
ArXiv:
License:
''' | |
wandb offline | |
export WANDB_DISABLED='true' | |
export RAY_RESULTS='ray_results' | |
python lm_finetuning.py -m "roberta-large" -o "ckpt/2021/roberta-large" --push-to-hub --hf-organization "cardiffnlp" -a "roberta-large-tweet-topic-single-all" --split-train "train_all" --split-valid "validation_2021" --split-test "test_2021" | |
python lm_finetuning.py -m "roberta-large" -o "ckpt/2020/roberta-large" --push-to-hub --hf-organization "cardiffnlp" -a "roberta-large-tweet-topic-single-2020" --split-train "train_2020" --split-valid "validation_2020" --split-test "test_2021" | |
python lm_finetuning.py -m "roberta-base" -o "ckpt/2021/roberta_base" --push-to-hub --hf-organization "cardiffnlp" -a "roberta-base-tweet-topic-single-all" --split-train "train_all" --split-valid "validation_2021" --split-test "test_2021" | |
python lm_finetuning.py -m "roberta-base" -o "ckpt/2020/roberta_base" --push-to-hub --hf-organization "cardiffnlp" -a "roberta-base-tweet-topic-single-2020" --split-train "train_2020" --split-valid "validation_2020" --split-test "test_2021" | |
python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-2019-90m" -o "ckpt/2021/twitter-roberta-base-2019-90m" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-2019-90m-tweet-topic-single-all" --split-train "train_all" --split-valid "validation_2021" --split-test "test_2021" | |
python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-2019-90m" -o "ckpt/2020/twitter-roberta-base-2019-90m" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-2019-90m-tweet-topic-single-2020" --split-train "train_2020" --split-valid "validation_2020" --split-test "test_2021" | |
python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-dec2020" -o "ckpt/2021/twitter-roberta-base-dec2020" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-dec2020-tweet-topic-single-all" --split-train "train_all" --split-valid "validation_2021" --split-test "test_2021" | |
python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-dec2020" -o "ckpt/2020/twitter-roberta-base-dec2020" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-dec2020-tweet-topic-single-2020" --split-train "train_2020" --split-valid "validation_2020" --split-test "test_2021" | |
python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-dec2021" -o "ckpt/2021/twitter-roberta-base-dec2021" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-dec2021-tweet-topic-single-all" --split-train "train_all" --split-valid "validation_2021" --split-test "test_2021" | |
python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-dec2021" -o "ckpt/2020/twitter-roberta-base-dec2021" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-dec2021-tweet-topic-single-2020" --split-train "train_2020" --split-valid "validation_2020" --split-test "test_2021" | |
''' | |
import argparse | |
import json | |
import logging | |
import os | |
import shutil | |
import urllib.request | |
import multiprocessing | |
from os.path import join as pj | |
import torch | |
import numpy as np | |
from huggingface_hub import create_repo | |
from datasets import load_dataset, load_metric | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer | |
from ray import tune | |
from readme import get_readme | |
logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S') | |
PARALLEL = bool(int(os.getenv("PARALLEL", 1))) | |
RAY_RESULTS = os.getenv("RAY_RESULTS", "ray_results") | |
LABEL2ID = { | |
"arts_&_culture": 0, | |
"business_&_entrepreneurs": 1, | |
"pop_culture": 2, | |
"daily_life": 3, | |
"sports_&_gaming": 4, | |
"science_&_technology": 5 | |
} | |
ID2LABEL = {v: k for k, v in LABEL2ID.items()} | |
def internet_connection(host='http://google.com'): | |
try: | |
urllib.request.urlopen(host) | |
return True | |
except: | |
return False | |
def get_metrics(): | |
metric_accuracy = load_metric("accuracy") | |
metric_f1 = load_metric("f1") | |
def compute_metric_search(eval_pred): | |
logits, labels = eval_pred | |
predictions = np.argmax(logits, axis=-1) | |
return metric_f1.compute(predictions=predictions, references=labels, average='micro') | |
def compute_metric_all(eval_pred): | |
logits, labels = eval_pred | |
predictions = np.argmax(logits, axis=-1) | |
return { | |
'f1': metric_f1.compute(predictions=predictions, references=labels, average='micro')['f1'], | |
'f1_macro': metric_f1.compute(predictions=predictions, references=labels, average='macro')['f1'], | |
'accuracy': metric_accuracy.compute(predictions=predictions, references=labels)['accuracy'] | |
} | |
return compute_metric_search, compute_metric_all | |
def main(): | |
parser = argparse.ArgumentParser(description='Fine-tuning language model.') | |
parser.add_argument('-m', '--model', help='transformer LM', default='roberta-base', type=str) | |
parser.add_argument('-d', '--dataset', help='', default='cardiffnlp/tweet_topic_single', type=str) | |
parser.add_argument('--split-train', help='', required=True, type=str) | |
parser.add_argument('--split-validation', help='', required=True, type=str) | |
parser.add_argument('--split-test', help='', required=True, type=str) | |
parser.add_argument('-l', '--seq-length', help='', default=128, type=int) | |
parser.add_argument('--random-seed', help='', default=42, type=int) | |
parser.add_argument('--eval-step', help='', default=50, type=int) | |
