cannabis_results / analysis /analyze_results_co.py
keeganskeate's picture
latest-2024-08-11 (#6)
d1ae506 verified
"""
Analyze Results | Colorado
Copyright (c) 2024 Cannlytics
Authors: Keegan Skeate <https://github.com/keeganskeate>
Created: 8/14/2024
Updated: 8/15/2024
License: MIT License <https://github.com/cannlytics/cannabis-data-science/blob/main/LICENSE>
"""
# Standard imports:
import json
import os
import warnings
# External imports:
from cannlytics.data.coas import standardize_results
from cannlytics.data.coas.parsing import find_unique_analytes
import pandas as pd
# Ignore all UserWarnings
warnings.filterwarnings("ignore", category=UserWarning)
def analyze_results_co(
data_dir: str,
) -> pd.DataFrame:
"""Analyze Colorado lab results."""
# Merge SC Labs results, removing duplicates and unfinished results.
datafiles = [os.path.join(data_dir, x) for x in os.listdir(data_dir) if 'urls' not in x and 'latest' not in x]
results = pd.concat([pd.read_excel(x) for x in datafiles])
results = results.drop_duplicates(subset=['sample_hash'])
results = results.loc[results['results'] != '[]']
results = results.loc[(results['lab_state'] == 'CO')]
print('Number of CO SC Labs results:', len(results))
# Read constants for processing.
try:
script_dir = os.path.dirname(os.path.abspath(__file__))
except:
script_dir = os.getcwd()
processing_config = os.path.join(script_dir, 'processing.json')
with open(processing_config, 'r') as f:
data = json.load(f)
nuisance_analytes = data['nuisance_analytes']
nuisance_columns = data['nuisance_columns']
# Drop all non-standard columns.
results.drop(columns=nuisance_columns, errors='ignore', inplace=True)
# FIXME: Standardize analytes.
# analytes = find_unique_analytes(results)
# analytes = list(set(analytes) - set(nuisance_analytes))
# analytes = sorted(list(analytes))
# results = standardize_results(results, analytes)
# Standardize state.
state = 'CO'
results['lab_state'] = results['lab_state'].fillna(state)
# results['producer_state'] = results['producer_state'].fillna(state)
# Standardize time.
results['date'] = pd.to_datetime(results['date_tested'], format='mixed', errors='coerce')
results['date'] = results['date'].apply(lambda x: pd.Timestamp(x).tz_localize(None) if pd.notnull(x) else x)
results = results.sort_values('date', na_position='last')
# Save the results.
outfile = 'D://data/cannabis_results/data/co/co-results-latest.xlsx'
outfile_csv = 'D://data/cannabis_results/data/co/co-results-latest.csv'
results.to_excel(outfile, index=False)
results.to_csv(outfile_csv, index=False)
print('Saved %i results for %s to Excel:' % (len(results), state), outfile)
print('Saved %i results for %s to CSV:' % (len(results), state), outfile_csv)
# Print out features.
features = {x: 'string' for x in results.columns}
print('Number of features:', len(features))
print('Features:', features)
# === Test ===
# [✓] Tested: 2024-08-15 by Keegan Skeate <keegan@cannlytics>
if __name__ == '__main__':
# Get all of the results.
analyze_results_co(data_dir=r'D:\data\california\results\datasets\sclabs')