|
|
|
|
|
from typing import List |
|
import pandas as pd |
|
|
|
|
|
def calc_results_stats( |
|
results: pd.DataFrame, |
|
cannabinoid_keys: List[str] = None, |
|
terpene_keys: List[str] = None, |
|
cbd_key: str = 'cbd', |
|
cbda_key: str = 'cbda', |
|
thc_key: str = 'delta_9_thc', |
|
thca_key: str = 'thca', |
|
decarb: float = 0.877, |
|
) -> pd.DataFrame: |
|
"""Calculate statistics for the results.""" |
|
|
|
if cannabinoid_keys is not None: |
|
results['total_cannabinoids'] = results[cannabinoid_keys].sum(axis=1) |
|
results['total_thc'] = results[thc_key] + decarb * results[thca_key] |
|
results['total_cbd'] = results[cbd_key] + decarb * results[cbda_key] |
|
results['thc_to_cbd_ratio'] = results['total_thc'] / results['total_cbd'] |
|
|
|
|
|
if terpene_keys is not None: |
|
results['total_terpenes'] = results[terpene_keys].sum(axis=1) |
|
results['beta_pinene_to_d_limonene_ratio'] = ( |
|
results['beta_pinene'] / results['d_limonene'] |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
return results |
|
|
|
def calc_aggregate_results_stats( |
|
results: pd.DataFrame, |
|
cannabinoid_keys: List[str] = None, |
|
terpene_keys: List[str] = None, |
|
) -> pd.DataFrame: |
|
"""Calculate aggregate statistics for the results.""" |
|
|
|
def calculate_statistics(group: pd.DataFrame, name: str) -> pd.DataFrame: |
|
"""Calculate mean, median, std, and percentiles for a given group.""" |
|
stats = group.describe(percentiles=[.25, .50, .75]).T |
|
stats['period'] = name |
|
stats = stats[['period', 'mean', '50%', 'std', '25%', '75%']].rename( |
|
columns={'50%': 'median', '25%': 'percentile_25', '75%': 'percentile_75'}) |
|
return stats |
|
|
|
|
|
results['date_tested'] = pd.to_datetime(results['date_tested']) |
|
results.set_index('date_tested', inplace=True) |
|
periods = { |
|
'daily': results.resample('D'), |
|
'weekly': results.resample('W'), |
|
'monthly': results.resample('M'), |
|
'quarterly': results.resample('Q'), |
|
'yearly': results.resample('Y') |
|
} |
|
|
|
|
|
all_stats = [] |
|
for period_name, period_group in periods.items(): |
|
if cannabinoid_keys: |
|
cannabinoid_stats = calculate_statistics(period_group[cannabinoid_keys], period_name) |
|
cannabinoid_stats['type'] = 'cannabinoid' |
|
all_stats.append(cannabinoid_stats) |
|
if terpene_keys: |
|
terpene_stats = calculate_statistics(period_group[terpene_keys], period_name) |
|
terpene_stats['type'] = 'terpene' |
|
all_stats.append(terpene_stats) |
|
|
|
|
|
stats = pd.concat(all_stats).reset_index().rename(columns={'index': 'compound'}) |
|
return stats |
|
|