Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
sentiment-classification
Languages:
English
Size:
10K - 100K
ArXiv:
License:
import json | |
import os | |
import requests | |
import pandas as pd | |
def download(filename, url): | |
try: | |
with open(filename) as f: | |
json.load(f) | |
except Exception: | |
os.makedirs(os.path.dirname(filename), exist_ok=True) | |
with open(filename, "wb") as f: | |
r = requests.get(url) | |
f.write(r.content) | |
with open(filename) as f: | |
tmp = json.load(f) | |
return tmp | |
models = [ | |
"cardiffnlp/roberta-large-tweet-topic-single-all", | |
"cardiffnlp/roberta-base-tweet-topic-single-all", | |
"cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-all", | |
"cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-all", | |
"cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-all", | |
"cardiffnlp/roberta-large-tweet-topic-single-2020", | |
"cardiffnlp/roberta-base-tweet-topic-single-2020", | |
"cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-2020", | |
"cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-2020", | |
"cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-2020" | |
] | |
os.makedirs("metric_files", exists_ok=True) | |
metrics = [] | |
for i in models: | |
model_type = "all (2020 + 2021)" if i.endswith("all") else "2020 only" | |
url = f"https://huggingface.co/{i}/raw/main/metric_summary.json" | |
model_url = f"https://huggingface.co/{i}" | |
metric = download(f"metric_files/{os.path.basename(i)}.json", url) | |
metrics.append({"model": f"[{i}]({model_url})", "training data": model_type, "F1": metric["test/eval_f1"], "F1 (macro)": metric["test/eval_f1_macro"], "Accuracy": metric["test/eval_accuracy"]}) | |
df = pd.DataFrame(metrics) | |
print(df.to_markdown(index=False)) | |