|
{ |
|
"emoji": { |
|
"description": "TweetEval consists of seven heterogenous tasks in Twitter, all framed as multi-class tweet classification. All tasks have been unified into the same benchmark, with each dataset presented in the same format and with fixed training, validation and test splits.\n", |
|
"citation": "@inproceedings{barbieri2020tweeteval,\n title={{TweetEval:Unified Benchmark and Comparative Evaluation for Tweet Classification}},\n author={Barbieri, Francesco and Camacho-Collados, Jose and Espinosa-Anke, Luis and Neves, Leonardo},\n booktitle={Proceedings of Findings of EMNLP},\n year={2020}\n}\n", |
|
"homepage": "https://github.com/cardiffnlp/tweeteval", |
|
"license": "", |
|
"features": { |
|
"text": { |
|
"dtype": "string", |
|
"_type": "Value" |
|
}, |
|
"label": { |
|
"names": [ |
|
"\u2764", |
|
"\ud83d\ude0d", |
|
"\ud83d\ude02", |
|
"\ud83d\udc95", |
|
"\ud83d\udd25", |
|
"\ud83d\ude0a", |
|
"\ud83d\ude0e", |
|
"\u2728", |
|
"\ud83d\udc99", |
|
"\ud83d\ude18", |
|
"\ud83d\udcf7", |
|
"\ud83c\uddfa\ud83c\uddf8", |
|
"\u2600", |
|
"\ud83d\udc9c", |
|
"\ud83d\ude09", |
|
"\ud83d\udcaf", |
|
"\ud83d\ude01", |
|
"\ud83c\udf84", |
|
"\ud83d\udcf8", |
|
"\ud83d\ude1c" |
|
], |
|
"_type": "ClassLabel" |
|
} |
|
}, |
|
"builder_name": "tweet_eval", |
|
"dataset_name": "tweet_eval", |
|
"config_name": "emoji", |
|
"version": { |
|
"version_str": "1.1.0", |
|
"major": 1, |
|
"minor": 1, |
|
"patch": 0 |
|
}, |
|
"splits": { |
|
"train": { |
|
"name": "train", |
|
"num_bytes": 3803167, |
|
"num_examples": 45000, |
|
"dataset_name": null |
|
}, |
|
"test": { |
|
"name": "test", |
|
"num_bytes": 4255901, |
|
"num_examples": 50000, |
|
"dataset_name": null |
|
}, |
|
"validation": { |
|
"name": "validation", |
|
"num_bytes": 396079, |
|
"num_examples": 5000, |
|
"dataset_name": null |
|
} |
|
}, |
|
"download_size": 5939308, |
|
"dataset_size": 8455147, |
|
"size_in_bytes": 14394455 |
|
}, |
|
"emotion": { |
|
"description": "TweetEval consists of seven heterogenous tasks in Twitter, all framed as multi-class tweet classification. All tasks have been unified into the same benchmark, with each dataset presented in the same format and with fixed training, validation and test splits.\n", |
|
"citation": "@inproceedings{barbieri2020tweeteval,\n title={{TweetEval:Unified Benchmark and Comparative Evaluation for Tweet Classification}},\n author={Barbieri, Francesco and Camacho-Collados, Jose and Espinosa-Anke, Luis and Neves, Leonardo},\n booktitle={Proceedings of Findings of EMNLP},\n year={2020}\n}\n", |
|
"homepage": "https://github.com/cardiffnlp/tweeteval", |
|
"license": "", |
|
"features": { |
|
"text": { |
|
"dtype": "string", |
|
"_type": "Value" |
|
}, |
|
"label": { |
|
"names": [ |
|
"anger", |
|
"joy", |
|
"optimism", |
|
"sadness" |
|
], |
|
"_type": "ClassLabel" |
|
} |
|
}, |
|
"builder_name": "tweet_eval", |
|
"dataset_name": "tweet_eval", |
|
"config_name": "emotion", |
|
"version": { |
|
"version_str": "1.1.0", |
|
"major": 1, |
|
"minor": 1, |
|
"patch": 0 |
|
}, |
|
"splits": { |
|
"train": { |
|
"name": "train", |
|
"num_bytes": 338871, |
|
"num_examples": 3257, |
|
"dataset_name": null |
|
}, |
|
"test": { |
|
"name": "test", |
|
"num_bytes": 146645, |
|
"num_examples": 1421, |
|
"dataset_name": null |
|
}, |
|
"validation": { |
|
"name": "validation", |
|
"num_bytes": 38273, |
|
"num_examples": 374, |
|
"dataset_name": null |
|
} |
|
}, |
|
"download_size": 367016, |
|
"dataset_size": 523789, |
|
"size_in_bytes": 890805 |
|
}, |
|
