asahi417 commited on
Commit
4d88e8a
1 Parent(s): 7d190cb
Files changed (1) hide show
  1. training_scripts/finetune_t5.py +330 -0
training_scripts/finetune_t5.py ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Fine-tune T5 on topic classification (multi-label multi-class classification)
2
+ ```
3
+ python finetune_t5.py --dataset-name ja --model-alias mt5-small-tweet-topic-ja --model-organization cardiffnlp
4
+ ```
5
+ """
6
+ import json
7
+ import logging
8
+ import os
9
+ import multiprocessing
10
+ import argparse
11
+ import gc
12
+ from typing import List, Set
13
+ from shutil import copyfile
14
+ from statistics import mean
15
+
16
+ import torch
17
+ import transformers
18
+ from datasets import load_dataset
19
+ from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments, pipeline
20
+ from ray import tune, init
21
+ from huggingface_hub import Repository
22
+
23
+
24
+ os.environ['TOKENIZERS_PARALLELISM'] = 'false' # turn-off the warning message
25
+ os.environ['WANDB_DISABLED'] = 'true' # disable wandb
26
+
27
+
28
+ def load_model(
29
+ model_name: str,
30
+ use_auth_token: bool = False,
31
+ low_cpu_mem_usage: bool = False) -> transformers.PreTrainedModel:
32
+ """Load language model from huggingface model hub."""
33
+ # config & tokenizer
34
+ config = transformers.AutoConfig.from_pretrained(model_name, use_auth_token=use_auth_token)
35
+ if config.model_type == 't5': # T5 model requires T5ForConditionalGeneration class
36
+ model_class = transformers.T5ForConditionalGeneration.from_pretrained
37
+ elif config.model_type == 'mt5':
38
+ model_class = transformers.MT5ForConditionalGeneration.from_pretrained
39
+ elif config.model_type == 'bart':
40
+ model_class = transformers.BartForConditionalGeneration.from_pretrained
41
+ elif config.model_type == 'mbart':
42
+ model_class = transformers.MBartForConditionalGeneration.from_pretrained
43
+ else:
44
+ raise ValueError(f'unsupported model type: {config.model_type}')
45
+ param = {'config': config, 'use_auth_token': use_auth_token, 'low_cpu_mem_usage': low_cpu_mem_usage}
46
+ model = model_class(model_name, **param)
47
+ return model
48
+
49
+
50
+ def get_f1_score(references: List[Set[str]], predictions: List[Set[str]]):
51
+ scores = []
52
+ for g, r in zip(references, predictions):
53
+ tp = len(set(g).intersection(set(r)))
54
+ fp = len([_g for _g in g if _g not in r])
55
+ fn = len([_r for _r in r if _r not in g])
56
+ if tp == 0:
57
+ f1 = 0
58
+ else:
59
+ f1 = 2 * tp / (2 * tp + fp + fn)
60
+ scores.append(f1)
61
+ return {'f1': mean(scores)}
62
+
63
+ def train(
64
+ model_name: str,
65
+ model_low_cpu_mem_usage: bool,
66
+ dataset: str,
67
+ dataset_name: str,
68
+ dataset_column_label: str,
69
+ dataset_column_text: str,
70
+ dataset_split_train: str,
71
+ dataset_split_validation: str,
72
+ dataset_split_test: str,
73
+ search_range_lr: List,
74
+ search_range_epoch: List,
75
+ search_list_batch: List,
76
+ down_sample_train: int,
77
+ down_sample_validation: int,
78
+ random_seed: int,
79
+ use_auth_token: bool,
80
+ n_trials: int,
81
+ eval_step: int,
82
+ parallel_cpu: bool,
83
+ output_dir: str,
84
+ ray_result_dir: str,
85
+ model_alias: str,
86
+ model_organization: str,
87
+ eval_batch_size: int = 16):
88
+ """Fine-tune seq2seq model."""
