cannabis_results / algorithms /get_results_wa.py
keeganskeate's picture
latest-2024-08-11 (#6)
d1ae506 verified
"""
Curate CCRS Lab Results
Copyright (c) 2023-2024 Cannlytics
Authors:
Keegan Skeate <https://github.com/keeganskeate>
Candace O'Sullivan-Sutherland <https://github.com/candy-o>
Created: 1/1/2023
Updated: 6/1/2024
License: CC-BY 4.0 <https://huggingface.co/datasets/cannlytics/cannabis_tests/blob/main/LICENSE>
Original author: Cannabis Data
Original license: MIT <https://github.com/cannabisdata/cannabisdata/blob/main/LICENSE>
Data Sources:
- [Public records request](https://portal.lcb.wa.gov/s/public-record-request-form)
"""
# Standard imports:
from datetime import datetime
import gc
import os
from typing import Optional
# External imports:
from cannlytics.data.ccrs import (
CCRS,
CCRS_ANALYTES,
CCRS_ANALYSES,
CCRS_DATASETS,
anonymize,
get_datafiles,
find_detections,
format_test_value,
save_dataset,
unzip_datafiles,
)
from cannlytics.utils import convert_to_numeric, camel_to_snake
import pandas as pd
def read_lab_results(
data_dir: str,
value_key: Optional[str] = 'TestValue',
) -> pd.DataFrame:
"""Read CCRS lab results."""
lab_results = pd.DataFrame()
lab_result_files = get_datafiles(data_dir, 'LabResult_')
fields = CCRS_DATASETS['lab_results']['fields']
parse_dates = CCRS_DATASETS['lab_results']['date_fields']
usecols = list(fields.keys()) + parse_dates
dtype = {k: v for k, v in fields.items() if v != 'datetime64'}
dtype[value_key] = 'string' # Hot-fix for `ValueError`.
for datafile in lab_result_files:
data = pd.read_csv(
datafile,
sep='\t',
encoding='utf-16',
engine='python',
parse_dates=parse_dates,
dtype=dtype,
usecols=usecols,
on_bad_lines='skip',
# DEV: Uncomment to make development quicker.
# nrows=1000,
)
lab_results = pd.concat([lab_results, data])
if 'TestValue' in lab_results.columns:
lab_results[value_key] = lab_results[value_key].apply(convert_to_numeric)
# lab_results = lab_results.assign(TestValue=values)
return lab_results
def format_result(
item_results,
manager: Optional[CCRS] = None,
drop: Optional[list] = []
) -> dict:
"""Format results for a lab sample."""
# Skip items with no lab results.
if item_results.empty:
return None
# Record item metadata and important results.
item = item_results.iloc[0].to_dict()
[item.pop(key) for key in drop]
entry = {
**item,
'delta_9_thc': format_test_value(item_results, 'delta_9_thc'),
'thca': format_test_value(item_results, 'thca'),
'total_thc': format_test_value(item_results, 'total_thc'),
'cbd': format_test_value(item_results, 'cbd'),
'cbda': format_test_value(item_results, 'cbda'),
'total_cbd': format_test_value(item_results, 'total_cbd'),
'moisture_content': format_test_value(item_results, 'moisture_content'),
'water_activity': format_test_value(item_results, 'water_activity'),
}
# Determine "Pass" or "Fail" status.
statuses = list(item_results['LabTestStatus'].unique())
if 'Fail' in statuses:
entry['status'] = 'Fail'
else:
entry['status'] = 'Pass'
# Augment the complete `results`.
entry_results = []
for _, item_result in item_results.iterrows():
test_name = item_result['TestName']
analyte = CCRS_ANALYTES[test_name]
try:
analysis = CCRS_ANALYSES[analyte['type']]
except KeyError:
if manager is not None:
manager.create_log('Unidentified analysis: ' + str(analyte['type']))
else:
print('Unidentified analysis:', analyte['type'])
analysis = analyte['type']
entry_results.append({
'analysis': analysis,
'key': analyte['key'],
'name': item_result['TestName'],
'units': analyte['units'],
'value': item_result['TestValue'],
})
entry['results'] = entry_results
# Determine detected contaminants.
entry['pesticides'] = find_detections(entry_results, 'pesticides')
entry['residual_solvents'] = find_detections(entry_results, 'residual_solvents')
entry['heavy_metals'] = find_detections(entry_results, 'heavy_metals')
# Return the entry.
return entry
def augment_lab_results(
manager: CCRS,
results: pd.DataFrame,
item_key: Optional[str] = 'InventoryId',
analysis_name: Optional[str] = 'TestName',
analysis_key: Optional[str] = 'TestValue',
verbose: Optional[str] = True,
) -> pd.DataFrame:
"""Format CCRS lab results to merge into another dataset."""