"hate": { |
|
"description": "TweetEval consists of seven heterogenous tasks in Twitter, all framed as multi-class tweet classification. All tasks have been unified into the same benchmark, with each dataset presented in the same format and with fixed training, validation and test splits.\n", |
|
"citation": "@inproceedings{barbieri2020tweeteval,\n title={{TweetEval:Unified Benchmark and Comparative Evaluation for Tweet Classification}},\n author={Barbieri, Francesco and Camacho-Collados, Jose and Espinosa-Anke, Luis and Neves, Leonardo},\n booktitle={Proceedings of Findings of EMNLP},\n year={2020}\n}\n", |
|
"homepage": "https://github.com/cardiffnlp/tweeteval", |
|
"license": "", |
|
"features": { |
|
"text": { |
|
"dtype": "string", |
|
"_type": "Value" |
|
}, |
|
"label": { |
|
"names": [ |
|
"non-hate", |
|
"hate" |
|
], |
|
"_type": "ClassLabel" |
|
} |
|
}, |
|
"builder_name": "tweet_eval", |
|
"dataset_name": "tweet_eval", |
|
"config_name": "hate", |
|
"version": { |
|
"version_str": "1.1.0", |
|
"major": 1, |
|
"minor": 1, |
|
"patch": 0 |
|
}, |
|
"splits": { |
|
"train": { |
|
"name": "train", |
|
"num_bytes": 1223650, |
|
"num_examples": 9000, |
|
"dataset_name": null |
|
}, |
|
"test": { |
|
"name": "test", |
|
"num_bytes": 428934, |
|
"num_examples": 2970, |
|
"dataset_name": null |
|
}, |
|
"validation": { |
|
"name": "validation", |
|
"num_bytes": 154144, |
|
"num_examples": 1000, |
|
"dataset_name": null |
|
} |
|
}, |
|
"download_size": 1196346, |
|
"dataset_size": 1806728, |
|
"size_in_bytes": 3003074 |
|
}, |
|
"irony": { |
|
"description": "TweetEval consists of seven heterogenous tasks in Twitter, all framed as multi-class tweet classification. All tasks have been unified into the same benchmark, with each dataset presented in the same format and with fixed training, validation and test splits.\n", |
|
"citation": "@inproceedings{barbieri2020tweeteval,\n title={{TweetEval:Unified Benchmark and Comparative Evaluation for Tweet Classification}},\n author={Barbieri, Francesco and Camacho-Collados, Jose and Espinosa-Anke, Luis and Neves, Leonardo},\n booktitle={Proceedings of Findings of EMNLP},\n year={2020}\n}\n", |
|
"homepage": "https://github.com/cardiffnlp/tweeteval", |
|
"license": "", |
|
"features": { |
|
"text": { |
|
"dtype": "string", |
|
"_type": "Value" |
|
}, |
|
"label": { |
|
"names": [ |
|
"non_irony", |
|
"irony" |
|
], |
|
"_type": "ClassLabel" |
|
} |
|
}, |
|
"builder_name": "tweet_eval", |
|
"dataset_name": "tweet_eval", |
|
"config_name": "irony", |
|
"version": { |
|
"version_str": "1.1.0", |
|
"major": 1, |
|
"minor": 1, |
|
"patch": 0 |
|
}, |
|
"splits": { |
|
"train": { |
|
"name": "train", |
|
"num_bytes": 259187, |
|
"num_examples": 2862, |
|
"dataset_name": null |
|
}, |
|
"test": { |
|
"name": "test", |
|
"num_bytes": 75897, |
|
"num_examples": 784, |
|
"dataset_name": null |
|
}, |
|
"validation": { |
|
"name": "validation", |
|
"num_bytes": 86017, |
|
"num_examples": 955, |
|
"dataset_name": null |
|
} |
|
}, |
|
"download_size": 297647, |
|
"dataset_size": 421101, |
|
"size_in_bytes": 718748 |
|
}, |
|
"offensive": { |
|
"description": "TweetEval consists of seven heterogenous tasks in Twitter, all framed as multi-class tweet classification. All tasks have been unified into the same benchmark, with each dataset presented in the same format and with fixed training, validation and test splits.\n", |
|
