cannabis_licenses / algorithms /get_licenses_mo.py
keeganskeate's picture
cannabis-licenses-2023-08-13 (#5)
c0464cb
raw
history blame
8.84 kB
"""
Cannabis Licenses | Get Missouri Licenses
Copyright (c) 2023 Cannlytics
Authors:
Keegan Skeate <https://github.com/keeganskeate>
Candace O'Sullivan-Sutherland <https://github.com/candy-o>
Created: 4/26/2023
Updated: 8/13/2023
License: <https://github.com/cannlytics/cannlytics/blob/main/LICENSE>
Description:
Collect Missouri cannabis license data.
Requirements:
The script leverages Google Maps to attempt to geocode license
addresses. Ensure that you have a `.env` file with a valid
Google Maps API specified as `GOOGLE_MAPS_API_KEY`.
Command-line Usage:
python get_licenses_mo.py --data_dir <DATA_DIR> --env <ENV_FILE>
Data Source:
- Missouri Medical Cannabis Licenses
URL: <https://health.mo.gov/safety/medical-marijuana/licensed-facilities.php>
"""
# Standard imports:
from datetime import datetime
import os
import re
from typing import Optional
# External imports:
from bs4 import BeautifulSoup
from cannlytics.data.gis import geocode_addresses
from dotenv import dotenv_values
import numpy as np
import pandas as pd
import requests
import zipcodes
# Specify where your data lives.
DATA_DIR = '../data/mo'
ENV_FILE = '../../../.env'
# Specify state-specific constants.
STATE = 'MO'
MISSOURI = {
'licensing_authority_id': 'MDHSS',
'licensing_authority': 'Missouri Department of Health and Senior Services',
'licenses_url': 'https://health.mo.gov/safety/cannabis/licensed-facilities.php',
'columns': {
'Medical': 'medical',
'Comprehensive': 'adult_use',
'Approved to Operate': 'license_status',
'License \nNumber': 'license_number',
'Entity Name': 'business_legal_name',
'City': 'premise_city',
'State': 'premise_state',
'Postal Code': 'premise_zip_code',
' Contact \nInformation 1': 'first_name',
'Contact \nInformation 1': 'first_name',
'Contact \nInformation 2': 'last_name',
'Contact \nPhone': 'business_phone'
},
'drop': ['first_name', 'last_name'],
}
def format_phone_number(x):
"""Format phone numbers as ###-###-####."""
digits = re.sub(r'\D', '', x)
return '{}-{}-{}'.format(digits[:3], digits[3:6], digits[6:])
def get_gis_data(df: pd.DataFrame, api_key: str) -> pd.DataFrame:
"""Get GIS data."""
drop_cols = ['state', 'state_name', 'address', 'formatted_address']
rename_cols = {
'county': 'premise_county',
'latitude': 'premise_latitude',
'longitude': 'premise_longitude'
}
df = geocode_addresses(df, api_key=api_key, address_field='address')
get_city = lambda x: x.split(', ')[1].split(',')[0] if STATE in str(x) else x
df['premise_city'] = df['formatted_address'].apply(get_city)
df.drop(columns=drop_cols, inplace=True)
return df.rename(columns=rename_cols)
def get_licenses_mo(
data_dir: Optional[str] = None,
env_file: Optional[str] = '.env',
):
"""Get Missouri cannabis license data."""
# Load the environment variables.
config = dotenv_values(env_file)
google_maps_api_key = config.get('GOOGLE_MAPS_API_KEY')
if google_maps_api_key is None:
print('Proceeding without `GOOGLE_MAPS_API_KEY`.')
