Datasets:

Size Categories:
100B<n<1T
ArXiv:
Tags:
physics
math
License:
schoeller commited on
Commit
95b939a
1 Parent(s): a4f5680

improve README

Browse files
.gitignore ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ *.aux
2
+ *.log
3
+ *.out
4
+ *.pdf
5
+ *.synctex.*
6
+ auto/
README.md CHANGED
@@ -1,58 +1,82 @@
1
  ---
2
  license: cc-by-sa-4.0
3
- pretty_name: Weight Systems Defining Five-Dimensional Reflexive and Non-Reflexive Polyhedra
4
  configs:
5
- - config_name: non-reflexive
6
- data_files:
7
- - split: full
8
- path: non-reflexive/*.parquet
9
- - config_name: reflexive
10
- data_files:
11
- - split: full
12
- path: reflexive/*.parquet
13
  tags:
14
- - physics
15
- - math
16
  ---
17
 
18
- # Dataset of Weight Systems Defining Five-Dimensional Reflexive and Non-Reflexive Polyhedra
19
 
20
  This dataset contains all weight systems defining five-dimensional reflexive and
21
- non-reflexive polyhedra, instrumental in the study of Calabi-Yau fourfolds in mathematics
22
- and theoretical physics. The data was compiled by Friedrich Schöller and Harald Skarke in
23
- [arXiv:1808.02422](https://arxiv.org/abs/1808.02422). More information is available at the
24
- [Calabi-Yau data website](http://hep.itp.tuwien.ac.at/~kreuzer/CY/). The dataset can be
25
- explored using the [search frontend](http://rgc.itp.tuwien.ac.at/fourfolds/).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
  ## Dataset Details
28
 
29
- The dataset consists of two subsets: weight systems defining reflexive polyhedra and
30
- weight systems defining non-reflexive polyhedra. Each subset is split into 4000 files in
31
- Parquet format. Rows within each file are sorted lexicographically by weights.
 
32
 
33
- Each row in the dataset represents a polyhedron and contains the six weights defining it,
34
  along with the vertex count, facet count, and lattice point count. The reflexive dataset
35
  also includes the Hodge numbers \\( h^{1,1} \\), \\( h^{1,2} \\), and \\( h^{1,3} \\) of
36
- the corresponding Calabi-Yau manifold, and the lattice point count of the dual polyhedron.
37
 
38
  For any Calabi-Yau fourfold, the Euler characteristic \\( \chi \\) and the Hodge number
39
  \\( h^{2,2} \\) can be derived as follows:
 
40
  $$ \chi = 48 + 6 (h^{1,1} − h^{1,2} + h^{1,3}) $$
 
41
  $$ h^{2,2} = 44 + 4 h^{1,1} − 2 h^{1,2} + 4 h^{1,3} $$
42
 
43
- This dataset is licensed under the [CC BY-SA 4.0 license](http://creativecommons.org/licenses/by-sa/4.0/).
 
44
 
45
  ### Data Fields
46
 
47
- - `weight0 to weight5:` Weights of the weight system defining the polyhedron.
48
- - `vertex_count:` Vertex count of the polyhedron.
49
- - `facet_count:` Facet count of the polyhedron.
50
- - `point_count:` Lattice point count of the polyhedron.
51
- - `dual_point_count:` Lattice point count of the dual polyhedron (only for reflexive
52
- polyhedra).
53
- - `h11:` Hodge number \\( h^{1,1} \\) (only for reflexive polyhedra).
54
- - `h12:` Hodge number \\( h^{1,2} \\) (only for reflexive polyhedra).
55
- - `h13:` Hodge number \\( h^{1,3} \\) (only for reflexive polyhedra).
56
 