"citation": "@inproceedings{barbieri2020tweeteval,\n title={{TweetEval:Unified Benchmark and Comparative Evaluation for Tweet Classification}},\n author={Barbieri, Francesco and Camacho-Collados, Jose and Espinosa-Anke, Luis and Neves, Leonardo},\n booktitle={Proceedings of Findings of EMNLP},\n year={2020}\n}\n", |
|
"homepage": "https://github.com/cardiffnlp/tweeteval", |
|
"license": "", |
|
"features": { |
|
"text": { |
|
"dtype": "string", |
|
"_type": "Value" |
|
}, |
|
"label": { |
|
"names": [ |
|
"non-offensive", |
|
"offensive" |
|
], |
|
"_type": "ClassLabel" |
|
} |
|
}, |
|
"builder_name": "tweet_eval", |
|
"dataset_name": "tweet_eval", |
|
"config_name": "offensive", |
|
"version": { |
|
"version_str": "1.1.0", |
|
"major": 1, |
|
"minor": 1, |
|
"patch": 0 |
|
}, |
|
"splits": { |
|
"train": { |
|
"name": "train", |
|
"num_bytes": 1648061, |
|
"num_examples": 11916, |
|
"dataset_name": null |
|
}, |
|
"test": { |
|
"name": "test", |
|
"num_bytes": 135473, |
|
"num_examples": 860, |
|
"dataset_name": null |
|
}, |
|
"validation": { |
|
"name": "validation", |
|
"num_bytes": 192417, |
|
"num_examples": 1324, |
|
"dataset_name": null |
|
} |
|
}, |
|
"download_size": 1234528, |
|
"dataset_size": 1975951, |
|
"size_in_bytes": 3210479 |
|
}, |
|
"sentiment": { |
|
"description": "TweetEval consists of seven heterogenous tasks in Twitter, all framed as multi-class tweet classification. All tasks have been unified into the same benchmark, with each dataset presented in the same format and with fixed training, validation and test splits.\n", |
|
"citation": "@inproceedings{barbieri2020tweeteval,\n title={{TweetEval:Unified Benchmark and Comparative Evaluation for Tweet Classification}},\n author={Barbieri, Francesco and Camacho-Collados, Jose and Espinosa-Anke, Luis and Neves, Leonardo},\n booktitle={Proceedings of Findings of EMNLP},\n year={2020}\n}\n", |
|
"homepage": "https://github.com/cardiffnlp/tweeteval", |
|
"license": "", |
|
"features": { |
|
"text": { |
|
"dtype": "string", |
|
"_type": "Value" |
|
}, |
|
"label": { |
|
"names": [ |
|
"negative", |
|
"neutral", |
|
"positive" |
|
], |
|
"_type": "ClassLabel" |
|
} |
|
}, |
|
"builder_name": "tweet_eval", |
|
"dataset_name": "tweet_eval", |
|
"config_name": "sentiment", |
|
"version": { |
|
"version_str": "1.1.0", |
|
"major": 1, |
|
"minor": 1, |
|
"patch": 0 |
|
}, |
|
"splits": { |
|
"train": { |
|
"name": "train", |
|
"num_bytes": 5425122, |
|
"num_examples": 45615, |
|
"dataset_name": null |
|
}, |
|
"test": { |
|
"name": "test", |
|
"num_bytes": 1279540, |
|
"num_examples": 12284, |
|
"dataset_name": null |
|
}, |
|
"validation": { |
|
"name": "validation", |
|
"num_bytes": 239084, |
|
"num_examples": 2000, |
|
"dataset_name": null |
|
} |
|
}, |
|
"download_size": 4849675, |
|
"dataset_size": 6943746, |
|
"size_in_bytes": 11793421 |
|
}, |
|
"stance_abortion": { |
|
"description": "TweetEval consists of seven heterogenous tasks in Twitter, all framed as multi-class tweet classification. All tasks have been unified into the same benchmark, with each dataset presented in the same format and with fixed training, validation and test splits.\n", |
|
"citation": "@inproceedings{barbieri2020tweeteval,\n title={{TweetEval:Unified Benchmark and Comparative Evaluation for Tweet Classification}},\n author={Barbieri, Francesco and Camacho-Collados, Jose and Espinosa-Anke, Luis and Neves, Leonardo},\n booktitle={Proceedings of Findings of EMNLP},\n year={2020}\n}\n", |
|
"homepage": "https://github.com/cardiffnlp/tweeteval", |
|
"license": "", |
|
"features": { |
|
"text": { |
|
"dtype": "string", |
|
"id": null, |