89
+ logging.info(
90
+ f'[CONFIG]\n\t *LM: {model_name}, \n\t *Data: {dataset} ({dataset_name}), \n\t *Num of Trial: {n_trials}'
91
+ )
92
+ # set up the output directory
93
+ if output_dir is None:
94
+ output_dir = f'ckpt/{os.path.basename(model_name)}.{os.path.basename(dataset)}.{dataset_name}'
95
+ ray_result_dir = ray_result_dir
96
+ if ray_result_dir is None:
97
+ ray_result_dir = f'ray/{os.path.basename(model_name)}.{os.path.basename(dataset)}.{dataset_name}'
98
+
99
+ # define search space
100
+ search_range_lr = [1e-6, 1e-4] if search_range_lr is None else search_range_lr
101
+ assert len(search_range_lr) == 2, f'`search_range_lr` should contain [min_lr, max_lr]: {search_range_lr}'
102
+ search_range_epoch = [2, 6] if search_range_epoch is None else search_range_epoch
103
+ assert len(search_range_epoch) == 2, f'`search_range_epoch` should contain [min_epoch, max_epoch]: {search_range_epoch}'
104
+ search_list_batch = [64, 128] if search_list_batch is None else search_list_batch
105
+ search_space = {
106
+ 'learning_rate': tune.loguniform(search_range_lr[0], search_range_lr[1]),
107
+ 'num_train_epochs': tune.choice(list(range(search_range_epoch[0], search_range_epoch[1]))),
108
+ 'per_device_train_batch_size': tune.choice(search_list_batch)
109
+ }
110
+ resources_per_trial = {'cpu': multiprocessing.cpu_count() if parallel_cpu else 1, 'gpu': torch.cuda.device_count()}
111
+ init(ignore_reinit_error=True, num_cpus=resources_per_trial['cpu'])
112
+ logging.info(f'[RESOURCE]\n{json.dumps(resources_per_trial, indent=4)}')
113
+
114
+ # dataset process
115
+ tokenizer = transformers.AutoTokenizer.from_pretrained(model_name, use_auth_token=use_auth_token)
116
+ dataset_split = {
117
+ 'train': [dataset_split_train, down_sample_train],
118
+ 'validation': [dataset_split_validation, down_sample_validation]
119
+ }
120
+ dataset_instance = load_dataset(dataset, dataset_name, use_auth_token=use_auth_token)
121
+ tokenized_dataset = {}
122
+ for s, (s_dataset, down_sample) in dataset_split.items():
123
+ tokenized_dataset[s] = []
124
+ dataset_tmp = dataset_instance[s_dataset]
125
+ dataset_tmp.shuffle(random_seed)
126
+ for i in dataset_tmp:
127
+ model_inputs = tokenizer(i[dataset_column_text], truncation=True)
128
+ model_inputs['labels'] = tokenizer(text_target=i[dataset_column_label], truncation=True)['input_ids']
129
+ tokenized_dataset[s].append(model_inputs)
130
+
131
+ if down_sample is not None and len(dataset_tmp) > down_sample:
132
+ tokenized_dataset[f'{s}_ds'] = []
133
+ dataset_tmp = dataset_tmp.select(list(range(down_sample)))
134
+ for i in dataset_tmp:
135
+ model_inputs = tokenizer(i[dataset_column_text], truncation=True)
136
+ model_inputs['labels'] = tokenizer(text_target=i[dataset_column_label], truncation=True)['input_ids']
137
+ tokenized_dataset[f'{s}_ds'].append(model_inputs)
138
+ else:
139
+ tokenized_dataset[f'{s}_ds'] = tokenized_dataset[s]
140
+
141
+ def compute_metric(eval_pred): # for parameter search
142
+
143
+ def decode_tokens(token_ids) -> List[Set[str]]:
144
+ return [
145
+ set(tokenizer.decode(list(filter(lambda x: x != -100, r)), skip_special_tokens=True).split(',')) for r
146
+ in token_ids
147
+ ]
148
+
149
+ predictions, reference_token_ids = eval_pred
150
+ # format reference
151
+ references_decode = decode_tokens(reference_token_ids)
152
+ # format prediction
153
+ logit, loss = predictions
154
+ generation_token_id = logit.argmax(-1)
155
+ generation_token_id[logit.min(-1) == -100] = -100
156
+ generation_decode = decode_tokens(generation_token_id)
157
+ return get_f1_score(references_decode, generation_decode)
158
+
159
+ if not os.path.exists(f'{output_dir}/model/pytorch_model.bin'):
160
+ trainer = Seq2SeqTrainer(
161
+ # model=model,
162
+ args=Seq2SeqTrainingArguments(
163
+ output_dir=f'{output_dir}/runs',
164
+ evaluation_strategy='steps',
165
+ eval_steps=eval_step,
166
+ seed=random_seed
167
+ ),
168
+ data_collator=transformers.DataCollatorForSeq2Seq(tokenizer, model=load_model(
169
+ model_name=model_name,
170
+ use_auth_token=use_auth_token,
171
+ low_cpu_mem_usage=model_low_cpu_mem_usage)),
172
+ train_dataset=tokenized_dataset['train_ds'],
173
+ eval_dataset=tokenized_dataset['validation_ds'],
174
+ compute_metrics=compute_metric,
175
+ model_init=lambda x: load_model(
176
+ model_name=model_name,
