cannabis_results / analysis /analyze_results.py
keeganskeate's picture
latest-2024-08-11 (#6)
d1ae506 verified
from typing import List
import pandas as pd
def calc_results_stats(
results: pd.DataFrame,
cannabinoid_keys: List[str] = None,
terpene_keys: List[str] = None,
cbd_key: str = 'cbd',
cbda_key: str = 'cbda',
thc_key: str = 'delta_9_thc',
thca_key: str = 'thca',
decarb: float = 0.877,
) -> pd.DataFrame:
"""Calculate statistics for the results."""
# Calculate total cannabinoids.
if cannabinoid_keys is not None:
results['total_cannabinoids'] = results[cannabinoid_keys].sum(axis=1)
results['total_thc'] = results[thc_key] + decarb * results[thca_key]
results['total_cbd'] = results[cbd_key] + decarb * results[cbda_key]
results['thc_to_cbd_ratio'] = results['total_thc'] / results['total_cbd']
# Calculate total terpenes.
if terpene_keys is not None:
results['total_terpenes'] = results[terpene_keys].sum(axis=1)
results['beta_pinene_to_d_limonene_ratio'] = (
results['beta_pinene'] / results['d_limonene']
)
# TODO: Add other terpene ratios.
# TODO: Identify mono and sesuiterpenes.
# results['monoterpene_to_sesquiterpene_ratio'] = (
# results['total_monoterpenes'] / results['total_sesquiterpenes']
# )
return results
def calc_aggregate_results_stats(
results: pd.DataFrame,
cannabinoid_keys: List[str] = None,
terpene_keys: List[str] = None,
) -> pd.DataFrame:
"""Calculate aggregate statistics for the results."""
def calculate_statistics(group: pd.DataFrame, name: str) -> pd.DataFrame:
"""Calculate mean, median, std, and percentiles for a given group."""
stats = group.describe(percentiles=[.25, .50, .75]).T
stats['period'] = name
stats = stats[['period', 'mean', '50%', 'std', '25%', '75%']].rename(
columns={'50%': 'median', '25%': 'percentile_25', '75%': 'percentile_75'})
return stats
# Create the timeseries.
results['date_tested'] = pd.to_datetime(results['date_tested'])
results.set_index('date_tested', inplace=True)
periods = {
'daily': results.resample('D'),
'weekly': results.resample('W'),
'monthly': results.resample('M'),
'quarterly': results.resample('Q'),
'yearly': results.resample('Y')
}
# Calculate statistics for each period.
all_stats = []
for period_name, period_group in periods.items():
if cannabinoid_keys:
cannabinoid_stats = calculate_statistics(period_group[cannabinoid_keys], period_name)
cannabinoid_stats['type'] = 'cannabinoid'
all_stats.append(cannabinoid_stats)
if terpene_keys:
terpene_stats = calculate_statistics(period_group[terpene_keys], period_name)
terpene_stats['type'] = 'terpene'
all_stats.append(terpene_stats)
# Return the statistics.
stats = pd.concat(all_stats).reset_index().rename(columns={'index': 'compound'})
return stats