|
"_type": "Value" |
|
}, |
|
"label": { |
|
"num_classes": 3, |
|
"names": [ |
|
"none", |
|
"against", |
|
"favor" |
|
], |
|
"names_file": null, |
|
"id": null, |
|
"_type": "ClassLabel" |
|
} |
|
}, |
|
"post_processed": null, |
|
"supervised_keys": null, |
|
"builder_name": " tweet_eval", |
|
"config_name": "stance_abortion", |
|
"version": { |
|
"version_str": "1.1.0", |
|
"description": null, |
|
"major": 1, |
|
"minor": 1, |
|
"patch": 0 |
|
}, |
|
"splits": { |
|
"train": { |
|
"name": "train", |
|
"num_bytes": 68698, |
|
"num_examples": 587, |
|
"dataset_name": " tweet_eval" |
|
}, |
|
"test": { |
|
"name": "test", |
|
"num_bytes": 33175, |
|
"num_examples": 280, |
|
"dataset_name": " tweet_eval" |
|
}, |
|
"validation": { |
|
"name": "validation", |
|
"num_bytes": 7661, |
|
"num_examples": 66, |
|
"dataset_name": " tweet_eval" |
|
} |
|
}, |
|
"download_checksums": { |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/abortion/train_text.txt": { |
|
"num_bytes": 62828, |
|
"checksum": "a421d5b8fd9f972970b9275b83f65745bf81986d2a412b4caa2ba071f3efa916" |
|
}, |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/abortion/train_labels.txt": { |
|
"num_bytes": 1174, |
|
"checksum": "e6786a594bd9a083c524a0f420c690351140b52af288f487cb4772d29675b014" |
|
}, |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/abortion/test_text.txt": { |
|
"num_bytes": 30371, |
|
"checksum": "bf0e16a0b8ca4cf0ab90efbc560db3151c288fc842f5e3c6554e8589d521556a" |
|
}, |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/abortion/test_labels.txt": { |
|
"num_bytes": 560, |
|
"checksum": "c90e6d36d863f876d6661620d37b613b4b07858a5277c8d6623713ee59ca451c" |
|
}, |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/abortion/val_text.txt": { |
|
"num_bytes": 6997, |
|
"checksum": "0428ab3f2894936f2445a9020763c2bd19ed42986872168bb65886dede5843fd" |
|
}, |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/abortion/val_labels.txt": { |
|
"num_bytes": 132, |
|
"checksum": "8df57a50823d5f3683ecf75d824a42e3b08eb52e25e3e2d6928f523097a0c050" |
|
} |
|
}, |
|
"download_size": 102062, |
|
"post_processing_size": null, |
|
"dataset_size": 109534, |
|
"size_in_bytes": 211596 |
|
}, |
|
"stance_atheism": { |
|
"description": "TweetEval consists of seven heterogenous tasks in Twitter, all framed as multi-class tweet classification. All tasks have been unified into the same benchmark, with each dataset presented in the same format and with fixed training, validation and test splits.\n", |
|
"citation": "@inproceedings{barbieri2020tweeteval,\n title={{TweetEval:Unified Benchmark and Comparative Evaluation for Tweet Classification}},\n author={Barbieri, Francesco and Camacho-Collados, Jose and Espinosa-Anke, Luis and Neves, Leonardo},\n booktitle={Proceedings of Findings of EMNLP},\n year={2020}\n}\n", |
|
"homepage": "https://github.com/cardiffnlp/tweeteval", |
|
"license": "", |
|
"features": { |
|
"text": { |
|
"dtype": "string", |
|
"id": null, |
|
"_type": "Value" |
|
}, |
|
"label": { |
|
"num_classes": 3, |
|
"names": [ |
|
"none", |
|
"against", |
|
"favor" |
|
], |
|
"names_file": null, |
|
"id": null, |
|
"_type": "ClassLabel" |
|
} |
|
}, |
|
"post_processed": null, |
|
"supervised_keys": null, |
|
"builder_name": " tweet_eval", |
|
"config_name": "stance_atheism", |
|
"version": { |
|
"version_str": "1.1.0", |
|
"description": null, |
|
"major": 1, |
|
"minor": 1, |
|
"patch": 0 |
|
}, |
|
"splits": { |
|
"train": { |
|
"name": "train", |
|
"num_bytes": 54779, |
|
