Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
tweet_topic_single / get_model_list.py
asahi417's picture
Create new file
e7a1529
raw
history blame
1.66 kB
import json
import os
import requests
import pandas as pd
def download(filename, url):
try:
with open(filename) as f:
json.load(f)
except Exception:
os.makedirs(os.path.dirname(filename), exist_ok=True)
with open(filename, "wb") as f:
r = requests.get(url)
f.write(r.content)
with open(filename) as f:
tmp = json.load(f)
return tmp
models = [
"cardiffnlp/roberta-large-tweet-topic-single-all",
"cardiffnlp/roberta-base-tweet-topic-single-all",
"cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-all",
"cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-all",
"cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-all",
"cardiffnlp/roberta-large-tweet-topic-single-2020",
"cardiffnlp/roberta-base-tweet-topic-single-2020",
"cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-2020",
"cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-2020",
"cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-2020"
]
os.makedirs("metric_files", exists_ok=True)
metrics = []
for i in models:
model_type = "all (2020 + 2021)" if i.endswith("all") else "2020 only"
url = f"https://huggingface.co/{i}/raw/main/metric_summary.json"
model_url = f"https://huggingface.co/{i}"
metric = download(f"metric_files/{os.path.basename(i)}.json", url)
metrics.append({"model": f"[{i}]({model_url})", "training data": model_type, "F1": metric["test/eval_f1"], "F1 (macro)": metric["test/eval_f1_macro"], "Accuracy": metric["test/eval_accuracy"]})
df = pd.DataFrame(metrics)
print(df.to_markdown(index=False))