|
""" |
|
Cannabis Licenses |
|
Copyright (c) 2022 Cannlytics |
|
|
|
Authors: |
|
Keegan Skeate <https://github.com/keeganskeate> |
|
Candace O'Sullivan-Sutherland <https://github.com/candy-o> |
|
Created: 9/29/2022 |
|
Updated: 10/8/2022 |
|
License: <https://huggingface.co/datasets/cannlytics/cannabis_licenses/blob/main/LICENSE> |
|
""" |
|
|
|
import json |
|
|
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
|
|
|
|
_SCRIPT = 'cannabis_licenses.py' |
|
_VERSION = '1.0.0' |
|
_HOMEPAGE = 'https://huggingface.co/datasets/cannlytics/cannabis_licenses' |
|
_LICENSE = "https://opendatacommons.org/licenses/by/4-0/" |
|
_DESCRIPTION = """\ |
|
Cannabis Licenses (https://cannlytics.com/data/licenses) is a |
|
dataset of curated cannabis license data. The dataset consists of 18 |
|
sub-datasets for each state with permitted adult-use cannabis, as well |
|
as a sub-dataset that includes all licenses. |
|
""" |
|
_CITATION = """\ |
|
@inproceedings{cannlytics2022cannabis_licenses, |
|
author = {Skeate, Keegan and O'Sullivan-Sutherland, Candace}, |
|
title = {Cannabis Licenses}, |
|
booktitle = {Cannabis Data Science}, |
|
month = {October}, |
|
year = {2022}, |
|
address = {United States of America}, |
|
publisher = {Cannlytics} |
|
} |
|
""" |
|
|
|
|
|
FIELDS = datasets.Features({ |
|
'id': datasets.Value(dtype='string'), |
|
'license_number': datasets.Value(dtype='string'), |
|
'license_status': datasets.Value(dtype='string'), |
|
'license_status_date': datasets.Value(dtype='string'), |
|
'license_term': datasets.Value(dtype='string'), |
|
'license_type': datasets.Value(dtype='string'), |
|
'license_designation': datasets.Value(dtype='string'), |
|
'issue_date': datasets.Value(dtype='string'), |
|
'expiration_date': datasets.Value(dtype='string'), |
|
'licensing_authority_id': datasets.Value(dtype='string'), |
|
'licensing_authority': datasets.Value(dtype='string'), |
|
'business_legal_name': datasets.Value(dtype='string'), |
|
'business_dba_name': datasets.Value(dtype='string'), |
|
'business_image_url': datasets.Value(dtype='string'), |
|
'business_owner_name': datasets.Value(dtype='string'), |
|
'business_structure': datasets.Value(dtype='string'), |
|
'business_website': datasets.Value(dtype='string'), |
|
'activity': datasets.Value(dtype='string'), |
|
'premise_street_address': datasets.Value(dtype='string'), |
|
'premise_city': datasets.Value(dtype='string'), |
|
'premise_state': datasets.Value(dtype='string'), |
|
'premise_county': datasets.Value(dtype='string'), |
|
'premise_zip_code': datasets.Value(dtype='string'), |
|
'business_email': datasets.Value(dtype='string'), |
|
'business_phone': datasets.Value(dtype='string'), |
|
'parcel_number': datasets.Value(dtype='string'), |
|
'premise_latitude': datasets.Value(dtype='float'), |
|
'premise_longitude': datasets.Value(dtype='float'), |
|
'data_refreshed_date': datasets.Value(dtype='string'), |
|
}) |
|
|
|
|
|
|
|
|
|
|
|
|
|
import urllib.request |
|
with urllib.request.urlopen('https://huggingface.co/datasets/cannlytics/cannabis_licenses/raw/main/subsets.json') as url: |
|
SUBSETS = json.load(url) |
|
|
|
|
|
class CannabisLicensesConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Cannabis Licenses.""" |
|
|
|
def __init__(self, name, **kwargs): |
|
"""BuilderConfig for Cannabis Licenses. |
|
Args: |
|
name (str): Configuration name that determines setup. |
|
**kwargs: Keyword arguments forwarded to super. |
|
""" |
|
description = _DESCRIPTION |
|
description += f'This configuration is for the `{name}` subset.' |
|
super().__init__(name=name, description=description, **kwargs) |
|
|
|
|
|
class CannabisLicenses(datasets.GeneratorBasedBuilder): |
|
"""The Cannabis Licenses dataset.""" |
|
|
|
VERSION = datasets.Version(_VERSION) |
|
BUILDER_CONFIG_CLASS = CannabisLicensesConfig |
|
BUILDER_CONFIGS = [CannabisLicensesConfig(s) for s in SUBSETS.keys()] |
|
DEFAULT_CONFIG_NAME = 'ca' |
|
|
|
def _info(self): |
|
"""Returns the dataset metadata.""" |
|
return datasets.DatasetInfo( |
|
features=FIELDS, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
description=_DESCRIPTION, |
|
license=_LICENSE, |
|
version=_VERSION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
config_name = self.config.name |
|
data_url = SUBSETS[config_name]['data_url'] |
|
urls = {config_name: data_url} |
|
downloaded_files = dl_manager.download_and_extract(urls) |
|
filepath = downloaded_files[config_name] |
|
params = {'filepath': filepath} |
|
return [datasets.SplitGenerator(name='data', gen_kwargs=params)] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Returns the examples in raw text form.""" |
|
with open(filepath) as f: |
|
df = pd.read_csv(filepath) |
|
for index, row in df.iterrows(): |
|
obs = row.to_dict() |
|
yield index, obs |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
from datasets import load_dataset |
|
|
|
|
|
subsets = list(SUBSETS.keys()) |
|
|
|
|
|
for subset in subsets: |
|
dataset = load_dataset(_SCRIPT, subset) |
|
data = dataset['data'] |
|
assert len(data) > 0 |
|
print('Read %i %s data points.' % (len(data), subset)) |
|
|