"num_examples": 461, |
|
"dataset_name": " tweet_eval" |
|
}, |
|
"test": { |
|
"name": "test", |
|
"num_bytes": 25720, |
|
"num_examples": 220, |
|
"dataset_name": " tweet_eval" |
|
}, |
|
"validation": { |
|
"name": "validation", |
|
"num_bytes": 6324, |
|
"num_examples": 52, |
|
"dataset_name": " tweet_eval" |
|
} |
|
}, |
|
"download_checksums": { |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/atheism/train_text.txt": { |
|
"num_bytes": 50165, |
|
"checksum": "0e82f1d4a16d79a38a68aee761762cf8a846bc8f7f9395670ca44e2ecf2f58f7" |
|
}, |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/atheism/train_labels.txt": { |
|
"num_bytes": 922, |
|
"checksum": "a764aac1a75ccb32c4ffc4c03c66dc365cb50f013d3e94549bf775636cbc8373" |
|
}, |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/atheism/test_text.txt": { |
|
"num_bytes": 23516, |
|
"checksum": "16c5336b2cba606ca63a6afcc50241be63a8fccf021628c6505449439b9d54b3" |
|
}, |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/atheism/test_labels.txt": { |
|
"num_bytes": 440, |
|
"checksum": "4ef7c9398d265cfac625092c834e43cef9da9cb318e563493abb64f65dfe1b52" |
|
}, |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/atheism/val_text.txt": { |
|
"num_bytes": 5800, |
|
"checksum": "5fe14c4c01f87a45dba640dddbb1d1909a893f9565f159c48fa1ba35bb46c209" |
|
}, |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/atheism/val_labels.txt": { |
|
"num_bytes": 104, |
|
"checksum": "638095b3582f927fd1481cdb8d1f9f670f8d27880baf32c0b26c5946fd8f8292" |
|
} |
|
}, |
|
"download_size": 80947, |
|
"post_processing_size": null, |
|
"dataset_size": 86823, |
|
"size_in_bytes": 167770 |
|
}, |
|
"stance_climate": { |
|
"description": "TweetEval consists of seven heterogenous tasks in Twitter, all framed as multi-class tweet classification. All tasks have been unified into the same benchmark, with each dataset presented in the same format and with fixed training, validation and test splits.\n", |
|
"citation": "@inproceedings{barbieri2020tweeteval,\n title={{TweetEval:Unified Benchmark and Comparative Evaluation for Tweet Classification}},\n author={Barbieri, Francesco and Camacho-Collados, Jose and Espinosa-Anke, Luis and Neves, Leonardo},\n booktitle={Proceedings of Findings of EMNLP},\n year={2020}\n}\n", |
|
"homepage": "https://github.com/cardiffnlp/tweeteval", |
|
"license": "", |
|
"features": { |
|
"text": { |
|
"dtype": "string", |
|
"id": null, |
|
"_type": "Value" |
|
}, |
|
"label": { |
|
"num_classes": 3, |
|
"names": [ |
|
"none", |
|
"against", |
|
"favor" |
|
], |
|
"names_file": null, |
|
"id": null, |
|
"_type": "ClassLabel" |
|
} |
|
}, |
|
"post_processed": null, |
|
"supervised_keys": null, |
|
"builder_name": " tweet_eval", |
|
"config_name": "stance_climate", |
|
"version": { |
|
"version_str": "1.1.0", |
|
"description": null, |
|
"major": 1, |
|
"minor": 1, |
|
"patch": 0 |
|
}, |
|
"splits": { |
|
"train": { |
|
"name": "train", |
|
"num_bytes": 40253, |
|
"num_examples": 355, |
|
"dataset_name": " tweet_eval" |
|
}, |
|
"test": { |
|
"name": "test", |
|
"num_bytes": 19929, |
|
"num_examples": 169, |
|
"dataset_name": " tweet_eval" |
|
}, |
|
"validation": { |
|
"name": "validation", |
|
"num_bytes": 4805, |
|
"num_examples": 40, |
|
"dataset_name": " tweet_eval" |
|
} |
|
}, |
|
"download_checksums": { |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/climate/train_text.txt": { |
|
"num_bytes": 36699, |
|
"checksum": "4803211832d318026323a8e5014cff1b95e1c8c3854378101e5d1a8c82582eb7" |
|