57
  ## Usage
58
 
@@ -70,8 +94,8 @@ for row in dataset.take(5):
70
  ```
71
 
72
  When cloning the Git repository with Git Large File Storage (LFS), data files are stored
73
- in the Git LFS storage directory, as well as in the working tree. To avoid occupying
74
- double the disk space, use a filesystem that supports copy-on-write and run the following
75
  commands to clone the repository:
76
 
77
  ```bash
@@ -95,22 +119,160 @@ git lfs fetch
95
  git lfs dedup
96
  ```
97
 
98
- ## Citation
99
 
100
- Please cite the following research paper when referencing this dataset:
 
 
101
 
102
- ```
103
- @article{Scholler:2018apc,
104
- author = {Sch\"oller, Friedrich and Skarke, Harald},
105
- title = "{All Weight Systems for Calabi-Yau Fourfolds from Reflexive Polyhedra}",
106
- eprint = "1808.02422",
107
- archivePrefix = "arXiv",
108
- primaryClass = "hep-th",
109
- doi = "10.1007/s00220-019-03331-9",
110
- journal = "Commun. Math. Phys.",
111
- volume = "372",
112
- number = "2",
113
- pages = "657--678",
114
- year = "2019"
115
- }
116
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-sa-4.0
3
+ pretty_name: Weight Systems Defining Five-Dimensional IP Lattice Polytopes
4
  configs:
5
+ - config_name: non-reflexive
6
+ data_files:
7
+ - split: full
8
+ path: non-reflexive/*.parquet
9
+ - config_name: reflexive
10
+ data_files:
11
+ - split: full
12
+ path: reflexive/*.parquet
13
  tags:
14
+ - physics
15
+ - math
16
  ---
17
 
18
+ # Weight Systems Defining Five-Dimensional IP Lattice Polytopes
19
 
20
  This dataset contains all weight systems defining five-dimensional reflexive and
21
+ non-reflexive IP lattice polytopes, instrumental in the study of Calabi-Yau fourfolds in
22
+ mathematics and theoretical physics. The data was compiled by Harald Skarke and Friedrich
23
+ Schöller in [arXiv:1808.02422](https://arxiv.org/abs/1808.02422). More information is
24
+ available at the [Calabi-Yau data website](http://hep.itp.tuwien.ac.at/~kreuzer/CY/). The
25
+ dataset can be explored using the [search
26
+ frontend](http://rgc.itp.tuwien.ac.at/fourfolds/). See below for a short mathematical
27
+ exposition on the construction of polytopes.
28
+
29
+ Please cite the paper when referencing this dataset:
30
+
31
+ ```
32
+ @article{Scholler:2018apc,
33
+ author = {Schöller, Friedrich and Skarke, Harald},
34
+ title = "{All Weight Systems for Calabi-Yau Fourfolds from Reflexive Polyhedra}",
35
+ eprint = "1808.02422",
36
+ archivePrefix = "arXiv",
37
+ primaryClass = "hep-th",
38
+ doi = "10.1007/s00220-019-03331-9",
39
+ journal = "Commun. Math. Phys.",
40
+ volume = "372",
41
+ number = "2",
42
+ pages = "657--678",
43
+ year = "2019"
44
+ }
45
+ ```
46
 
47
  ## Dataset Details
48
 
49
+ The dataset consists of two subsets: weight systems defining reflexive (and therefore IP)
50
+ polytopes and weight systems defining non-reflexive IP polytopes. Each subset is split
51
+ into 4000 files in Parquet format. Rows within each file are sorted lexicographically by
52
+ weights.
53
 
54
+ Each row in the dataset represents a polytope and contains the six weights defining it,
55
  along with the vertex count, facet count, and lattice point count. The reflexive dataset
56
  also includes the Hodge numbers \\( h^{1,1} \\), \\( h^{1,2} \\), and \\( h^{1,3} \\) of
57
+ the corresponding Calabi-Yau manifold, and the lattice point count of the dual polytope.
58
 
59
  For any Calabi-Yau fourfold, the Euler characteristic \\( \chi \\) and the Hodge number
60
  \\( h^{2,2} \\) can be derived as follows:
61
+
62
  $$ \chi = 48 + 6 (h^{1,1} − h^{1,2} + h^{1,3}) $$
63
+
64
  $$ h^{2,2} = 44 + 4 h^{1,1} − 2 h^{1,2} + 4 h^{1,3} $$
65
 
66
+ This dataset is licensed under the
67
+ [CC BY-SA 4.0 license](http://creativecommons.org/licenses/by-sa/4.0/).
68
 
