improve README
Browse files- .gitignore +6 -0
- README.md +213 -51
- pictures/Makefile +21 -0
- pictures/ws-2d.png +3 -0
- pictures/ws-2d.tex +132 -0
- pictures/ws-3d-2-3-4-5.png +3 -0
- pictures/ws-3d-2-3-4-5.tex +266 -0
.gitignore
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.aux
|
2 |
+
*.log
|
3 |
+
*.out
|
4 |
+
*.pdf
|
5 |
+
*.synctex.*
|
6 |
+
auto/
|
README.md
CHANGED
@@ -1,58 +1,82 @@
|
|
1 |
---
|
2 |
license: cc-by-sa-4.0
|
3 |
-
pretty_name: Weight Systems Defining Five-Dimensional
|
4 |
configs:
|
5 |
-
- config_name: non-reflexive
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
- config_name: reflexive
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
tags:
|
14 |
-
- physics
|
15 |
-
- math
|
16 |
---
|
17 |
|
18 |
-
#
|
19 |
|
20 |
This dataset contains all weight systems defining five-dimensional reflexive and
|
21 |
-
non-reflexive
|
22 |
-
and theoretical physics. The data was compiled by
|
23 |
-
[arXiv:1808.02422](https://arxiv.org/abs/1808.02422). More information is
|
24 |
-
[Calabi-Yau data website](http://hep.itp.tuwien.ac.at/~kreuzer/CY/). The
|
25 |
-
explored using the [search
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
## Dataset Details
|
28 |
|
29 |
-
The dataset consists of two subsets: weight systems defining reflexive
|
30 |
-
weight systems defining non-reflexive
|
31 |
-
Parquet format. Rows within each file are sorted lexicographically by
|
|
|
32 |
|
33 |
-
Each row in the dataset represents a
|
34 |
along with the vertex count, facet count, and lattice point count. The reflexive dataset
|
35 |
also includes the Hodge numbers \\( h^{1,1} \\), \\( h^{1,2} \\), and \\( h^{1,3} \\) of
|
36 |
-
the corresponding Calabi-Yau manifold, and the lattice point count of the dual
|
37 |
|
38 |
For any Calabi-Yau fourfold, the Euler characteristic \\( \chi \\) and the Hodge number
|
39 |
\\( h^{2,2} \\) can be derived as follows:
|
|
|
40 |
$$ \chi = 48 + 6 (h^{1,1} − h^{1,2} + h^{1,3}) $$
|
|
|
41 |
$$ h^{2,2} = 44 + 4 h^{1,1} − 2 h^{1,2} + 4 h^{1,3} $$
|
42 |
|
43 |
-
This dataset is licensed under the
|
|
|
44 |
|
45 |
### Data Fields
|
46 |
|
47 |
-
- `weight0 to weight5
|
48 |
-
- `vertex_count
|
49 |
-
- `facet_count
|
50 |
-
- `point_count
|
51 |
-
- `dual_point_count
|
52 |
-
|
53 |
-
- `h11
|
54 |
-
- `h12
|
55 |
-
- `h13
|
56 |
|
57 |
## Usage
|
58 |
|
@@ -70,8 +94,8 @@ for row in dataset.take(5):
|
|
70 |
```
|
71 |
|
72 |
When cloning the Git repository with Git Large File Storage (LFS), data files are stored
|
73 |
-
in the Git LFS storage directory
|
74 |
-
|
75 |
commands to clone the repository:
|
76 |
|
77 |
```bash
|
@@ -95,22 +119,160 @@ git lfs fetch
|
|
95 |
git lfs dedup
|
96 |
```
|
97 |
|
98 |
-
##
|
99 |
|
100 |
-
|
|
|
|
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc-by-sa-4.0
|
3 |
+
pretty_name: Weight Systems Defining Five-Dimensional IP Lattice Polytopes
|
4 |
configs:
|
5 |
+
- config_name: non-reflexive
|
6 |
+
data_files:
|
7 |
+
- split: full
|
8 |
+
path: non-reflexive/*.parquet
|
9 |
+
- config_name: reflexive
|
10 |
+
data_files:
|
11 |
+
- split: full
|
12 |
+
path: reflexive/*.parquet
|
13 |
tags:
|
14 |
+
- physics
|
15 |
+
- math
|
16 |
---
|
17 |
|
18 |
+
# Weight Systems Defining Five-Dimensional IP Lattice Polytopes
|
19 |
|
20 |
This dataset contains all weight systems defining five-dimensional reflexive and
|
21 |
+
non-reflexive IP lattice polytopes, instrumental in the study of Calabi-Yau fourfolds in
|
22 |
+
mathematics and theoretical physics. The data was compiled by Harald Skarke and Friedrich
|
23 |
+
Schöller in [arXiv:1808.02422](https://arxiv.org/abs/1808.02422). More information is
|
24 |
+
available at the [Calabi-Yau data website](http://hep.itp.tuwien.ac.at/~kreuzer/CY/). The
|
25 |
+
dataset can be explored using the [search
|
26 |
+
frontend](http://rgc.itp.tuwien.ac.at/fourfolds/). See below for a short mathematical
|
27 |
+
exposition on the construction of polytopes.
|
28 |
+
|
29 |
+
Please cite the paper when referencing this dataset:
|
30 |
+
|
31 |
+
```
|
32 |
+
@article{Scholler:2018apc,
|
33 |
+
author = {Schöller, Friedrich and Skarke, Harald},
|
34 |
+
title = "{All Weight Systems for Calabi-Yau Fourfolds from Reflexive Polyhedra}",
|
35 |
+
eprint = "1808.02422",
|
36 |
+
archivePrefix = "arXiv",
|
37 |
+
primaryClass = "hep-th",
|
38 |
+
doi = "10.1007/s00220-019-03331-9",
|
39 |
+
journal = "Commun. Math. Phys.",
|
40 |
+
volume = "372",
|
41 |
+
number = "2",
|
42 |
+
pages = "657--678",
|
43 |
+
year = "2019"
|
44 |
+
}
|
45 |
+
```
|
46 |
|
47 |
## Dataset Details
|
48 |
|
49 |
+
The dataset consists of two subsets: weight systems defining reflexive (and therefore IP)
|
50 |
+
polytopes and weight systems defining non-reflexive IP polytopes. Each subset is split
|
51 |
+
into 4000 files in Parquet format. Rows within each file are sorted lexicographically by
|
52 |
+
weights.