}, |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/climate/train_labels.txt": { |
|
"num_bytes": 710, |
|
"checksum": "d6274f55bc95f5a7f2ae591b886c1414a7664aaf4e0c609f4ba6cf377929af18" |
|
}, |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/climate/test_text.txt": { |
|
"num_bytes": 18235, |
|
"checksum": "41ee8ee2ad3c36e0629654fdb271f37775197c79be8b299adbeadd2003b63c53" |
|
}, |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/climate/test_labels.txt": { |
|
"num_bytes": 338, |
|
"checksum": "193c9f2358f61d9efe558324ec89ecaf08e600a44b68128f47838c01d9f98dfd" |
|
}, |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/climate/val_text.txt": { |
|
"num_bytes": 4401, |
|
"checksum": "fc5714703add266801ee2fd98296ea20ec0879e89cdb9f906d9812d9f640f2ba" |
|
}, |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/climate/val_labels.txt": { |
|
"num_bytes": 80, |
|
"checksum": "0cb133ab9b137292f075210db45f7e293dc52798a4e21e59037bfcfe66c97aa6" |
|
} |
|
}, |
|
"download_size": 60463, |
|
"post_processing_size": null, |
|
"dataset_size": 64987, |
|
"size_in_bytes": 125450 |
|
}, |
|
"stance_feminist": { |
|
"description": "TweetEval consists of seven heterogenous tasks in Twitter, all framed as multi-class tweet classification. All tasks have been unified into the same benchmark, with each dataset presented in the same format and with fixed training, validation and test splits.\n", |
|
"citation": "@inproceedings{barbieri2020tweeteval,\n title={{TweetEval:Unified Benchmark and Comparative Evaluation for Tweet Classification}},\n author={Barbieri, Francesco and Camacho-Collados, Jose and Espinosa-Anke, Luis and Neves, Leonardo},\n booktitle={Proceedings of Findings of EMNLP},\n year={2020}\n}\n", |
|
"homepage": "https://github.com/cardiffnlp/tweeteval", |
|
"license": "", |
|
"features": { |
|
"text": { |
|
"dtype": "string", |
|
"id": null, |
|
"_type": "Value" |
|
}, |
|
"label": { |
|
"num_classes": 3, |
|
"names": [ |
|
"none", |
|
"against", |
|
"favor" |
|
], |
|
"names_file": null, |
|
"id": null, |
|
"_type": "ClassLabel" |
|
} |
|
}, |
|
"post_processed": null, |
|
"supervised_keys": null, |
|
"builder_name": " tweet_eval", |
|
"config_name": "stance_feminist", |
|
"version": { |
|
"version_str": "1.1.0", |
|
"description": null, |
|
"major": 1, |
|
"minor": 1, |
|
"patch": 0 |
|
}, |
|
"splits": { |
|
"train": { |
|
"name": "train", |
|
"num_bytes": 70513, |
|
"num_examples": 597, |
|
"dataset_name": " tweet_eval" |
|
}, |
|
"test": { |
|
"name": "test", |
|
"num_bytes": 33309, |
|
"num_examples": 285, |
|
"dataset_name": " tweet_eval" |
|
}, |
|
"validation": { |
|
"name": "validation", |
|
"num_bytes": 8039, |
|
"num_examples": 67, |
|
"dataset_name": " tweet_eval" |
|
} |
|
}, |
|
"download_checksums": { |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/feminist/train_text.txt": { |
|
"num_bytes": 64539, |
|
"checksum": "c176e6663973c8e78bfa92ba1e8874a70cc5358567d71584a90943bc6525eaab" |
|
}, |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/feminist/train_labels.txt": { |
|
"num_bytes": 1194, |
|
"checksum": "abd4f196d801423bb0daba8c0ecf5b3efba1f10e8f410c3dfa360b50c8b9c685" |
|
}, |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/feminist/test_text.txt": { |
|
"num_bytes": 30455, |
|
"checksum": "1bfdbdc2af64fd62dcc775d1288e192ac8ff805ef27ccf3aaac54a98616eefda" |
|
}, |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/feminist/test_labels.txt": { |
|
"num_bytes": 570, |
|
"checksum": "ddbde6d253ee47c5d5ef8bc5386270fde45cf088d3be70bba9c382b8a024897a" |
