cannabis_licenses / algorithms /get_licenses_co.py
keeganskeate's picture
cannabis-licenses-2023-08-13 (#5)
c0464cb
raw
history blame
8.8 kB
"""
Cannabis Licenses | Get Colorado Licenses
Copyright (c) 2022 Cannlytics
Authors:
Keegan Skeate <https://github.com/keeganskeate>
Candace O'Sullivan-Sutherland <https://github.com/candy-o>
Created: 9/29/2022
Updated: 9/20/2023
License: <https://github.com/cannlytics/cannlytics/blob/main/LICENSE>
Description:
Collect Colorado cannabis license data.
Data Source:
- Colorado Department of Revenue | Marijuana Enforcement Division
URL: <https://sbg.colorado.gov/med/licensed-facilities>
"""
# Standard imports.
from datetime import datetime
import os
from time import sleep
from typing import Optional
# External imports.
from bs4 import BeautifulSoup
from cannlytics.data.data import load_google_sheet
from cannlytics.data.gis import search_for_address
from dotenv import dotenv_values
import pandas as pd
import requests
# Specify where your data lives.
DATA_DIR = '../data/co'
ENV_FILE = '../../../.env'
# Specify state-specific constants.
STATE = 'CO'
COLORADO = {
'licensing_authority_id': 'MED',
'licensing_authority': 'Colorado Marijuana Enforcement Division',
'licenses_url': 'https://sbg.colorado.gov/med/licensed-facilities',
'licenses': {
'columns': {
'LicenseNumber': 'license_number',
'FacilityName': 'business_legal_name',
'DBA': 'business_dba_name',
'City': 'premise_city',
'ZipCode': 'premise_zip_code',
'DateUpdated': 'data_refreshed_date',
'Licensee Name ': 'business_legal_name',
'License # ': 'license_number',
'City ': 'premise_city',
'Zip': 'premise_zip_code',
},
'drop_columns': [
'FacilityType', # This causes an error with `license_type`.
'Potency',
'Solvents',
'Microbial',
'Pesticides',
'Mycotoxin',
'Elemental Impurities',
'Water Activity'
]
}
}
def get_licenses_co(
data_dir: Optional[str] = None,
env_file: Optional[str] = '.env',
):
"""Get Colorado cannabis license data."""
# Get the licenses webpage.
url = COLORADO['licenses_url']
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
# Get the Google Sheets for each license type.
docs = {}
links = soup.find_all('a')
for link in links:
try:
href = link['href']
except KeyError:
pass
if 'docs.google' in href:
docs[link.text] = href
# Download each "Medical" and "Retail" Google Sheet.
licenses = pd.DataFrame()
license_designations = ['Medical', 'Retail']
columns=COLORADO['licenses']['columns']
drop_columns=COLORADO['licenses']['drop_columns']
for license_type, doc in docs.items():
for license_designation in license_designations:
license_data = load_google_sheet(doc, license_designation)
license_data['license_type'] = license_type
license_data['license_designation'] = license_designation
license_data.rename(columns=columns, inplace=True)
license_data.drop(columns=drop_columns, inplace=True, errors='ignore')
licenses = pd.concat([licenses, license_data])
sleep(0.22)
# Standardize the license data.
licenses = licenses.assign(
id=licenses['license_number'],
license_status=None,
licensing_authority_id=COLORADO['licensing_authority_id'],
licensing_authority=COLORADO['licensing_authority'],
license_designation='Adult-Use',
premise_state=STATE,
license_status_date=None,
license_term=None,
issue_date=None,
expiration_date=None,
business_owner_name=None,
business_structure=None,
activity=None,
parcel_number=None,
business_phone=None,
business_email=None,
business_image_url=None,
)
# Fill empty DBA names and strip trailing whitespace.
licenses.loc[licenses['business_dba_name'] == '', 'business_dba_name'] = licenses['business_legal_name']
licenses.business_dba_name.fillna(licenses.business_legal_name, inplace=True)
licenses.business_legal_name.fillna(licenses.business_dba_name, inplace=True)
licenses = licenses.loc[~licenses.business_dba_name.isna()]
licenses.business_dba_name = licenses.business_dba_name.apply(lambda x: x.strip())
licenses.business_legal_name = licenses.business_legal_name.apply(lambda x: x.strip())
