|
""" |
|
Cannabis Tests | Get Connecticut Test Result Data |
|
Copyright (c) 2023 Cannlytics |
|
|
|
Authors: |
|
Keegan Skeate <https://github.com/keeganskeate> |
|
Created: 4/8/2023 |
|
Updated: 7/3/2023 |
|
License: CC-BY 4.0 <https://huggingface.co/datasets/cannlytics/cannabis_tests/blob/main/LICENSE> |
|
|
|
Data Source: |
|
|
|
- Connecticut Medical Marijuana Brand Registry |
|
URL: <https://data.ct.gov/Health-and-Human-Services/Medical-Marijuana-Brand-Registry/egd5-wb6r/data> |
|
|
|
""" |
|
|
|
from datetime import datetime |
|
import os |
|
import requests |
|
from typing import Optional |
|
|
|
|
|
import cannlytics |
|
from cannlytics.utils import convert_to_numeric |
|
import pandas as pd |
|
|
|
|
|
|
|
CT_RESULTS_URL = 'https://data.ct.gov/api/views/egd5-wb6r/rows.json' |
|
|
|
|
|
CT_FIELDS = { |
|
'sid': 'id', |
|
'id': 'lab_id', |
|
'position': None, |
|
'created_at': None, |
|
'created_meta': None, |
|
'updated_at': 'data_refreshed_date', |
|
'updated_meta': None, |
|
'meta': None, |
|
'brand_name': 'product_name', |
|
'dosage_form': 'product_type', |
|
'producer': 'producer', |
|
'product_image': 'image_url', |
|
'label_image': 'images', |
|
'lab_analysis': 'lab_results_url', |
|
'approval_date': 'date_tested', |
|
'registration_number': 'traceability_id', |
|
} |
|
CT_CANNABINOIDS = { |
|
'cbg': 'cbg', |
|
'cbg_a': 'cbga', |
|
'cannabavarin_cbdv': 'cbdv', |
|
'cannabichromene_cbc': 'cbc', |
|
'cannbinol_cbn': 'cbn', |
|
'tetrahydrocannabivarin_thcv': 'thcv', |
|
'tetrahydrocannabinol_thc': 'thc', |
|
'tetrahydrocannabinol_acid_thca': 'thca', |
|
'cannabidiols_cbd': 'cbd', |
|
'cannabidiol_acid_cbda': 'cbda', |
|
} |
|
CT_TERPENES = { |
|
'a_pinene': 'alpha_pinene', |
|
'b_myrcene': 'beta_myrcene', |
|
'b_caryophyllene': 'beta_caryophyllene', |
|
'b_pinene': 'beta_pinene', |
|
'limonene': 'limonene', |
|
'ocimene': 'ocimene', |
|
'linalool_lin': 'linalool_lin', |
|
'humulene_hum': 'humulene_hum', |
|
'a_bisabolol': 'alpha_bisabolol', |
|
'a_phellandrene': 'alpha_phellandrene', |
|
'a_terpinene': 'alpha_terpinene', |
|
'b_eudesmol': 'beta_eudesmol', |
|
'b_terpinene': 'beta_terpinene', |
|
'fenchone': 'fenchone', |
|
'pulegol': 'pulegol', |
|
'borneol': 'borneol', |
|
'isopulegol': 'isopulegol', |
|
'carene': 'carene', |
|
'camphene': 'camphene', |
|
'camphor': 'camphor', |
|
'caryophyllene_oxide': 'caryophyllene_oxide', |
|
'cedrol': 'cedrol', |
|
'eucalyptol': 'eucalyptol', |
|
'geraniol': 'geraniol', |
|
'guaiol': 'guaiol', |
|
'geranyl_acetate': 'geranyl_acetate', |
|
'isoborneol': 'isoborneol', |
|
'menthol': 'menthol', |
|
'l_fenchone': 'l_fenchone', |
|
'nerol': 'nerol', |
|
'sabinene': 'sabinene', |
|
'terpineol': 'terpineol', |
|
'terpinolene': 'terpinolene', |
|
'trans_b_farnesene': 'trans_beta_farnesene', |
|
'valencene': 'valencene', |
|
'a_cedrene': 'alpha_cedrene', |
|
'a_farnesene': 'alpha_farnesene', |
|
'b_farnesene': 'beta_farnesene', |
|
'cis_nerolidol': 'cis_nerolidol', |
|
'fenchol': 'fenchol', |
|
'trans_nerolidol': 'trans_nerolidol' |
|
} |
|
|
|
|
|
def flatten_results(x): |
|
"""Flatten the results.""" |
|
results = [] |
|
for name, analyte in CT_CANNABINOIDS.items(): |
|
|
|
results.append({ |
|
'key': analyte, |
|
'name': name, |
|
'value': convert_to_numeric(x[name]), |
|
'units': 'percent', |
|
'analysis': 'cannabinoids', |
|
}) |
|
for name, analyte in CT_TERPENES.items(): |
|
|
|
results.append({ |
|
'key': analyte, |
|
'name': name, |
|
'value': convert_to_numeric(x[name]), |
|
'units': 'percent', |
|
'analysis': 'terpenes', |
|
}) |
|
return results |
|
|
|
|
|
def get_results_ct(url: str = CT_RESULTS_URL) -> pd.DataFrame: |
|
"""Get all of the Connecticut test results. |
|
Args: |
|
url (str): The URL to the CSV data. |
|