|
53 |
|
54 |
+
Each row in the dataset represents a polytope and contains the six weights defining it,
|
55 |
along with the vertex count, facet count, and lattice point count. The reflexive dataset
|
56 |
also includes the Hodge numbers \\( h^{1,1} \\), \\( h^{1,2} \\), and \\( h^{1,3} \\) of
|
57 |
+
the corresponding Calabi-Yau manifold, and the lattice point count of the dual polytope.
|
58 |
|
59 |
For any Calabi-Yau fourfold, the Euler characteristic \\( \chi \\) and the Hodge number
|
60 |
\\( h^{2,2} \\) can be derived as follows:
|
61 |
+
|
62 |
$$ \chi = 48 + 6 (h^{1,1} − h^{1,2} + h^{1,3}) $$
|
63 |
+
|
64 |
$$ h^{2,2} = 44 + 4 h^{1,1} − 2 h^{1,2} + 4 h^{1,3} $$
|
65 |
|
66 |
+
This dataset is licensed under the
|
67 |
+
[CC BY-SA 4.0 license](http://creativecommons.org/licenses/by-sa/4.0/).
|
68 |
|
69 |
### Data Fields
|
70 |
|
71 |
+
- `weight0` to `weight5`: Weights of the weight system defining the polytope.
|
72 |
+
- `vertex_count`: Vertex count of the polytope.
|
73 |
+
- `facet_count`: Facet count of the polytope.
|
74 |
+
- `point_count`: Lattice point count of the polytope.
|
75 |
+
- `dual_point_count`: Lattice point count of the dual polytope (only for reflexive
|
76 |
+
polytopes).
|
77 |
+
- `h11`: Hodge number \\( h^{1,1} \\) (only for reflexive polytopes).
|
78 |
+
- `h12`: Hodge number \\( h^{1,2} \\) (only for reflexive polytopes).
|
79 |
+
- `h13`: Hodge number \\( h^{1,3} \\) (only for reflexive polytopes).
|
80 |
|
81 |
## Usage
|
82 |
|
|
|
94 |
```
|
95 |
|
96 |
When cloning the Git repository with Git Large File Storage (LFS), data files are stored
|
97 |
+
both in the Git LFS storage directory and in the working tree. To avoid occupying double
|
98 |
+
the disk space, use a filesystem that supports copy-on-write, and run the following
|
99 |
commands to clone the repository:
|
100 |
|
101 |
```bash
|
|
|
119 |
git lfs dedup
|
120 |
```
|
121 |
|
122 |
+
## Construction of Polytopes
|
123 |
|
124 |
+
This is an introduction to the mathematics involved in the construction of polytopes
|
125 |
+
relevant to this dataset. For more details and precise definitions, consult the paper
|
126 |
+
[arXiv:1808.02422](https://arxiv.org/abs/1808.02422) and references therein.
|
127 |
|
128 |
+
### Polytopes
|
129 |
+
|
130 |
+
A polytope is the convex hull of a finite set of points in \\(n\\)-dimensional Euclidean
|
131 |
+
space, \\(\mathbb{R}^n\\). This means it is the smallest convex shape that contains all
|
132 |
+
these points. The minimal collection of points that define a particular polytope are its
|
133 |
+
vertices. Familiar examples of polytopes include triangles and rectangles in two
|
134 |
+
dimensions, and cubes and octahedra in three dimensions.
|
135 |
+
|
136 |
+
A polytope is considered an *IP polytope* (interior point polytope) if the origin of
|
137 |
+
\\(\mathbb{R}^n\\) is in the interior of the polytope, not on its boundary or outside it.
|
138 |
+
|
139 |
+
For any IP polytope \\(\nabla\\), its dual polytope \\(\nabla^*\\) is defined as the set
|
140 |
+
of points \\(\mathbf{y}\\) satisfying
|
141 |
+
|
142 |
+
$$
|
143 |
+
\mathbf{x} \cdot \mathbf{y}
|
144 |
+
\ge -1 \quad \text{for all } \mathbf{x} \in \nabla \;.
|
145 |
+
$$
|
146 |
+
|
147 |
+
This relationship is symmetric: the dual of the dual of a polytope is the polytope itself,
|
148 |
+
i.e., \\( \nabla^{**} = \nabla \\).
|
149 |
+
|
150 |
+
### Weight Systems
|
151 |
+
|
152 |
+
Weight systems provide a means to describe simple polytopes known as *simplexes*. More
|
153 |
+
broadly, *combined weight systems*, which are collections of individual weight systems,
|
154 |
+
can describe any polytope. A combined weight system is a matrix consisting of real
|
155 |
+
numbers. The construction process is outlined as follows:
|
156 |
+
|
157 |
+
Consider a polytope in \\(\mathbb{R}^n\\) with vertex count \\(k\\), where \\(k\\) is
|
158 |
+
bigger than \\(n\\). It is possible to position \\(n\\) of these vertices at arbitrary
|
159 |
+
(linearly independent) locations through a linear transformation. The placement of the
|
160 |
+
remaining \\(k - n\\) vertices is then determined. Their positions are the defining
|
161 |
+
properties of a polytope. To specify these positions independently of the applied linear
|
162 |
+
transformation, one can use the following system of equations. If \\(\mathbf{v}_0,
|
163 |
+
\mathbf{v}_1, \dots \mathbf{v}_{k-1}\\) are the vertices of the polytope, these relations
|
164 |
+
fix \\(k - n\\) vertices in terms of the other \\(n\\):
|
165 |
+
|
166 |
+
$$
|
167 |
+
\sum_{i=0}^{k-1} q_i^{(j)} \mathbf{v}_i
|
168 |
+
= 0 \quad \text{for } 0 \le j \le k - n - 1 \;,
|
169 |
+
$$
|
170 |
+
|
171 |
+
where \\(q_i^{(j)}\\) is the matrix of real numbers, the combined weight system. In cases
|
172 |
+
where \\(k = n + 1\\), \\(j\\) is limited to the value zero, reducing the matrix to a
|
173 |
+
single weight system \\(q_i\\). In this scenario, the polytope is a simplex, and the
|
174 |
+
equation simplifies to:
|
175 |
+
|
176 |
+
$$ \sum_{i=0}^n q_i \mathbf{v}_i = 0 \;. $$
|
177 |
+
|
178 |
+
It is important to note that scaling all weights in a weight system by a common factor
|
179 |
+
results in an equivalent weight system that defines the same polytope.