# Optional: Turn all capital case to title case.
# Clean zip code column.
licenses['premise_zip_code'] = licenses['premise_zip_code'].apply(
lambda x: str(round(x)) if pd.notnull(x) else x
)
licenses.loc[licenses['premise_zip_code'].isnull(), 'premise_zip_code'] = ''
# Search for address for each retail license.
# Only search for a query once, then re-use the response.
# Note: There is probably a much, much more efficient way to do this!!!
config = dotenv_values(env_file)
api_key = config['GOOGLE_MAPS_API_KEY']
cols = ['business_dba_name', 'premise_city', 'premise_state', 'premise_zip_code']
retailers = licenses.loc[licenses['license_type'] == 'Stores'].copy()
retailers['query'] = retailers.loc[:, cols].apply(
lambda row: ', '.join(row.values.astype(str)),
axis=1,
)
queries = {}
fields = [
'formatted_address',
'formatted_phone_number',
'geometry/location/lat',
'geometry/location/lng',
'website',
]
retailers = retailers.reset_index(drop=True)
retailers = retailers.assign(
premise_street_address=None,
premise_county=None,
premise_latitude=None,
premise_longitude=None,
business_website=None,
business_phone=None,
)
for index, row in retailers.iterrows():
query = row['query']
gis_data = queries.get(query)
if gis_data is None:
try:
gis_data = search_for_address(query, api_key=api_key, fields=fields)
except:
gis_data = {}
queries[query] = gis_data
retailers.iat[index, retailers.columns.get_loc('premise_street_address')] = gis_data.get('street')
retailers.iat[index, retailers.columns.get_loc('premise_county')] = gis_data.get('county')
retailers.iat[index, retailers.columns.get_loc('premise_latitude')] = gis_data.get('latitude')
retailers.iat[index, retailers.columns.get_loc('premise_longitude')] = gis_data.get('longitude')
retailers.iat[index, retailers.columns.get_loc('business_website')] = gis_data.get('website')
retailers.iat[index, retailers.columns.get_loc('business_phone')] = gis_data.get('formatted_phone_number')
# Clean-up after getting GIS data.
retailers.drop(columns=['query'], inplace=True)
# TODO: Merge retailer fields with licenses.
new_fields = [
'license_number',
'premise_street_address',
'premise_county',
'premise_latitude',
'premise_longitude',
'business_website',
'business_phone'
]
licenses = pd.merge(licenses, retailers[new_fields], how='left', on='license_number')
licenses.loc[licenses['business_phone_y'].notna(), 'business_phone_x'] = licenses['business_phone_y']
licenses.drop(columns=['business_phone_y'], inplace=True)
licenses.rename(columns={'business_phone_x': 'business_phone'}, inplace=True)
# Save and return the data.
if data_dir is not None:
if not os.path.exists(data_dir): os.makedirs(data_dir)
timestamp = datetime.now().isoformat()[:19].replace(':', '-')
licenses.to_csv(f'{data_dir}/licenses-{STATE.lower()}-{timestamp}.csv', index=False)
licenses.to_csv(f'{data_dir}/licenses-{STATE.lower()}-latest.csv', index=False)
retailers.to_csv(f'{data_dir}/retailers-{STATE.lower()}-{timestamp}.csv', index=False)
return licenses
# === Test ===
# [✓] Tested: 2023-09-20 by Keegan Skeate <keegan@cannlytics>
if __name__ == '__main__':
# Support command line usage.
import argparse
try:
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('--d', dest='data_dir', type=str)
arg_parser.add_argument('--data_dir', dest='data_dir', type=str)
arg_parser.add_argument('--env', dest='env_file', type=str)
args = arg_parser.parse_args()
except SystemExit:
args = {'d': DATA_DIR, 'env_file': ENV_FILE}
# Get licenses, saving them to the specified directory.
data_dir = args.get('d', args.get('data_dir'))
env_file = args.get('env_file')
data = get_licenses_co(data_dir, env_file=env_file)