Update readme.py
Browse files
readme.py
CHANGED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Dict
|
3 |
+
|
4 |
+
|
5 |
+
def get_readme(model_name: str,
|
6 |
+
metric: Dict,
|
7 |
+
metric_span: Dict,
|
8 |
+
config: Dict):
|
9 |
+
language_model = config['model']
|
10 |
+
dataset = None
|
11 |
+
dataset_alias = "custom"
|
12 |
+
if config["dataset"] is not None:
|
13 |
+
dataset = sorted([i for i in config["dataset"]])
|
14 |
+
dataset_alias = ','.join(dataset)
|
15 |
+
config_text = "\n".join([f" - {k}: {v}" for k, v in config.items()])
|
16 |
+
ci_micro = '\n'.join([f' - {k}%: {v}' for k, v in metric["micro/f1_ci"].items()])
|
17 |
+
ci_macro = '\n'.join([f' - {k}%: {v}' for k, v in metric["micro/f1_ci"].items()])
|
18 |
+
per_entity_metric = '\n'.join([f'- {k}: {v["f1"]}' for k, v in metric['per_entity_metric'].items()])
|
19 |
+
if dataset is None:
|
20 |
+
dataset_link = 'custom'
|
21 |
+
else:
|
22 |
+
dataset = [dataset] if type(dataset) is str else dataset
|
23 |
+
dataset_link = ','.join([f"[{d}](https://huggingface.co/datasets/{d})" for d in dataset])
|
24 |
+
return f"""---
|
25 |
+
datasets:
|
26 |
+
- {dataset_alias}
|
27 |
+
metrics:
|
28 |
+
- f1
|
29 |
+
- precision
|
30 |
+
- recall
|
31 |
+
model-index:
|
32 |
+
- name: {model_name}
|
33 |
+
results:
|
34 |
+
- task:
|
35 |
+
name: Token Classification
|
36 |
+
type: token-classification
|
37 |
+
dataset:
|
38 |
+
name: {dataset_alias}
|
39 |
+
type: {dataset_alias}
|
40 |
+
args: {dataset_alias}
|
41 |
+
metrics:
|
42 |
+
- name: F1
|
43 |
+
type: f1
|
44 |
+
value: {metric['micro/f1']}
|
45 |
+
- name: Precision
|
46 |
+
type: precision
|
47 |
+
value: {metric['micro/precision']}
|
48 |
+
- name: Recall
|
49 |
+
type: recall
|
50 |
+
value: {metric['micro/recall']}
|
51 |
+
- name: F1 (macro)
|
52 |
+
type: f1_macro
|
53 |
+
value: {metric['macro/f1']}
|
54 |
+
- name: Precision (macro)
|
55 |
+
type: precision_macro
|
56 |
+
value: {metric['macro/precision']}
|
57 |
+
- name: Recall (macro)
|
58 |
+
type: recall_macro
|
59 |
+
value: {metric['macro/recall']}
|
60 |
+
- name: F1 (entity span)
|
61 |
+
type: f1_entity_span
|
62 |
+
value: {metric_span['micro/f1']}
|
63 |
+
- name: Precision (entity span)
|
64 |
+
type: precision_entity_span
|
65 |
+
value: {metric_span['micro/precision']}
|
66 |
+
- name: Recall (entity span)
|
67 |
+
type: recall_entity_span
|
68 |
+
value: {metric_span['micro/recall']}
|
69 |
+
|
70 |
+
pipeline_tag: token-classification
|
71 |
+
widget:
|
72 |
+
- text: "Jacob Collier is a Grammy awarded artist from England."
|
73 |
+
example_title: "NER Example 1"
|
74 |
+
---
|
75 |
+
# {model_name}
|
76 |
+
|
77 |
+
This model is a fine-tuned version of [{language_model}](https://huggingface.co/{language_model}) on the
|
78 |
+
{dataset_link} dataset.
|
79 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
80 |
+
for more detail). It achieves the following results on the test set:
|
81 |
+
- F1 (micro): {metric['micro/f1']}
|
82 |
+
- Precision (micro): {metric['micro/precision']}
|
83 |
+
- Recall (micro): {metric['micro/recall']}
|
84 |
+
- F1 (macro): {metric['macro/f1']}
|
85 |
+
- Precision (macro): {metric['macro/precision']}
|
86 |
+
- Recall (macro): {metric['macro/recall']}
|
87 |
+
|
88 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
89 |
+
{per_entity_metric}
|
90 |
+
|
91 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
92 |
+
- F1 (micro):
|
93 |
+
{ci_micro}
|
94 |
+
- F1 (macro):
|
95 |
+
{ci_macro}
|
96 |
+
|
97 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/{model_name}/raw/main/eval/metric.json)
|
98 |
+
and [metric file of entity span](https://huggingface.co/{model_name}/raw/main/eval/metric_span.json).
|
99 |
+
|
100 |
+
### Usage
|
101 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
102 |
+
```shell
|
103 |
+
pip install tner
|
104 |
+
```
|
105 |
+
and activate model as below.
|
106 |
+
```python
|
107 |
+
from tner import TransformersNER
|
108 |
+
model = TransformersNER("{model_name}")
|
109 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
110 |
+
```
|
111 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
112 |
+
|
113 |
+
### Training hyperparameters
|
114 |
+
|
115 |
+
The following hyperparameters were used during training:
|
116 |
+
{config_text}
|
117 |
+
|
118 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/{model_name}/raw/main/trainer_config.json).
|
119 |
+
|
120 |
+
### Reference
|
121 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
122 |
+
|
123 |
+
```
|
124 |
+
{bib}
|
125 |
+
```
|
126 |
+
"""
|