|
180 |
+
|
181 |
+
For this dataset, the focus is on a specific construction of lattice polytopes described
|
182 |
+
in subsequent sections.
|
183 |
+
|
184 |
+
### Lattice Polytopes
|
185 |
+
|
186 |
+
A lattice polytope is a polytope with vertices at the points of a regular grid, or
|
187 |
+
lattice. Using linear transformations, any lattice polytope can be transformed so that its
|
188 |
+
vertices have integer coordinates, hence they are also referred to as integral
|
189 |
+
polytopes.
|
190 |
+
|
191 |
+
The dual of a lattice with points \\(L\\) is the lattice consisting of all points
|
192 |
+
\\(\mathbf{y}\\) that satisfy
|
193 |
+
|
194 |
+
$$
|
195 |
+
\mathbf{x} \cdot \mathbf{y} \in \mathbb{Z} \quad \text{for all } \mathbf{x} \in L \;.
|
196 |
+
$$
|
197 |
+
|
198 |
+
*Reflexive polytopes* are a specific type of lattice polytope characterized by having a
|
199 |
+
dual that is also a lattice polytope, with vertices situated on the dual lattice. These
|
200 |
+
polytopes play a central role in the context of this dataset.
|
201 |
+
|
202 |
+
The weights of a lattice polytope are always rational. This characteristic enables the
|
203 |
+
rescaling of a weight system so that its weights become integers without any common
|
204 |
+
divisor. This rescaling has been performed in this dataset.
|
205 |
+
|
206 |
+
Typically, the dual of a lattice polytope defined by a weight system is not a lattice
|
207 |
+
polytope. However, our interest lies in a different construction than simply considering
|
208 |
+
polytopes defined by (combined) weight systems, as described above. In this construction,
|
209 |
+
they are just the starting point. We start with the polytope \\(\nabla\\), arising from a
|
210 |
+
weight system as previously described. Then, we define the polytope \\(\Delta\\) as the
|
211 |
+
convex hull of the intersection of \\(\nabla^*\\) with the points of the dual lattice. In
|
212 |
+
the context of this dataset, the polytope \\(\Delta\\) is referred to as ‘the polytope’.
|
213 |
+
Correspondingly, \\(\Delta^{\!*}\\) is referred to as ‘the dual polytope’. The lattice of
|
214 |
+
\\(\Delta\\) is taken to be the coarsest lattice possible, such that \\(\nabla\\) is a
|
215 |
+
lattice polytope, i.e., the lattice generated by the vertices of \\(\nabla\\). This
|
216 |
+
construction is exemplified in the following sections.
|
217 |
+
|
218 |
+
A weight system is considered an IP weight system if the corresponding \\(\Delta\\) is an
|
219 |
+
IP polytope; that is, the origin is within its interior. Since only IP polytopes have
|
220 |
+
corresponding dual polytopes, this condition is essential for the polytope \\(\Delta\\) to
|
221 |
+
be classified as reflexive.
|
222 |
+
|
223 |
+
### Two Dimensions
|
224 |
+
|
225 |
+
In two dimensions, all IP weight systems define reflexive polytopes and every vertex of
|
226 |
+
\\(\nabla^*\\) lies on the dual lattice, making \\(\Delta\\) and \\(\nabla^*\\) identical.
|
227 |
+
There are exactly three IP weight systems that define two-dimensional polytopes
|
228 |
+
(polygons). Each polytope is reflexive and has three vertices and three facets (edges):
|
229 |
+
|
230 |
+
| weight system | number of points of \\(\nabla\\) | number of points of \\(\nabla^*\\) |
|
231 |
+
|--------------:|---------------------------------:|-----------------------------------:|
|
232 |
+
| (1, 1, 1) | 4 | 10 |
|
233 |
+
| (1, 1, 2) | 5 | 9 |
|
234 |
+
| (1, 2, 3) | 7 | 7 |
|
235 |
+
|
236 |
+
We will now construct these polytopes from their corresponding weight system. Fixing the
|
237 |
+
first two vertices of the polytopes
|
238 |
+
|
239 |
+
$$
|
240 |
+
\mathbf{v}_0 = (1, 0) \quad \text{and} \quad
|
241 |
+
\mathbf{v}_1 = (0, 1) \;,
|
242 |
+
$$
|
243 |
+
|
244 |
+
one can obtain the position of the third vertex by solving the weight system equation from
|
245 |
+
before:
|
246 |
+
|
247 |
+
$$
|
248 |
+
\mathbf{v}_2 = - \frac{q_0 \mathbf{v}_0 + q_1 \mathbf{v}_1}{q_2} \;.
|
249 |
+
$$
|
250 |
+
|
251 |
+
The resulting polytopes and their duals are depicted below. Lattice points are indicated
|
252 |
+
by dots.