69
  ### Data Fields
70
 
71
+ - `weight0` to `weight5`: Weights of the weight system defining the polytope.
72
+ - `vertex_count`: Vertex count of the polytope.
73
+ - `facet_count`: Facet count of the polytope.
74
+ - `point_count`: Lattice point count of the polytope.
75
+ - `dual_point_count`: Lattice point count of the dual polytope (only for reflexive
76
+ polytopes).
77
+ - `h11`: Hodge number \\( h^{1,1} \\) (only for reflexive polytopes).
78
+ - `h12`: Hodge number \\( h^{1,2} \\) (only for reflexive polytopes).
79
+ - `h13`: Hodge number \\( h^{1,3} \\) (only for reflexive polytopes).
80
 
81
  ## Usage
82
 
 
94
  ```
95
 
96
  When cloning the Git repository with Git Large File Storage (LFS), data files are stored
97
+ both in the Git LFS storage directory and in the working tree. To avoid occupying double
98
+ the disk space, use a filesystem that supports copy-on-write, and run the following
99
  commands to clone the repository:
100
 
101
  ```bash
 
119
  git lfs dedup
120
  ```
121
 
122
+ ## Construction of Polytopes
123
 
124
+ This is an introduction to the mathematics involved in the construction of polytopes
125
+ relevant to this dataset. For more details and precise definitions, consult the paper
126
+ [arXiv:1808.02422](https://arxiv.org/abs/1808.02422) and references therein.
127
 
128
+ ### Polytopes
129
+
130
+ A polytope is the convex hull of a finite set of points in \\(n\\)-dimensional Euclidean
131
+ space, \\(\mathbb{R}^n\\). This means it is the smallest convex shape that contains all
132
+ these points. The minimal collection of points that define a particular polytope are its
133
+ vertices. Familiar examples of polytopes include triangles and rectangles in two
134
+ dimensions, and cubes and octahedra in three dimensions.
135
+
136
+ A polytope is considered an *IP polytope* (interior point polytope) if the origin of
137
+ \\(\mathbb{R}^n\\) is in the interior of the polytope, not on its boundary or outside it.
138
+
139
+ For any IP polytope \\(\nabla\\), its dual polytope \\(\nabla^*\\) is defined as the set
140
+ of points \\(\mathbf{y}\\) satisfying
141
+
142
+ $$
143
+ \mathbf{x} \cdot \mathbf{y}
144
+ \ge -1 \quad \text{for all } \mathbf{x} \in \nabla \;.
145
+ $$
146
+
147
+ This relationship is symmetric: the dual of the dual of a polytope is the polytope itself,
148
+ i.e., \\( \nabla^{**} = \nabla \\).
149
+
150
+ ### Weight Systems
151
+
152
+ Weight systems provide a means to describe simple polytopes known as *simplexes*. More
153
+ broadly, *combined weight systems*, which are collections of individual weight systems,
154
+ can describe any polytope. A combined weight system is a matrix consisting of real
155
+ numbers. The construction process is outlined as follows:
156
+
157
+ Consider a polytope in \\(\mathbb{R}^n\\) with vertex count \\(k\\), where \\(k\\) is
158
+ bigger than \\(n\\). It is possible to position \\(n\\) of these vertices at arbitrary
159
+ (linearly independent) locations through a linear transformation. The placement of the
160
+ remaining \\(k - n\\) vertices is then determined. Their positions are the defining
161
+ properties of a polytope. To specify these positions independently of the applied linear
162
+ transformation, one can use the following system of equations. If \\(\mathbf{v}_0,
163
+ \mathbf{v}_1, \dots \mathbf{v}_{k-1}\\) are the vertices of the polytope, these relations
164
+ fix \\(k - n\\) vertices in terms of the other \\(n\\):
165
+
166
+ $$
167
+ \sum_{i=0}^{k-1} q_i^{(j)} \mathbf{v}_i
168
+ = 0 \quad \text{for } 0 \le j \le k - n - 1 \;,
169
+ $$
170
+
171
+ where \\(q_i^{(j)}\\) is the matrix of real numbers, the combined weight system. In cases
172
+ where \\(k = n + 1\\), \\(j\\) is limited to the value zero, reducing the matrix to a
