cannabis_results / algorithms /get_results_ct.py
keeganskeate's picture
latest-2024-08-11 (#6)
d1ae506 verified
"""
Cannabis Tests | Get Connecticut Test Result Data
Copyright (c) 2023 Cannlytics
Authors:
Keegan Skeate <https://github.com/keeganskeate>
Created: 4/8/2023
Updated: 7/3/2023
License: CC-BY 4.0 <https://huggingface.co/datasets/cannlytics/cannabis_tests/blob/main/LICENSE>
Data Source:
- Connecticut Medical Marijuana Brand Registry
URL: <https://data.ct.gov/Health-and-Human-Services/Medical-Marijuana-Brand-Registry/egd5-wb6r/data>
"""
# Standard imports:
from datetime import datetime
import os
import requests
from typing import Optional
# External imports:
import cannlytics
from cannlytics.utils import convert_to_numeric
import pandas as pd
# Connecticut lab results API URL.
CT_RESULTS_URL = 'https://data.ct.gov/api/views/egd5-wb6r/rows.json'
# Connecticut lab results fields.
CT_FIELDS = {
'sid': 'id',
'id': 'lab_id',
'position': None,
'created_at': None,
'created_meta': None,
'updated_at': 'data_refreshed_date',
'updated_meta': None,
'meta': None,
'brand_name': 'product_name',
'dosage_form': 'product_type',
'producer': 'producer',
'product_image': 'image_url',
'label_image': 'images',
'lab_analysis': 'lab_results_url',
'approval_date': 'date_tested',
'registration_number': 'traceability_id',
}
CT_CANNABINOIDS = {
'cbg': 'cbg',
'cbg_a': 'cbga',
'cannabavarin_cbdv': 'cbdv',
'cannabichromene_cbc': 'cbc',
'cannbinol_cbn': 'cbn',
'tetrahydrocannabivarin_thcv': 'thcv',
'tetrahydrocannabinol_thc': 'thc',
'tetrahydrocannabinol_acid_thca': 'thca',
'cannabidiols_cbd': 'cbd',
'cannabidiol_acid_cbda': 'cbda',
}
CT_TERPENES = {
'a_pinene': 'alpha_pinene',
'b_myrcene': 'beta_myrcene',
'b_caryophyllene': 'beta_caryophyllene',
'b_pinene': 'beta_pinene',
'limonene': 'limonene',
'ocimene': 'ocimene',
'linalool_lin': 'linalool_lin',
'humulene_hum': 'humulene_hum',
'a_bisabolol': 'alpha_bisabolol',
'a_phellandrene': 'alpha_phellandrene',
'a_terpinene': 'alpha_terpinene',
'b_eudesmol': 'beta_eudesmol',
'b_terpinene': 'beta_terpinene',
'fenchone': 'fenchone',
'pulegol': 'pulegol',
'borneol': 'borneol',
'isopulegol': 'isopulegol',
'carene': 'carene',
'camphene': 'camphene',
'camphor': 'camphor',
'caryophyllene_oxide': 'caryophyllene_oxide',
'cedrol': 'cedrol',
'eucalyptol': 'eucalyptol',
'geraniol': 'geraniol',
'guaiol': 'guaiol',
'geranyl_acetate': 'geranyl_acetate',
'isoborneol': 'isoborneol',
'menthol': 'menthol',
'l_fenchone': 'l_fenchone',
'nerol': 'nerol',
'sabinene': 'sabinene',
'terpineol': 'terpineol',
'terpinolene': 'terpinolene',
'trans_b_farnesene': 'trans_beta_farnesene',
'valencene': 'valencene',
'a_cedrene': 'alpha_cedrene',
'a_farnesene': 'alpha_farnesene',
'b_farnesene': 'beta_farnesene',
'cis_nerolidol': 'cis_nerolidol',
'fenchol': 'fenchol',
'trans_nerolidol': 'trans_nerolidol'
}
def flatten_results(x):
"""Flatten the results."""
results = []
for name, analyte in CT_CANNABINOIDS.items():
# print(analyte, x[name])
results.append({
'key': analyte,
'name': name,
'value': convert_to_numeric(x[name]),
'units': 'percent',
'analysis': 'cannabinoids',
})
for name, analyte in CT_TERPENES.items():
# print(analyte, x[name])
results.append({
'key': analyte,
'name': name,
'value': convert_to_numeric(x[name]),
'units': 'percent',
'analysis': 'terpenes',
})
return results
def get_results_ct(url: str = CT_RESULTS_URL) -> pd.DataFrame:
"""Get all of the Connecticut test results.
Args:
url (str): The URL to the CSV data.
