cannabis_results / cannabis_results.py
keeganskeate's picture
latest-2024-08-11 (#6)
d1ae506 verified
"""
Cannabis Results
Copyright (c) 2022-2024 Cannlytics
Authors:
Keegan Skeate <https://github.com/keeganskeate>
Created: 9/10/2022
Updated: 8/15/2024
License: <https://github.com/cannlytics/cannlytics/blob/main/LICENSE>
"""
# External imports:
import json
import datasets
import numpy as np
import pandas as pd
# Define constants.
_SCRIPT = 'cannabis_results.py'
_VERSION = '2024.08.15'
_HOMEPAGE = 'https://huggingface.co/datasets/cannlytics/cannabis_results'
_LICENSE = "https://opendatacommons.org/licenses/by/4-0/"
_DESCRIPTION = """\
Cannabis results is a dataset of curated cannabis lab test results. The dataset consists of sub-datasets for each state with any public cannabis lab tests, as well as a sub-dataset that includes all results.
"""
_CITATION = """\
@inproceedings{cannlytics2024cannabis_results,
author = {Skeate, Keegan},
title = {Cannabis Results},
month = {July},
year = {2024},
address = {United States of America},
publisher = {Cannlytics}
}
"""
# Define subsets.
SUBSETS = [
# "ak", # Under development.
"ca",
"co",
"ct",
"fl",
"hi",
"ma",
"md",
"mi",
"nv",
"ny",
"or",
"ri",
"ut",
"wa",
# "all", # Under development.
]
# Define fields that should be mapped to features.
FIELD_TO_FEATURE_MAP = {
'business_dba_name': 'producer_dba_name',
'business_image_url': 'producer_image_url',
'business_legal_name': 'producer_legal_name',
'business_owner_name': 'producer_owner_name',
'business_phone': 'producer_phone',
'business_structure': 'producer_structure',
'business_website': 'producer_website',
'producer_street_address': 'producer_street',
}
class CannabisTestsConfig(datasets.BuilderConfig):
"""BuilderConfig for Cannabis Tests."""
def __init__(self, name, **kwargs):
"""BuilderConfig for Cannabis Tests."""
description = _DESCRIPTION
description += f'This configuration is for the `{name}` subset.'
super().__init__(
data_dir='./data',
description=description,
name=name,
**kwargs,
)
class CannabisTests(datasets.GeneratorBasedBuilder):
"""The Cannabis Tests dataset."""
# Parameters.
VERSION = datasets.Version(_VERSION)
BUILDER_CONFIG_CLASS = CannabisTestsConfig
BUILDER_CONFIGS = [CannabisTestsConfig(s) for s in SUBSETS]
DEFAULT_CONFIG_NAME = 'all'
def get_features(self):
"""Load subset features from a JSON file."""
subset = self.config.name
with open('features.json', 'r') as f:
feature_data = json.load(f)
features = {k: datasets.Value(dtype=v) for k, v in feature_data[subset].items()}
return datasets.Features(features)
def _info(self):
"""Returns the dataset metadata."""
features = self.get_features()
return datasets.DatasetInfo(
features=features,
homepage=_HOMEPAGE,
citation=_CITATION,
description=_DESCRIPTION,
license=_LICENSE,
version=_VERSION,
supervised_keys=None,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
subset = self.config.name
try:
data_url = f'./data/{subset}/{subset}-results-latest.csv'
downloaded_files = dl_manager.download_and_extract({subset: data_url})
except:
data_url = f'./data/{subset}/{subset}-results-latest.xlsx'
downloaded_files = dl_manager.download_and_extract({subset: data_url})
params = {'filepath': downloaded_files[subset]}
return [datasets.SplitGenerator(name='data', gen_kwargs=params)]
def _generate_examples(self, filepath):
"""Returns the examples in raw text form."""
try:
df = pd.read_csv(filepath, low_memory=False)
except:
df = pd.read_excel(filepath.replace('.csv', '.xlsx'))
# Rename columns.
df = df.rename(columns=FIELD_TO_FEATURE_MAP)
# Add missing columns with appropriate defaults based on type.
features = self.get_features()
for col, feature in features.items():
dtype = feature.dtype
if col not in df.columns:
if dtype == 'string':
df[col] = ''
else:
df[col] = np.nan
# Keep only the feature columns.
df = df[list(features.keys())]
# Optional: Fill missing values.
# df.fillna(np.nan, inplace=True)
# Get the features we want to keep.
for index, row in df.iterrows():
# Get observation features.
keys = features.keys()
obs = {}
# Populate our structure with values from the row wherever available.
for key in keys:
# Convert the value to the appropriate type
dtype = features[key].dtype
value = row[key]
# If the type is a string, ensure it's a string. For other types, use the corresponding conversion.
if dtype == 'string':
obs[key] = str(value)
elif dtype == 'float64':
try:
obs[key] = float(value)
except ValueError:
obs[key] = np.nan
elif dtype == 'int64':
try:
obs[key] = int(value)
except ValueError:
obs[key] = np.nan
else:
obs[key] = value
# Yield the index and observation.
yield index, obs
# === Tests ===
# [✓] Tested: 2024-08-15 by Keegan Skeate <keegan@cannlytics>
if __name__ == '__main__':
from datasets import load_dataset
# Load each dataset subset.
for subset in SUBSETS:
dataset = load_dataset(_SCRIPT, subset, trust_remote_code=True)
data = dataset['data']
assert len(data) > 0
print('Read %i %s data points.' % (len(data), subset))