|
}, |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/feminist/val_text.txt": { |
|
"num_bytes": 7365, |
|
"checksum": "3518b2ddcf696626a7243d7cea720a975718c7a52a5a086931be87897c1de58b" |
|
}, |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/feminist/val_labels.txt": { |
|
"num_bytes": 134, |
|
"checksum": "399e0d468d0e4ead7a445f69efdf35876c835acf4cefc00a16f451a5d42e5c13" |
|
} |
|
}, |
|
"download_size": 104257, |
|
"post_processing_size": null, |
|
"dataset_size": 111861, |
|
"size_in_bytes": 216118 |
|
}, |
|
"stance_hillary": { |
|
"description": "TweetEval consists of seven heterogenous tasks in Twitter, all framed as multi-class tweet classification. All tasks have been unified into the same benchmark, with each dataset presented in the same format and with fixed training, validation and test splits.\n", |
|
"citation": "@inproceedings{barbieri2020tweeteval,\n title={{TweetEval:Unified Benchmark and Comparative Evaluation for Tweet Classification}},\n author={Barbieri, Francesco and Camacho-Collados, Jose and Espinosa-Anke, Luis and Neves, Leonardo},\n booktitle={Proceedings of Findings of EMNLP},\n year={2020}\n}\n", |
|
"homepage": "https://github.com/cardiffnlp/tweeteval", |
|
"license": "", |
|
"features": { |
|
"text": { |
|
"dtype": "string", |
|
"id": null, |
|
"_type": "Value" |
|
}, |
|
"label": { |
|
"num_classes": 3, |
|
"names": [ |
|
"none", |
|
"against", |
|
"favor" |
|
], |
|
"names_file": null, |
|
"id": null, |
|
"_type": "ClassLabel" |
|
} |
|
}, |
|
"post_processed": null, |
|
"supervised_keys": null, |
|
"builder_name": " tweet_eval", |
|
"config_name": "stance_hillary", |
|
"version": { |
|
"version_str": "1.1.0", |
|
"description": null, |
|
"major": 1, |
|
"minor": 1, |
|
"patch": 0 |
|
}, |
|
"splits": { |
|
"train": { |
|
"name": "train", |
|
"num_bytes": 69600, |
|
"num_examples": 620, |
|
"dataset_name": " tweet_eval" |
|
}, |
|
"test": { |
|
"name": "test", |
|
"num_bytes": 34491, |
|
"num_examples": 295, |
|
"dataset_name": " tweet_eval" |
|
}, |
|
"validation": { |
|
"name": "validation", |
|
"num_bytes": 7536, |
|
"num_examples": 69, |
|
"dataset_name": " tweet_eval" |
|
} |
|
}, |
|
"download_checksums": { |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/hillary/train_text.txt": { |
|
"num_bytes": 63398, |
|
"checksum": "0bd735de895cb74d63c224e64e3d955cac99be97aa225f803fe4d2f5978a2c99" |
|
}, |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/hillary/train_labels.txt": { |
|
"num_bytes": 1240, |
|
"checksum": "0ea5753d13a717a9e91581d1d89c0b5206c8f905f0a717b2b27d02dbf419250d" |
|
}, |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/hillary/test_text.txt": { |
|
"num_bytes": 31537, |
|
"checksum": "5c4e020285a62cfd88f264849e1db242ded356c171b1a68dd0050b76635053aa" |
|
}, |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/hillary/test_labels.txt": { |
|
"num_bytes": 590, |
|
"checksum": "068468f6a72b85dfb65bf10e45f2453fa082d1ea9d7a40e7f560d5b6d75027f3" |
|
}, |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/hillary/val_text.txt": { |
|
"num_bytes": 6842, |
|
"checksum": "9714b7dcc8617e095433d7b63df8aa155eb84216b9ac9195105ab83d85cd248d" |
|
}, |
|
"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/stance/hillary/val_labels.txt": { |
|
"num_bytes": 138, |
|
"checksum": "e5d44c771b7349a4a74309f56ca072fdf8f1c015068d519ca2ed3a931c833606" |
|
} |
|
}, |
|
"download_size": 103745, |
|
"post_processing_size": null, |
|
"dataset_size": 111627, |
|
"size_in_bytes": 215372 |
|
} |
|
} |