177
+ use_auth_token=use_auth_token,
178
+ low_cpu_mem_usage=model_low_cpu_mem_usage)
179
+ )
180
+ os.makedirs(f'{output_dir}/model', exist_ok=True)
181
+ if not os.path.exists(f'{output_dir}/model/hyperparameters.json'):
182
+ # grid search
183
+ best_run = trainer.hyperparameter_search(
184
+ hp_space=lambda x: search_space,
185
+ local_dir=ray_result_dir,
186
+ direction='maximize',
187
+ backend='ray',
188
+ n_trials=n_trials,
189
+ resources_per_trial=resources_per_trial
190
+ )
191
+ with open(f'{output_dir}/model/hyperparameters.json', 'w') as f:
192
+ json.dump(best_run.hyperparameters, f)
193
+ else:
194
+ logging.info('skip hyperparameter search (already done)')
195
+
196
+ # fine-tuning with the best config
197
+ logging.info(f'fine-tuning with the best config')
198
+ with open(f'{output_dir}/model/hyperparameters.json') as f:
199
+ best_hyperparameters = json.load(f)
200
+ for n, v in best_hyperparameters.items():
201
+ setattr(trainer.args, n, v)
202
+ setattr(trainer, 'train_dataset', tokenized_dataset['train'])
203
+ setattr(trainer.args, 'evaluation_strategy', 'no')
204
+ trainer.train()
205
+ trainer.save_model(f'{output_dir}/model')
206
+ tokenizer.save_pretrained(f'{output_dir}/model')
207
+ logging.info(f'model saved at {output_dir}/model')
208
+ del trainer
209
+ gc.collect()
210
+ torch.cuda.empty_cache()
211
+ else:
212
+ logging.info('skip hyperparameter search & model training (already done)')
213
+
214
+ # get metric on the test set
215
+ if dataset_split_test is not None and not os.path.exists(f'{output_dir}/model/evaluation_metrics.json'):
216
+ logging.info('run evaluation on test set')
217
+ if not os.path.exists(f'{output_dir}/model/prediction_test.txt'):
218
+ pipe = pipeline(
219
+ 'text2text-generation',
220
+ model=f'{output_dir}/model',
221
+ device='cuda:0' if resources_per_trial['gpu'] > 0 else 'cpu'
222
+ )
223
+ input_data = [i[dataset_column_text] for i in dataset_instance[dataset_split_test]]
224
+ output = pipe(input_data, batch_size=eval_batch_size)
225
+ output = [i['generated_text'] for i in output]
226
+ with open(f'{output_dir}/model/prediction_test.txt', 'w') as f:
227
+ f.write('\n'.join(output))
228
+ with open(f'{output_dir}/model/prediction_test.txt') as f:
229
+ output = [set(i.split(',')) for i in f.read().split('\n')]
230
+ dataset_tmp = dataset_instance[dataset_split_test]
231
+ label_list = dataset_tmp[dataset_column_label]
232
+ _references = [
233
+ set([_l for __i, _l in zip(_i[dataset_column_label], label_list) if __i == 1]) for _i in dataset_tmp
234
+ ]
235
+ eval_metric = get_f1_score(_references, output)
236
+ logging.info(json.dumps(eval_metric, indent=4))
237
+ with open(f'{output_dir}/model/evaluation_metrics.json', 'w') as f:
238
+ json.dump(eval_metric, f)
239
+
240
+ if model_alias is not None:
241
+ assert model_organization is not None, 'model_organization must be specified when model_alias is specified'
242
+ logging.info('uploading to huggingface')
243
+ args = {'use_auth_token': use_auth_token, 'organization': model_organization}
244
+ model = load_model(model_name=f'{output_dir}/model')
245
+ model.push_to_hub(model_alias, **args)
246
+ tokenizer.push_to_hub(model_alias, **args)
247
+ repo = Repository(model_alias, f'{model_organization}/{model_alias}')
248
+ copyfile(f'{output_dir}/model/hyperparameters.json', f'{model_alias}/hyperparameters.json')
249
+ if os.path.exists(f'{output_dir}/model/prediction_test.txt'):
250
+ copyfile(f'{output_dir}/model/prediction_test.txt', f'{model_alias}/prediction_test.txt')
251
+ if os.path.exists(f'{output_dir}/model/evaluation_metrics.json'):
252
+ copyfile(f'{output_dir}/model/evaluation_metrics.json', f'{model_alias}/evaluation_metrics.json')
253
+ sample = [i[dataset_column_text] for i in dataset_instance[dataset_split_train]]
254
+ sample = [i for i in sample if ''' not in i and ''' not in i][:3]
255
+ widget = '\n'.join([f"- text: '{t}'\n example_title: example {_n + 1}" for _n, t in enumerate(sample)])
256
+ with open(f'{model_alias}/README.md', 'w') as f:
257
+ f.write(f"""
258
+ ---
259
+ widget:
260
+ {widget}
261
+ ---
262
+
263
+ # {model_organization}/{model_alias}
264
+
265
+ This is [{model_name}](https://huggingface.co/{model_name}) fine-tuned on [{dataset} ({dataset_name})](https://huggingface.co/datasets/{dataset}).