# Handle `TestName`'s that are not in known analytes.
results[analysis_name] = results[analysis_name].apply(
lambda x: x.replace('Pesticides - ', '').replace(' (ppm) (ppm)', '')
)
# Map `TestName` to `type` and `key`.
# Future work: Handle unidentified analyses. Ask ChatGPT?
test_names = list(results[analysis_name].unique())
known_analytes = list(CCRS_ANALYTES.keys())
missing = list(set(test_names) - set(known_analytes))
try:
assert len(missing) == 0
del test_names, known_analytes, missing
gc.collect()
except:
manager.create_log('Unidentified analytes: ' + ', '.join(missing))
raise ValueError(f'Unidentified analytes. Add missing analytes to `CCRS_ANALYTES`: {", ".join(missing)}')
# Augment lab results with standard analyses and analyte keys.
analyte_data = results[analysis_name].map(CCRS_ANALYTES).values.tolist()
results = results.join(pd.DataFrame(analyte_data))
results['type'] = results['type'].map(CCRS_ANALYSES)
results[item_key] = results[item_key].astype(str)
# Setup for iteration.
item_ids = list(results[item_key].unique())
drop = [analysis_name, analysis_key, 'LabTestStatus', 'key', 'type', 'units']
N = len(item_ids)
if verbose:
manager.create_log(f'Curating {N} items...')
manager.create_log('Estimated runtime: ' + str(round(N * 0.00011, 2)) + ' minutes')
# Return the curated lab results.
group = results.groupby(item_key).apply(format_result, drop=drop, manager=manager).dropna()
return pd.DataFrame(group.tolist())
def curate_ccrs_lab_results(
manager: CCRS,
data_dir: str,
stats_dir: str
) -> pd.DataFrame:
"""Curate CCRS lab results."""
# Start curating lab results.
manager.create_log('Curating lab results...')
start = datetime.now()
# Unzip all CCRS datafiles.
unzip_datafiles(data_dir)
# Read all lab results.
lab_results = read_lab_results(data_dir)
# Curate all lab results.
lab_results = augment_lab_results(manager, lab_results)
# Standardize the lab results.
# TODO: Add producer
columns = {
'ExternalIdentifier': 'lab_id',
'inventory_type': 'product_type',
'test_date': 'date_tested',
}
lab_results.rename(columns=columns, inplace=True)
# Anonymize the data.
# FIXME: This does not appear to be anonymizing `created_by`.
lab_results = anonymize(lab_results)
# Standardize the column names.
lab_results.rename(columns=lambda x: camel_to_snake(x), inplace=True)
# Save the curated lab results.
# TODO: Save a copy as `wa-lab-results-latest.csv` in the `data` directory.
timestamp = lab_results['created_date'].max().strftime('%Y-%m-%d')
lab_results_dir = os.path.join(stats_dir, 'lab_results')
outfile = save_dataset(lab_results, lab_results_dir, f'wa-lab-results-{timestamp}')
manager.create_log('Saved lab results: ' + str(outfile))
# Finish curating lab results.
end = datetime.now()
manager.create_log('✓ Finished curating lab results in ' + str(end - start))
return lab_results
# === Test ===
# [✓] Tested: 2024-07-15 by Keegan Skeate <keegan@cannlytics>
if __name__ == '__main__':
# Debug variables.
item_key = 'InventoryId'
analysis_name = 'TestName'
analysis_key = 'TestValue'
value_key = 'TestValue'
verbose = True
drop = []
# Initialize.
base = 'D://data/washington/'
stats_dir = 'D://data/washington/stats'
manager = CCRS()
# Curate lab results for each release.
releases = [
# 'CCRS PRR (8-4-23)', # Contains all prior releases.
# 'CCRS PRR (9-5-23)',
# 'CCRS PRR (10-2-23)',
# 'CCRS PRR (11-2-23)',
# 'CCRS PRR (12-2-23)',
# 'CCRS PRR (1-2-24)',
# 'CCRS PRR (2-2-24)',
# 'CCRS PRR (3-27-24)',
# 'CCRS PRR (4-2-24)',
# 'CCRS PRR (5-2-24)',
# 'CCRS PRR (6-2-24)',
'CCRS PRR (7-2-24)',
]
for release in releases:
data_dir = os.path.join(base, release, release)
try:
lab_results = curate_ccrs_lab_results(manager, data_dir, stats_dir)
manager.create_log('Curated %i WA lab results.' % len(lab_results))
except:
manager.create_log('Failed to curate WA lab results:' + data_dir)
# Aggregate lab results.
all_results = []
datafiles = os.listdir(os.path.join(stats_dir, 'lab_results'))
datafiles = [os.path.join(stats_dir, 'lab_results', x) for x in datafiles if \
not x.startswith('~') and \
not 'aggregate' in x and \
not 'latest' in x and \
not 'inventory' in x]
for datafile in datafiles:
data = pd.read_excel(datafile)
all_results.append(data)
results = pd.concat(all_results)
results.drop_duplicates(subset=['lab_result_id', 'updated_date'], inplace=True)
results.sort_values(by=['created_date'], inplace=True)
print('Total number of results:', len(results))
outfile = os.path.join(stats_dir, 'lab_results', 'wa-lab-results-aggregate.xlsx')
results.to_excel(outfile, index=False)
manager.create_log('Saved aggregate lab results to: ' + outfile)