Returns: |
|
df (pd.DataFrame): A Pandas DataFrame of the test results. |
|
""" |
|
|
|
|
|
response = requests.get(url) |
|
if response.status_code == 200: |
|
json_data = response.json() |
|
metadata = json_data['meta'] |
|
header = metadata['view']['columns'] |
|
headers = [h['name'] for h in header] |
|
columns = [cannlytics.utils.snake_case(h) for h in headers] |
|
rows = json_data['data'] |
|
df = pd.DataFrame(rows, columns=columns) |
|
else: |
|
print('Failed to fetch CT results. Status code:', response.status_code) |
|
|
|
|
|
|
|
df['results'] = df.apply(flatten_results, axis=1) |
|
|
|
|
|
drop_columns = ['meta', 'position', 'created_at', 'created_meta', |
|
'updated_at', 'updated_meta'] |
|
drop_columns += list(CT_CANNABINOIDS.keys()) + list(CT_TERPENES.keys()) |
|
df.drop(columns=drop_columns, inplace=True) |
|
|
|
|
|
df.rename(columns=CT_FIELDS, inplace=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not os.path.exists(data_dir): os.makedirs(data_dir) |
|
|
|
|
|
date = datetime.now().isoformat()[:10] |
|
datafile = f'{data_dir}/ct-lab-results-{date}.xlsx' |
|
try: |
|
cannlytics.utils.to_excel_with_style(df, datafile) |
|
except: |
|
df.to_excel(datafile) |
|
print('Connecticut lab results archived:', datafile) |
|
return df |
|
|
|
|
|
def download_pdfs_ct( |
|
df: pd.DataFrame, |
|
download_path: str, |
|
column_name: Optional[str] = 'lab_results_url', |
|
id_column: Optional[str] = 'id', |
|
verbose: Optional[bool] = True, |
|
) -> None: |
|
""" |
|
Downloads all PDFs from a specified column in a Pandas DataFrame. |
|
Args: |
|
df (pandas.DataFrame): The input DataFrame containing the URLs of the PDFs. |
|
column_name (str): The name of the column containing the PDF URLs. |
|
download_path (str): The path to the directory where the PDFs will be downloaded. |
|
""" |
|
for _, row in df.iterrows(): |
|
pdf_url = row[column_name] |
|
if isinstance(pdf_url, list): |
|
pdf_url = pdf_url[0] |
|
|
|
|
|
filename = row[id_column] |
|
if not filename.endswith('.pdf'): |
|
filename = filename + '.pdf' |
|
|
|
|
|
|
|
outfile = os.path.join(download_path, filename) |
|
if os.path.isfile(outfile) or pdf_url is None: |
|
continue |
|
|
|
|
|
try: |
|
response = requests.get(pdf_url) |
|
except: |
|
print(f'Failed to download PDF: {pdf_url}') |
|
continue |
|
if response.status_code == 200: |
|
with open(outfile, 'wb') as file: |
|
file.write(response.content) |
|
if verbose: |
|
print(f'Downloaded PDF: {outfile}.') |
|
else: |
|
print(f'Failed to download PDF {filename}. Status code:', response.status_code) |
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
import argparse |
|
try: |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--pdf_dir', dest='pdf_dir', type=str) |
|
parser.add_argument('--data_dir', dest='data_dir', type=str) |
|
args = parser.parse_args() |
|
except SystemExit: |
|
args = {} |
|
|
|
|
|
DATA_DIR = 'D://data/connecticut/results' |
|
PDF_DIR = 'D://data/connecticut/results/pdfs' |
|
stats_dir = 'D://data/connecticut/results/datasets' |
|
|
|
|
|
data_dir = args.get('data_dir', DATA_DIR) |
|
pdf_dir = args.get('pdf_dir', os.path.join(data_dir, 'pdfs')) |
|
|
|
|
|
print('Getting Connecticut test results...') |
|
results = get_results_ct() |
|
|
|
|
|
print('Downloading PDFs...') |
|
if not os.path.exists(pdf_dir): os.makedirs(pdf_dir) |
|
download_pdfs_ct(results, pdf_dir) |
|
|
|
|
|
date = datetime.now().isoformat()[:10] |
|
if not os.path.exists(stats_dir): os.makedirs(stats_dir) |
|
results.to_excel(f'{stats_dir}/ct-lab-results-{date}.xlsx', index=False) |
|
results.to_csv(f'{stats_dir}/ct-lab-results-latest.csv', index=False) |
|
print('Connecticut lab results archived:', stats_dir) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|