Returns:
df (pd.DataFrame): A Pandas DataFrame of the test results.
"""
# Get the data from the OpenData API.
response = requests.get(url)
if response.status_code == 200:
json_data = response.json()
metadata = json_data['meta']
header = metadata['view']['columns']
headers = [h['name'] for h in header]
columns = [cannlytics.utils.snake_case(h) for h in headers]
rows = json_data['data']
df = pd.DataFrame(rows, columns=columns)
else:
print('Failed to fetch CT results. Status code:', response.status_code)
# FIXME: Standardize the results.
# Note: The results do not match the COAs!!!
df['results'] = df.apply(flatten_results, axis=1)
# Drop unnecessary columns.
drop_columns = ['meta', 'position', 'created_at', 'created_meta',
'updated_at', 'updated_meta']
drop_columns += list(CT_CANNABINOIDS.keys()) + list(CT_TERPENES.keys())
df.drop(columns=drop_columns, inplace=True)
# Rename the columns.
df.rename(columns=CT_FIELDS, inplace=True)
# TODO: Extract product_size, serving_size, servings_per_package, sample_weight
# from dosage_form and standardize product type.
# TODO: Format COA URLs.
# coa_urls
# Create the directory if it doesn't exist.
if not os.path.exists(data_dir): os.makedirs(data_dir)
# Save the results to Excel.
date = datetime.now().isoformat()[:10]
datafile = f'{data_dir}/ct-lab-results-{date}.xlsx'
try:
cannlytics.utils.to_excel_with_style(df, datafile)
except:
df.to_excel(datafile)
print('Connecticut lab results archived:', datafile)
return df
def download_pdfs_ct(
df: pd.DataFrame,
download_path: str,
column_name: Optional[str] = 'lab_results_url',
id_column: Optional[str] = 'id',
verbose: Optional[bool] = True,
) -> None:
"""
Downloads all PDFs from a specified column in a Pandas DataFrame.
Args:
df (pandas.DataFrame): The input DataFrame containing the URLs of the PDFs.
column_name (str): The name of the column containing the PDF URLs.
download_path (str): The path to the directory where the PDFs will be downloaded.
"""
for _, row in df.iterrows():
pdf_url = row[column_name]
if isinstance(pdf_url, list):
pdf_url = pdf_url[0]
# Create the filename from the ID.
filename = row[id_column]
if not filename.endswith('.pdf'):
filename = filename + '.pdf'
# Create the local file path for downloading the PDF.
# Continue if the PDF is already downloaded.
outfile = os.path.join(download_path, filename)
if os.path.isfile(outfile) or pdf_url is None:
continue
# Download the PDF.
try:
response = requests.get(pdf_url)
except:
print(f'Failed to download PDF: {pdf_url}')
continue
if response.status_code == 200:
with open(outfile, 'wb') as file:
file.write(response.content)
if verbose:
print(f'Downloaded PDF: {outfile}.')
else:
print(f'Failed to download PDF {filename}. Status code:', response.status_code)
# === Test ===
# [✓] Tested: 2024-04-14 by Keegan Skeate <keegan@cannlytics>
if __name__ == '__main__':
# Command line usage.
import argparse
try:
parser = argparse.ArgumentParser()
parser.add_argument('--pdf_dir', dest='pdf_dir', type=str)
parser.add_argument('--data_dir', dest='data_dir', type=str)
args = parser.parse_args()
except SystemExit:
args = {}
# Specify where your data lives.
DATA_DIR = 'D://data/connecticut/results'
PDF_DIR = 'D://data/connecticut/results/pdfs'
stats_dir = 'D://data/connecticut/results/datasets'
# Set the destination for the PDFs.
data_dir = args.get('data_dir', DATA_DIR)
pdf_dir = args.get('pdf_dir', os.path.join(data_dir, 'pdfs'))
# Get the test results.
print('Getting Connecticut test results...')
results = get_results_ct()
# Download the PDFs.
print('Downloading PDFs...')
if not os.path.exists(pdf_dir): os.makedirs(pdf_dir)
download_pdfs_ct(results, pdf_dir)
# Save the results to Excel.
date = datetime.now().isoformat()[:10]
if not os.path.exists(stats_dir): os.makedirs(stats_dir)
results.to_excel(f'{stats_dir}/ct-lab-results-{date}.xlsx', index=False)
results.to_csv(f'{stats_dir}/ct-lab-results-latest.csv', index=False)
print('Connecticut lab results archived:', stats_dir)
# TODO: Integrate with `analyte_results_ct.py`.
# FIXME: Upload results to Firestore.
# FIXME: Upload PDFs to Google Cloud Storage.
# FIXME: Upload datafiles to Google Cloud Storage.