|
253 |
+
<img src="pictures/ws-2d.png" style="display: block; margin-left: auto; margin-right: auto; width:520px;">
|
254 |
+
|
255 |
+
One may notice that a simpler description could be obtained by fixing \\(\mathbf{v}_2 =
|
256 |
+
(1, 0)\\) instead of \\(\mathbf{v}_0\\), which would avoid fractional vertex coordinates.
|
257 |
+
However, this approach would not illustrate the general case in higher dimensions, where
|
258 |
+
this is not possible since there is not always a weight equal to 1.
|
259 |
+
|
260 |
+
### General Dimension
|
261 |
+
|
262 |
+
In higher dimensions, the situation becomes more complex. Not all IP polytopes are
|
263 |
+
reflexive, and generally, \\(\Delta \neq \nabla^*\\).
|
264 |
+
|
265 |
+
This example shows the construction of the three-dimensional polytope \\(\Delta\\) with
|
266 |
+
weight system (2, 3, 4, 5) and its dual \\(\Delta^{\!*}\\). Lattice points lying on the
|
267 |
+
polytopes are indicated by dots. \\(\Delta\\) has 7 vertices and 13 lattice points,
|
268 |
+
\\(\Delta^{\!*}\\) also has 7 vertices, but 16 lattice points.
|
269 |
+
<img src="pictures/ws-3d-2-3-4-5.png" style="display: block; margin-left: auto; margin-right: auto; width:450px;">
|
270 |
+
|
271 |
+
The counts of reflexive single-weight-system polytopes by dimension \\(n\\) are:
|
272 |
+
|
273 |
+
| \\(n\\) | reflexive single-weight-system polytopes |
|
274 |
+
|--------:|-----------------------------------------:|
|
275 |
+
| 2 | 3 |
|
276 |
+
| 3 | 95 |
|
277 |
+
| 4 | 184,026 |
|
278 |
+
| 5 | (this dataset) 185,269,499,015 |
|
pictures/Makefile
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
SOURCES = $(wildcard *.tex)
|
2 |
+
PNGS = $(SOURCES:.tex=.png)
|
3 |
+
PDFS = $(SOURCES:.tex=.pdf)
|
4 |
+
|
5 |
+
png: $(PNGS)
|
6 |
+
pdf: $(PDFS)
|
7 |
+
|
8 |
+
%.pdf: %.tex
|
9 |
+
pdflatex $<
|
10 |
+
rm $(<:.tex=.aux) $(<:.tex=.log)
|
11 |
+
|
12 |
+
%.png: %.pdf
|
13 |
+
convert -density 600 $< -flatten $@
|
14 |
+
|
15 |
+
.PHONY: clean
|
16 |
+
clean:
|
17 |
+
rm -rf auto *.aux *.log *.synctex.gz
|
18 |
+
|
19 |
+
.PHONY: cleanall
|
20 |
+
cleanall: clean
|
21 |
+
rm -rf *.png *.pdf
|
pictures/ws-2d.png
ADDED
Git LFS Details
|
pictures/ws-2d.tex
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
\documentclass[tikz,11pt]{standalone}
|
2 |
+
|
3 |
+
\usepackage{tikz}
|
4 |
+
|
5 |
+
\pgfmathsetmacro{\gridLineWidth}{0.6pt}
|
6 |
+
\pgfmathsetmacro{\polytopeLineWidth}{1.2pt}
|
7 |
+
\pgfmathsetmacro{\dotSize}{0.5mm}
|
8 |
+
\definecolor{fillColor}{rgb}{0.8,0.8,0.8}
|
9 |
+
\pgfmathsetmacro{\opacity}{0.7}
|
10 |
+
|
11 |
+
\begin{document}
|
12 |
+
\begin{tikzpicture}
|
13 |
+
% (1, 1, 1)
|
14 |
+
\begin{scope}[yshift=5.2cm, scale=0.7]
|
15 |
+
\node at (-5, 0) {$\mathbf{q} = (1, 1, 1)$};
|
16 |
+
|
17 |
+
\begin{scope}
|
18 |
+
\node at (0, -3.3) {$\nabla = \Delta^{\!*}$};
|
19 |
+
|
20 |
+
\clip (0,0) circle (2.7);
|
21 |
+
|
22 |
+
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (1, 0) --(0, 1) --(-1, -1) --cycle;
|
23 |
+
|
24 |
+
\draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
25 |
+
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
26 |
+
|
27 |
+
\foreach \i in {-2,...,2}
|
28 |
+
\foreach \j in {-2,...,2}{
|
29 |
+
\node at (\i, \j) [circle, fill, inner sep=\dotSize] {};
|
30 |
+
};
|
31 |
+
\end{scope}
|
32 |
+
|
33 |
+
\begin{scope}[xshift=6.5cm]
|
34 |
+
\node at (0, -3.3) {$\nabla^* = \Delta$};
|
35 |
+
|
36 |
+
\clip (0,0) circle (2.7);
|
37 |
+
\begin{scope}
|
38 |
+
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (-1, 2) --(2, -1) --(-1, -1) --cycle;
|
39 |
+
|
40 |
+
\draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
41 |
+
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