parser.add_argument('-o', '--output-dir', help='Directory to output', default='ckpt_tmp', type=str) | |
parser.add_argument('-t', '--n-trials', default=10, type=int) | |
parser.add_argument('--push-to-hub', action='store_true') | |
parser.add_argument('--use-auth-token', action='store_true') | |
parser.add_argument('--hf-organization', default=None, type=str) | |
parser.add_argument('-a', '--model-alias', help='', default=None, type=str) | |
parser.add_argument('--summary-file', default='metric_summary.json', type=str) | |
parser.add_argument('--skip-train', action='store_true') | |
parser.add_argument('--skip-eval', action='store_true') | |
opt = parser.parse_args() | |
assert opt.summary_file.endswith('.json'), f'`--summary-file` should be a json file {opt.summary_file}' | |
# setup data | |
dataset = load_dataset(opt.dataset) | |
network = internet_connection() | |
# setup model | |
tokenizer = AutoTokenizer.from_pretrained(opt.model, local_files_only=not network) | |
model = AutoModelForSequenceClassification.from_pretrained( | |
opt.model, | |
num_labels=6, | |
local_files_only=not network, | |
id2label=ID2LABEL, | |
label2id=LABEL2ID | |
) | |
tokenized_datasets = dataset.map( | |
lambda x: tokenizer(x["text"], padding="max_length", truncation=True, max_length=opt.seq_length), | |
batched=True) | |
# setup metrics | |
compute_metric_search, compute_metric_all = get_metrics() | |
if not opt.skip_train: | |
# setup trainer | |
trainer = Trainer( | |
model=model, | |
args=TrainingArguments( | |
output_dir=opt.output_dir, | |
evaluation_strategy="steps", | |
eval_steps=opt.eval_step, | |
seed=opt.random_seed | |
), | |
train_dataset=tokenized_datasets[opt.split_train], | |
eval_dataset=tokenized_datasets[opt.split_validation], | |
compute_metrics=compute_metric_search, | |
model_init=lambda x: AutoModelForSequenceClassification.from_pretrained( | |
opt.model, | |
num_labels=6, | |
local_files_only=not network, | |
return_dict=True, | |
id2label=ID2LABEL, | |
label2id=LABEL2ID | |
) | |
) | |
# parameter search | |
if PARALLEL: | |
best_run = trainer.hyperparameter_search( | |
hp_space=lambda x: { | |
"learning_rate": tune.loguniform(1e-6, 1e-4), | |
"num_train_epochs": tune.choice(list(range(1, 6))), | |
"per_device_train_batch_size": tune.choice([4, 8, 16, 32, 64]), | |
}, | |
local_dir=RAY_RESULTS, direction="maximize", backend="ray", n_trials=opt.n_trials, | |
resources_per_trial={'cpu': multiprocessing.cpu_count(), "gpu": torch.cuda.device_count()}, | |
) | |
else: | |
best_run = trainer.hyperparameter_search( | |
hp_space=lambda x: { | |
"learning_rate": tune.loguniform(1e-6, 1e-4), | |
"num_train_epochs": tune.choice(list(range(1, 6))), | |
"per_device_train_batch_size": tune.choice([4, 8, 16, 32, 64]), | |
}, | |
local_dir=RAY_RESULTS, direction="maximize", backend="ray", n_trials=opt.n_trials | |
) | |
# finetuning | |
for n, v in best_run.hyperparameters.items(): | |
setattr(trainer.args, n, v) | |
trainer.train() | |
trainer.save_model(pj(opt.output_dir, 'best_model')) | |
best_model_path = pj(opt.output_dir, 'best_model') | |
else: | |
best_model_path = opt.output_dir | |
# evaluation | |
model = AutoModelForSequenceClassification.from_pretrained( | |
opt.model, | |
num_labels=6, | |
local_files_only=not network, | |
id2label=ID2LABEL, | |
label2id=LABEL2ID | |
) | |
trainer = Trainer( | |
model=model, | |
args=TrainingArguments( | |
output_dir=opt.output_dir, | |
evaluation_strategy="no", | |
seed=opt.random_seed | |
), | |
train_dataset=tokenized_datasets[opt.split_train], | |
eval_dataset=tokenized_datasets[opt.split_test], | |
compute_metrics=compute_metric_all, | |
model_init=lambda x: AutoModelForSequenceClassification.from_pretrained( | |
opt.model, | |
num_labels=6, | |
local_files_only=not network, | |
return_dict=True, | |
id2label=ID2LABEL, | |
label2id=LABEL2ID | |
) | |
) | |
summary_file = pj(opt.output_dir, opt.summary_file) | |
if not opt.skip_eval: | |
result = {f'test/{k}': v for k, v in trainer.evaluate().items()} | |
logging.info(json.dumps(result, indent=4)) | |
with open(summary_file, 'w') as f: | |
json.dump(result, f) | |
if opt.push_to_hub: | |
assert opt.hf_organization is not None, f'specify hf organization `--hf-organization`' | |
assert opt.model_alias is not None, f'specify hf organization `--model-alias`' | |
url = create_repo(opt.model_alias, organization=opt.hf_organization, exist_ok=True) | |
# if not opt.skip_train: | |
args = {"use_auth_token": opt.use_auth_token, "repo_url": url, "organization": opt.hf_organization} | |
trainer.model.push_to_hub(opt.model_alias, **args) | |
tokenizer.push_to_hub(opt.model_alias, **args) | |
if os.path.exists(summary_file): | |
shutil.copy2(summary_file, opt.model_alias) | |
extra_desc = f"This model is fine-tuned on `{opt.split_train}` split and validated on `{opt.split_test}` split of tweet_topic." | |
readme = get_readme( | |
model_name=opt.model_alias, | |
metric=f"{opt.model_alias}/{summary_file}", | |
language_model=opt.model, | |
extra_desc= extra_desc | |
) | |
with open(f"{opt.model_alias}/README.md", "w") as f: | |
f.write(readme) | |
os.system( | |
f"cd {opt.model_alias} && git lfs install && git add . && git commit -m 'model update' && git push && cd ../") | |
shutil.rmtree(f"{opt.model_alias}") # clean up the cloned repo | |
if __name__ == '__main__': | |
main() | |