266
+
267
+ ### Usage
268
+
269
+ ```python
270
+ from transformers import pipeline
271
+
272
+ pipe = pipeline('text2text-generation', model='{model_organization}/{model_alias}')
273
+ output = pipe('{sample[0]}')
274
+ ```
275
+ """)
276
+ repo.push_to_hub()
277
+
278
+
279
+ if __name__ == '__main__':
280
+ # arguments
281
+ logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S')
282
+ parser = argparse.ArgumentParser(description='Seq2Seq LM Fine-tuning on topic classification.')
283
+ parser.add_argument('-m', '--model-name', default='google/mt5-small', type=str)
284
+ parser.add_argument('--low-cpu-mem-usage', action='store_true')
285
+ parser.add_argument('-d', '--dataset', default='cardiffnlp/tweet_topic_multilingual', type=str)
286
+ parser.add_argument('--dataset-name', default='ja', type=str)
287
+ parser.add_argument('--dataset-column-label', default='label_name_flatten', type=str)
288
+ parser.add_argument('--dataset-column-text', default='text', type=str)
289
+ parser.add_argument('--dataset-split-train', default='train', type=str)
290
+ parser.add_argument('--dataset-split-validation', default='validation', type=str)
291
+ parser.add_argument('--dataset-split-test', default='test', type=str)
292
+ parser.add_argument('--search-range-lr', nargs='+', default=None, type=float)
293
+ parser.add_argument('--search-range-epoch', nargs='+', default=None, type=int)
294
+ parser.add_argument('--search-list-batch', nargs='+', default=None, type=int)
295
+ parser.add_argument('--down-sample-train', default=None, type=int)
296
+ parser.add_argument('--down-sample-validation', default=2000, type=int)
297
+ parser.add_argument('--random-seed', default=42, type=int)
298
+ parser.add_argument('--use-auth-token', action='store_true')
299
+ parser.add_argument('--n-trials', default=20, type=int)
300
+ parser.add_argument('--eval-step', default=100, type=int)
301
+ parser.add_argument('--parallel-cpu', action='store_true')
302
+ parser.add_argument('--output-dir', default=None, type=str)
303
+ parser.add_argument('--ray-result-dir', default=None, type=str)
304
+ parser.add_argument('--model-alias', default=None, type=str)
305
+ parser.add_argument('--model-organization', default=None, type=str)
306
+ opt = parser.parse_args()
307
+
308
+ train(model_name=opt.model_name,
309
+ model_low_cpu_mem_usage=opt.low_cpu_mem_usage,
310
+ dataset=opt.dataset,
311
+ dataset_name=opt.dataset_name,
312
+ dataset_column_label=opt.dataset_column_label,
313
+ dataset_column_text=opt.dataset_column_text,
314
+ dataset_split_train=opt.dataset_split_train,
315
+ dataset_split_validation=opt.dataset_split_validation,
316
+ dataset_split_test=opt.dataset_split_test,
317
+ search_range_lr=opt.search_range_lr,
318
+ search_range_epoch=opt.search_range_epoch,
319
+ search_list_batch=opt.search_list_batch,
320
+ down_sample_train=opt.down_sample_train,
321
+ down_sample_validation=opt.down_sample_validation,
322
+ random_seed=opt.random_seed,
323
+ use_auth_token=opt.use_auth_token,
324
+ n_trials=opt.n_trials,
325
+ eval_step=opt.eval_step,
326
+ parallel_cpu=opt.parallel_cpu,
327
+ output_dir=opt.output_dir,
328
+ ray_result_dir=opt.ray_result_dir,
329
+ model_alias=opt.model_alias,
330
+ model_organization=opt.model_organization)