42 |
+
|
43 |
+
\foreach \i in {-2,...,2}
|
44 |
+
\foreach \j in {-2,...,2}{
|
45 |
+
\node at (\i, \j) [circle, fill, inner sep=\dotSize] {};
|
46 |
+
};
|
47 |
+
\end{scope}
|
48 |
+
\end{scope}
|
49 |
+
\end{scope}
|
50 |
+
|
51 |
+
% (1, 1, 2)
|
52 |
+
\begin{scope}[yshift=0cm, scale=0.7]
|
53 |
+
\node at (-5, 0) {$\mathbf{q} = (1, 1, 2)$};
|
54 |
+
|
55 |
+
\begin{scope}
|
56 |
+
\node at (0, -3.3) {$\nabla = \Delta^{\!*}$};
|
57 |
+
|
58 |
+
\clip (0,0) circle (2.7);
|
59 |
+
\begin{scope}[scale=1.4142] % sqrt(2)
|
60 |
+
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (1, 0) --(0, 1) --(-1/2, -1/2) --cycle;
|
61 |
+
|
62 |
+
\draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
63 |
+
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
64 |
+
|
65 |
+
\foreach \i in {-2,...,2}
|
66 |
+
\foreach \j in {-2,...,2}{
|
67 |
+
\node at (\i / 2 - \j / 2, \i / 2 + \j / 2) [circle, fill, inner sep=\dotSize] {};
|
68 |
+
};
|
69 |
+
\end{scope}
|
70 |
+
\end{scope}
|
71 |
+
|
72 |
+
\begin{scope}[xshift=6.5cm]
|
73 |
+
\node at (0, -3.3) {$\nabla^* = \Delta$};
|
74 |
+
|
75 |
+
\clip (0,0) circle (2.7);
|
76 |
+
\begin{scope}[scale=0.707]
|
77 |
+
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (-1, 3) --(3, -1) --(-1, -1) --cycle;
|
78 |
+
|
79 |
+
\draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
80 |
+
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
81 |
+
|
82 |
+
\foreach \i in {-2,...,2}
|
83 |
+
\foreach \j in {-2,...,2}{
|
84 |
+
\node at (\i - \j, \i + \j) [circle, fill, inner sep=\dotSize] {};
|
85 |
+
};
|
86 |
+
\end{scope}
|
87 |
+
\end{scope}
|
88 |
+
\end{scope}
|
89 |
+
|
90 |
+
% (1, 2, 3)
|
91 |
+
\begin{scope}[yshift=-5.2cm, scale=0.7]
|
92 |
+
\node at (-5, 0) {$\mathbf{q} = (1, 2, 3)$};
|
93 |
+
|
94 |
+
\begin{scope}
|
95 |
+
\node at (0, -3.3) {$\nabla = \Delta^{\!*}$};
|
96 |
+
|
97 |
+
\clip (0,0) circle (2.7);
|
98 |
+
\begin{scope}[scale=1.732] % sqrt(3)
|
99 |
+
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (1, 0) --(0, 1) --(-1/3, -2/3) --cycle;
|
100 |
+
|
101 |
+
\draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
102 |
+
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
103 |
+
|
104 |
+
\foreach \i in {-2,...,2}
|
105 |
+
\foreach \j in {-4,...,4}{
|
106 |
+
\node at (\i / 3 - \j / 3, \i * 2 / 3 + \j / 3) [circle, fill, inner sep=\dotSize] {};
|
107 |
+
};
|
108 |
+
\end{scope}
|
109 |
+
\end{scope}
|
110 |
+
|
111 |
+
\begin{scope}[xshift=6.5cm]
|
112 |
+
\node at (0, -3.3) {$\nabla^* = \Delta$};
|
113 |
+
|
114 |
+
\clip (0,0) circle (2.7);
|
115 |
+
\begin{scope}[scale=0.577]
|
116 |
+
\begin{scope}[xshift=-2cm]
|
117 |
+
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (5, -1) --(-1, 2) --(-1, -1) --cycle;
|
118 |
+
|
119 |
+
\draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
120 |
+
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
121 |
+
|
122 |
+
\foreach \i in {-1,...,3}
|
123 |
+
\foreach \j in {-4,...,4}{
|
124 |
+
\node at (3 * \i + \j, \j) [circle, fill, inner sep=\dotSize] {};
|
125 |
+
};
|
126 |
+
\end{scope}
|
127 |
+
\end{scope}
|
128 |
+
\end{scope}
|
129 |
+
\end{scope}
|
130 |
+
|
131 |
+
\end{tikzpicture}
|
132 |
+
\end{document}
|
pictures/ws-3d-2-3-4-5.png
ADDED
Git LFS Details
|
pictures/ws-3d-2-3-4-5.tex
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
\documentclass[tikz,11pt]{standalone}
|
2 |
+
|
3 |
+
\usepackage{tikz}
|
4 |
+
\usepackage{tikz-3dplot}
|
5 |
+
|
6 |
+
\usetikzlibrary{arrows.meta}
|
7 |
+
|
8 |
+
\pgfmathsetmacro{\polytopeLineWidth}{1.2pt}
|
9 |
+
\pgfmathsetmacro{\dotSize}{0.5mm}
|
10 |
+
\definecolor{fillColor}{rgb}{0.8,0.8,0.8}
|
11 |
+
\pgfmathsetmacro{\opacity}{0.7}
|
12 |