# Create the download directory if it doesn't exist.
download_dir = os.path.join(data_dir, '.datasets')
if not os.path.exists(download_dir):
os.makedirs(download_dir)
# Get the licenses website content.
url = MISSOURI['licenses_url']
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
# Find all workbook links on the website.
links = soup.find_all('a')
xlsx_links = [x for x in links if x.get('href').endswith('.xlsx')]
# Download the files to the download directory.
datafiles = []
base = 'https://health.mo.gov/safety/cannabis/xls/'
for link in xlsx_links:
file_url = base + link.get('href').split('/')[-1]
file_name = os.path.join(download_dir, os.path.basename(file_url))
with open(file_name, 'wb') as file:
response = requests.get(file_url)
file.write(response.content)
datafiles.append(file_name)
# Open each datafile and extract the data.
licenses = []
for datafile in datafiles:
# Get the license type from the filename.
license_type = datafile.split('\\')[-1].replace('.xlsx', '') \
.replace('licensed-', '') \
.replace('-facilities', '')
# Open the workbook.
data = pd.read_excel(datafile, skiprows=1)
# Rename columns.
data.rename(columns=MISSOURI['columns'], inplace=True)
# Replace non-NaN columns with True and NaN columns with False.
data['license_status'] = data['license_status'].notna() \
.map({True: 'Active', False: 'Inactive'})
# Combine medical / adult_use into `license_designation`.
try:
data['medical'] = data['medical'].notna().map({True: True, False: False})
data['adult_use'] = data['adult_use'].notna().map({True: True, False: False})
conditions = [
(data['medical'] & data['adult_use']),
(data['medical']),
(data['adult_use'])
]
choices = [
'medical and adult-use',
'medical',
'adult-use'
]
data['license_designation'] = np.select(conditions, choices, default=None)
except KeyError:
data['license_designation'] = 'adult-use'
# Combine owner name columns.
data['business_owner_name'] = data['first_name'].str.cat(
data['last_name'],
sep=' ',
)
# Clean the phone numbers.
data['business_phone'] = data['business_phone'].apply(str).apply(format_phone_number)
# Drop unused columns.
unnamed = [x for x in data.columns if re.match('^Unnamed', x)]
to_drop = MISSOURI['drop'] + unnamed
data.drop(to_drop, axis=1, inplace=True)
# Augment GIS data.
data['address'] = data['business_legal_name'] + ', ' + data['premise_city'] + ', ' + data['premise_state'] + ' ' + data['premise_zip_code'].astype(str)
data = get_gis_data(data, google_maps_api_key)
# Get the county.
get_county = lambda x: zipcodes.matching(x)[0]['county']
data['county'] = data['premise_zip_code'].astype(str).apply(get_county)
# Standardize the license data.
data = data.assign(
id=data['license_number'].astype(str),
business_dba_name=data['business_legal_name'],
licensing_authority_id=MISSOURI['licensing_authority_id'],
licensing_authority=MISSOURI['licensing_authority'],
premise_state=STATE,
license_status_date=None,
license_type=license_type,
license_term=None,
issue_date=None,
expiration_date=None,
business_structure=None,
activity=None,
parcel_number=None,
business_image_url=None,
)
# Define metadata.
data['data_refreshed_date'] = datetime.now().isoformat()
# Sort the columns in alphabetical order
data.sort_index(axis=1, inplace=True)
# Save the data.
if data_dir is not None:
if not os.path.exists(data_dir):
os.makedirs(data_dir)
date = datetime.now().isoformat()[:10]
outfile = f'{data_dir}/{license_type}-{STATE.lower()}-{date}.csv'
data.to_csv(outfile, index=False)
# Record the licenses.
licenses.append(data)
# Save all of the licenses.
licenses = pd.concat(licenses)
if data_dir is not None:
date = datetime.now().isoformat()[:10]
licenses.to_csv(f'{data_dir}/licenses-{STATE.lower()}-{date}.csv', index=False)
licenses.to_csv(f'{data_dir}/licenses-{STATE.lower()}-latest.csv', index=False)
# Return the licenses.
return licenses
# === Test ===
# [✓] Tested: 2023-08-13 by Keegan Skeate <keegan@cannlytics>
if __name__ == '__main__':
# Support command line usage.
import argparse
try:
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('--d', dest='data_dir', type=str)
arg_parser.add_argument('--data_dir', dest='data_dir', type=str)
arg_parser.add_argument('--env', dest='env_file', type=str)
args = arg_parser.parse_args()
except SystemExit:
args = {'data_dir': DATA_DIR, 'env_file': ENV_FILE}
# Get licenses, saving them to the specified directory.
data_dir = args.get('d', args.get('data_dir'))
env_file = args.get('env_file')
data = get_licenses_mo(data_dir, env_file=env_file)