+
\pgfmathsetmacro{\rotation}{72}
|
13 |
+
\pgfmathsetmacro{\zRotation}{30}
|
14 |
+
% \pgfmathsetmacro{\rotation}{100}
|
15 |
+
% \pgfmathsetmacro{\zRotation}{30}
|
16 |
+
|
17 |
+
\newcommand{\point}[1]{
|
18 |
+
\path (#1) node[fill, black, circle, inner sep=\dotSize] {};
|
19 |
+
}
|
20 |
+
|
21 |
+
\begin{document}
|
22 |
+
|
23 |
+
\begin{tikzpicture}[line join=bevel, line width=\polytopeLineWidth, scale=1.1]
|
24 |
+
\begin{scope}
|
25 |
+
\path [draw, -Stealth] (1.7, 2.4) -- node [above] {dual} (3.7, 2.4);
|
26 |
+
\path [draw, -Stealth] (5, -0.5) -- node [right] {convex hull} (5, -1.5);
|
27 |
+
|
28 |
+
\node at (0, 0) {$\nabla$};
|
29 |
+
|
30 |
+
\tdplotsetmaincoords{\rotation}{-\zRotation}
|
31 |
+
\tdplotsetrotatedcoords{0}{90}{90}
|
32 |
+
|
33 |
+
% \begin{tikzpicture}[tdplot_main_coords]
|
34 |
+
% \draw[thick,->] (0,0,0) -- (1,0,0) node[anchor=north east]{$x$};
|
35 |
+
% \draw[thick,->] (0,0,0) -- (0,1,0) node[anchor=north west]{$y$};
|
36 |
+
% \draw[thick,->] (0,0,0) -- (0,0,1) node[anchor=south]{$z$};
|
37 |
+
% \end{tikzpicture}
|
38 |
+
|
39 |
+
\begin{scope}[tdplot_rotated_coords, xshift=0.2cm, yshift=3.4cm]
|
40 |
+
% back faces
|
41 |
+
\path [draw, fill opacity=\opacity, fill=fillColor] (2.,0.,-1.)--(0.,0.,1.)--(-3.,-2.,-1.)--cycle;
|
42 |
+
\path [draw, fill opacity=\opacity, fill=fillColor] (0.,1.,0.)--(0.,0.,1.)--(2.,0.,-1.)--cycle;
|
43 |
+
|
44 |
+
% back points
|
45 |
+
\point{1,0,0};
|
46 |
+
\point{0.,0.,0.}; % inside
|
47 |
+
|
48 |
+
% front faces
|
49 |
+
\path [draw, fill opacity=\opacity, fill=fillColor] (0.,1.,0.)--(2.,0.,-1.)--(-3.,-2.,-1.)--cycle;
|
50 |
+
\path [draw, fill opacity=\opacity, fill=fillColor] (0.,0.,1.)--(0.,1.,0.)--(-3.,-2.,-1.)--cycle;
|
51 |
+
|
52 |
+
% front points
|
53 |
+
\point{2.,0.,-1.};
|
54 |
+
\point{0.,1.,0.};
|
55 |
+
\point{0.,0.,1.};
|
56 |
+
\point{-3.,-2.,-1.};
|
57 |
+
\end{scope}
|
58 |
+
\end{scope}
|
59 |
+
|
60 |
+
% \begin{scope}
|
61 |
+
% \path [draw, -Stealth] (1.7, 2.4) --(3.7, 2.4);
|
62 |
+
% \path [draw, -Stealth] (5, -0.5) --(5, -1.5);
|
63 |
+
|
64 |
+
% \node at (0, 0) {$\nabla$};
|
65 |
+
|
66 |
+
% \tdplotsetmaincoords{\rotation}{180 - \zRotation}
|
67 |
+
% \tdplotsetrotatedcoords{0}{90}{90}
|
68 |
+
|
69 |
+
% \begin{scope}[tdplot_rotated_coords, xshift=0.2cm, yshift=3.4cm]
|
70 |
+
% % \begin{scope}[tdplot_rotated_coords]
|
71 |
+
% % \draw[thick,->] (0,0,0) -- (1,0,0) node[anchor=north east]{$x$};
|
72 |
+
% % \draw[thick,->] (0,0,0) -- (0,1,0) node[anchor=north west]{$y$};
|
73 |
+
% % \draw[thick,->] (0,0,0) -- (0,0,1) node[anchor=south]{$z$};
|
74 |
+
% % \end{scope}
|
75 |
+
|
76 |
+
% % back faces
|
77 |
+
% \path [draw, fill opacity=\opacity, fill=fillColor] (0.,1.,0.)--(2.,0.,-1.)--(-3.,-2.,-1.)--cycle;
|
78 |
+
% \path [draw, fill opacity=\opacity, fill=fillColor] (0.,0.,1.)--(0.,1.,0.)--(-3.,-2.,-1.)--cycle;
|
79 |
+
|
80 |
+
% % back points
|
81 |
+
% \point{2.,0.,-1.};
|
82 |
+
% \point{0.,1.,0.};
|
83 |
+
% \point{0.,0.,1.};
|
84 |
+
% \point{-3.,-2.,-1.};
|
85 |
+
% \point{0.,0.,0.}; % inside
|
86 |
+
|
87 |
+
% % front faces
|
88 |
+
% \path [draw, fill opacity=\opacity, fill=fillColor] (2.,0.,-1.)--(0.,0.,1.)--(-3.,-2.,-1.)--cycle;
|
89 |
+
% \path [draw, fill opacity=\opacity, fill=fillColor] (0.,1.,0.)--(0.,0.,1.)--(2.,0.,-1.)--cycle;
|
90 |
+
|
91 |
+
% % front points
|
92 |
+
% \point{1,0,0};
|
93 |
+
% \end{scope}
|
94 |
+
% \end{scope}
|
95 |
+
|
96 |
+
\begin{scope}[xshift=5cm]
|
97 |
+
\node at (0, 0) {$\nabla^*$};
|
98 |
+
|
99 |
+
\tdplotsetmaincoords{\rotation}{180 - \zRotation}
|
100 |
+
\tdplotsetrotatedcoords{0}{90}{90}
|
101 |
+
\begin{scope}[tdplot_rotated_coords, yshift=1.8cm]
|
102 |
+
% back faces
|
103 |
+
\path [draw, fill opacity=0.7, fill=fillColor] (1.333,-1.,-1.)--(-1.,-1.,-1.)--(-1.,2.5,-1.)--cycle;
|
104 |
+
\path [draw, fill opacity=0.7, fill=fillColor] (-1.,-1.,-1.)--(0.4,-1.,1.8)--(-1.,2.5,-1.)--cycle;
|
105 |
+
\path [draw, fill opacity=0.7, fill=fillColor] (0.4,-1.,1.8)--(-1.,-1.,-1.)--(1.333,-1.,-1.)--cycle;
|
106 |
+
|
107 |
+
% back points
|
108 |
+
\point{-1.,-1.,-1.};
|
109 |
+
\point{0.,-1.,-1.};
|
110 |
+
\point{1.,-1.,-1.};
|
111 |
+
\point{-1.,0.,-1.};
|
112 |
+
\point{-1.,1.,-1.};
|
113 |
+
\point{-1.,2.,-1.};
|
114 |
+
\point{0.,-1.,1.};
|
115 |
+
\point{0.,0.,-1.}; % on face
|
116 |
+
\point{0.,-1.,0.}; % on face
|
117 |
+
\point{0.,0.,0.}; % inside
|
118 |
+
|
119 |
+
% front faces
|
120 |
+
\path [draw, fill opacity=0.7, fill=fillColor] (0.4,-1.,1.8)--(1.333,-1.,-1.)--(-1.,2.5,-1.)--cycle;
|
121 |
+
|
122 |
+
% front points
|
123 |
+
\point{0.,1.,-1.};
|
124 |
+
\point{0.,0.,1.};
|
125 |
+
\point{1.,-1.,0.};
|
126 |
+
\end{scope}
|
127 |
+
\end{scope}
|
128 |
+
|
129 |
+
\begin{scope}[xshift=5cm, yshift=-6.5cm]
|
130 |
+
\node at (0, 0) {$\Delta$};
|
131 |
+
|
132 |
+
\tdplotsetmaincoords{\rotation}{180 - \zRotation}
|
133 |
+
\tdplotsetrotatedcoords{0}{90}{90}
|
134 |
+
\begin{scope}[tdplot_rotated_coords, xshift=-0.2cm, yshift=1.8cm]
|
135 |
+
% back edges
|
136 |
+
\path [draw, densely dotted] (0.4,-1.,1.8)--(1.333,-1.,-1.);
|
137 |
+
\path [draw, densely dotted] (1.333,-1.,-1.)--(-1.,2.5,-1.);
|
138 |
+
\path [draw, densely dotted] (-1.,2.5,-1.)--(0.4,-1.,1.8);
|
139 |
+
\path [draw, densely dotted] (1.333,-1.,-1.)--(-1.,-1.,-1.);
|
140 |
+
\path [draw, densely dotted] (-1.,-1.,-1.)--(-1.,2.5,-1.);
|
141 |
+
\path [draw, densely dotted] (-1.,-1.,-1.)--(0.4,-1.,1.8);
|
142 |
+
|
143 |
+
% back faces
|
144 |
+
\path [draw, fill opacity=\opacity, fill=fillColor] (-1.,-1.,-1.)--(0.,-1.,1.)--(0.,0.,1.)--(-1.,2.,-1.)--cycle;
|
145 |
+
\path [draw, fill opacity=\opacity, fill=fillColor] (-1.,-1.,-1.)--(-1.,2.,-1.)--(0.,1.,-1.)--(1.,-1.,-1.)--cycle;
|
146 |
+
\path [draw, fill opacity=\opacity, fill=fillColor] (0.,-1.,1.)--(-1.,-1.,-1.)--(1.,-1.,-1.)--(1.,-1.,0.)--cycle;
|
147 |
+
|
148 |
+
% back points
|
149 |
+
\point{-1.,-1.,-1.};
|
150 |
+
\point{-1.,0.,-1.};
|
151 |
+
\point{-1.,1.,-1.};
|
152 |
+
\point{0.,-1.,-1.};
|
153 |
+
\point{0.,-1.,0.}; % on face
|
154 |
+
\point{0.,0.,-1.}; % on face
|
155 |
+
\point{0.,0.,0.}; % inside
|
156 |
+
|
157 |
+
% front faces
|
158 |
+
\path [draw, fill opacity=\opacity, fill=fillColor] (0.,0.,1.)--(0.,1.,-1.)--(-1.,2.,-1.)--cycle;
|
159 |
+
\path [draw, fill opacity=\opacity, fill=fillColor] (0.,1.,-1.)--(1.,-1.,0.)--(1.,-1.,-1.)--cycle;
|
160 |
+
\path [draw, fill opacity=\opacity, fill=fillColor] (1.,-1.,0.)--(0.,1.,-1.)--(0.,0.,1.)--cycle;
|
161 |
+
\path [draw, fill opacity=\opacity, fill=fillColor] (1.,-1.,0.)--(0.,0.,1.)--(0.,-1.,1.)--cycle;
|
162 |
+
|
163 |
+
% front points
|
164 |
+
\point{1.,-1.,-1.};
|
165 |
+
\point{1.,-1.,0.};
|
166 |
+
\point{0.,1.,-1.};
|
167 |
+
\point{0.,-1.,1.};
|
168 |
+
\point{0.,0.,1.};
|
169 |
+
\point{-1.,2.,-1.};
|
170 |
+
\end{scope}
|
171 |
+
\end{scope}
|
172 |
+
|
173 |
+
\begin{scope}[yshift=-6.5cm]
|
174 |
+
\path [draw, -Stealth] (3.7, 2.7) -- node [above] {dual} (1.7, 2.7);
|
175 |
+
|
176 |
+
\node at (0, 0) {$\Delta^{\!*}$};
|
177 |
+
|
178 |
+
\tdplotsetmaincoords{\rotation}{-\zRotation}
|
179 |
+
\tdplotsetrotatedcoords{0}{90}{90}
|
180 |
+
\begin{scope}[tdplot_rotated_coords, xshift=0.2cm, yshift=3.4cm]
|
181 |
+
% back edges
|
182 |
+
\path [draw, fill opacity=\opacity, fill=fillColor] (0.,0.,1.)--(-2.,-2.,-1.)--(2.,0.,-1.) --cycle;
|
183 |
+
\path [draw, fill opacity=\opacity, fill=fillColor] (-3.,-2.,-1.)--(-2.,-2.,-1.)--(0.,0.,1.)--(-2.,-1.,0.) --cycle;
|
184 |
+
\path [draw, fill opacity=\opacity, fill=fillColor] (0.,1.,0.)--(0.,0.,1.)--(2.,0.,-1.) --cycle;
|
185 |
+
|
186 |
+
% back faces
|
187 |
+
\path [draw, densely dotted] (2.,0.,-1.)--(-3.,-2.,-1.);
|
188 |
+
\path [draw, densely dotted] (-3.,-2.,-1.)--(0.,1.,0.);
|
189 |
+
\path [draw, densely dotted] (0.,0.,1.)--(-3.,-2.,-1.);
|
190 |
+
|
191 |
+
% back points
|
192 |
+
\point{-1.,-1.,0.};
|
193 |
+
\point{1.,0.,0.};
|
194 |
+
\point{0.,0.,0.}; % inside
|
195 |
+
|
196 |
+
% front faces
|
197 |
+
\path [draw, fill opacity=\opacity, fill=fillColor] (-1.,0.,-1.)--(-3.,-2.,-1.)--(-2.,-1.,0.)--(0.,1.,0.) --cycle;
|
198 |
+
\path [draw, fill opacity=\opacity, fill=fillColor] (-1.,0.,-1.)--(0.,1.,0.)--(2.,0.,-1.) --cycle;
|
199 |
+
\path [draw, fill opacity=\opacity, fill=fillColor] (-1.,0.,-1.)--(2.,0.,-1.)--(-2.,-2.,-1.)--(-3.,-2.,-1.) --cycle;
|
200 |
+
\path [draw, fill opacity=\opacity, fill=fillColor] (-2.,-1.,0.)--(0.,0.,1.)--(0.,1.,0.) --cycle;
|
201 |
+
|
202 |
+
% front points
|
203 |
+
\point{-3.,-2.,-1.};
|
204 |
+
\point{-2.,-2.,-1.};
|
205 |
+
\point{-2.,-1.,-1.};
|
206 |
+
\point{-2.,-1.,0.};
|
207 |
+
\point{-1.,0.,-1.};
|
208 |
+
\point{-1.,0.,0.};
|
209 |
+
\point{0.,-1.,-1.};
|
210 |
+
\point{0.,0.,-1.};
|
211 |
+
\point{0.,0.,1.};
|
212 |
+
\point{0.,1.,0.};
|
213 |
+
\point{1.,0.,-1.};
|
214 |
+
\point{2.,0.,-1.};
|
215 |
+
\point{-1.,-1.,-1.}; % on face
|
216 |
+
\end{scope}
|
217 |
+
\end{scope}
|
218 |
+
|
219 |
+
% \begin{scope}[yshift=-6.5cm]
|
220 |
+
% \path [draw, -Stealth] (3.7, 2.7) --(1.7, 2.7);
|
221 |
+
|
222 |
+
% \node at (0, 0) {$\Delta^{\!*}$};
|
223 |
+
|
224 |
+
% \tdplotsetmaincoords{\rotation}{180 - \zRotation}
|
225 |
+
% \tdplotsetrotatedcoords{0}{90}{90}
|
226 |
+
% \begin{scope}[tdplot_rotated_coords, xshift=0.2cm, yshift=3.4cm]
|
227 |
+
% % back faces
|
228 |
+
% \path [draw, fill opacity=\opacity, fill=fillColor] (-1.,0.,-1.)--(-3.,-2.,-1.)--(-2.,-1.,0.)--(0.,1.,0.) --cycle;
|
229 |
+
% \path [draw, fill opacity=\opacity, fill=fillColor] (-1.,0.,-1.)--(0.,1.,0.)--(2.,0.,-1.) --cycle;
|
230 |
+
% \path [draw, fill opacity=\opacity, fill=fillColor] (-1.,0.,-1.)--(2.,0.,-1.)--(-2.,-2.,-1.)--(-3.,-2.,-1.) --cycle;
|
231 |
+
% \path [draw, fill opacity=\opacity, fill=fillColor] (-2.,-1.,0.)--(0.,0.,1.)--(0.,1.,0.) --cycle;
|
232 |
+
|
233 |
+
% % back points
|
234 |
+
% \point{-3.,-2.,-1.};
|
235 |
+
% \point{-2.,-2.,-1.};
|
236 |
+
% \point{-2.,-1.,-1.};
|
237 |
+
% \point{-2.,-1.,0.};
|
238 |
+
% \point{-1.,0.,-1.};
|
239 |
+
% \point{-1.,0.,0.};
|
240 |
+
% \point{0.,-1.,-1.};
|
241 |
+
% \point{0.,0.,-1.};
|
242 |
+
% \point{0.,0.,1.};
|
243 |
+
% \point{0.,1.,0.};
|
244 |
+
% \point{1.,0.,-1.};
|
245 |
+
% \point{2.,0.,-1.};
|
246 |
+
% \point{-1.,-1.,-1.}; % on face
|
247 |
+
% \point{0.,0.,0.}; % inside
|
248 |
+
|
249 |
+
% % front edges
|
250 |
+
% \path [draw, fill opacity=\opacity, fill=fillColor] (0.,0.,1.)--(-2.,-2.,-1.)--(2.,0.,-1.) --cycle;
|
251 |
+
% \path [draw, fill opacity=\opacity, fill=fillColor] (-3.,-2.,-1.)--(-2.,-2.,-1.)--(0.,0.,1.)--(-2.,-1.,0.) --cycle;
|
252 |
+
% \path [draw, fill opacity=\opacity, fill=fillColor] (0.,1.,0.)--(0.,0.,1.)--(2.,0.,-1.) --cycle;
|
253 |
+
|
254 |
+
% % front faces
|
255 |
+
% \path [draw, densely dotted] (2.,0.,-1.)--(-3.,-2.,-1.);
|
256 |
+
% \path [draw, densely dotted] (-3.,-2.,-1.)--(0.,1.,0.);
|
257 |
+
% \path [draw, densely dotted] (0.,0.,1.)--(-3.,-2.,-1.);
|
258 |
+
|
259 |
+
% % front points
|
260 |
+
% \point{-1.,-1.,0.};
|
261 |
+
% \point{1.,0.,0.};
|
262 |
+
% \end{scope}
|
263 |
+
% \end{scope}
|
264 |
+
\end{tikzpicture}
|
265 |
+
|
266 |
+
\end{document}
|