173
+ single weight system \\(q_i\\). In this scenario, the polytope is a simplex, and the
174
+ equation simplifies to:
175
+
176
+ $$ \sum_{i=0}^n q_i \mathbf{v}_i = 0 \;. $$
177
+
178
+ It is important to note that scaling all weights in a weight system by a common factor
179
+ results in an equivalent weight system that defines the same polytope.
180
+
181
+ For this dataset, the focus is on a specific construction of lattice polytopes described
182
+ in subsequent sections.
183
+
184
+ ### Lattice Polytopes
185
+
186
+ A lattice polytope is a polytope with vertices at the points of a regular grid, or
187
+ lattice. Using linear transformations, any lattice polytope can be transformed so that its
188
+ vertices have integer coordinates, hence they are also referred to as integral
189
+ polytopes.
190
+
191
+ The dual of a lattice with points \\(L\\) is the lattice consisting of all points
192
+ \\(\mathbf{y}\\) that satisfy
193
+
194
+ $$
195
+ \mathbf{x} \cdot \mathbf{y} \in \mathbb{Z} \quad \text{for all } \mathbf{x} \in L \;.
196
+ $$
197
+
198
+ *Reflexive polytopes* are a specific type of lattice polytope characterized by having a
199
+ dual that is also a lattice polytope, with vertices situated on the dual lattice. These
200
+ polytopes play a central role in the context of this dataset.
201
+
202
+ The weights of a lattice polytope are always rational. This characteristic enables the
203
+ rescaling of a weight system so that its weights become integers without any common
204
+ divisor. This rescaling has been performed in this dataset.
205
+
206
+ Typically, the dual of a lattice polytope defined by a weight system is not a lattice
207
+ polytope. However, our interest lies in a different construction than simply considering
208
+ polytopes defined by (combined) weight systems, as described above. In this construction,
209
+ they are just the starting point. We start with the polytope \\(\nabla\\), arising from a
210
+ weight system as previously described. Then, we define the polytope \\(\Delta\\) as the
211
+ convex hull of the intersection of \\(\nabla^*\\) with the points of the dual lattice. In
212
+ the context of this dataset, the polytope \\(\Delta\\) is referred to as ‘the polytope’.
213
+ Correspondingly, \\(\Delta^{\!*}\\) is referred to as ‘the dual polytope’. The lattice of
214
+ \\(\Delta\\) is taken to be the coarsest lattice possible, such that \\(\nabla\\) is a
215
+ lattice polytope, i.e., the lattice generated by the vertices of \\(\nabla\\). This
216
+ construction is exemplified in the following sections.
217
+
218
+ A weight system is considered an IP weight system if the corresponding \\(\Delta\\) is an
219
+ IP polytope; that is, the origin is within its interior. Since only IP polytopes have
220
+ corresponding dual polytopes, this condition is essential for the polytope \\(\Delta\\) to
221
+ be classified as reflexive.
222
+
223
+ ### Two Dimensions
224
+
225
+ In two dimensions, all IP weight systems define reflexive polytopes and every vertex of
226
+ \\(\nabla^*\\) lies on the dual lattice, making \\(\Delta\\) and \\(\nabla^*\\) identical.
227
+ There are exactly three IP weight systems that define two-dimensional polytopes
228
+ (polygons). Each polytope is reflexive and has three vertices and three facets (edges):
229
+
230
+ | weight system | number of points of \\(\nabla\\) | number of points of \\(\nabla^*\\) |
231
+ |--------------:|---------------------------------:|-----------------------------------:|
232
+ | (1, 1, 1) | 4 | 10 |
233
+ | (1, 1, 2) | 5 | 9 |
234
+ | (1, 2, 3) | 7 | 7 |
235
+
236
+ We will now construct these polytopes from their corresponding weight system. Fixing the
237
+ first two vertices of the polytopes
238
+
239
+ $$
240
+ \mathbf{v}_0 = (1, 0) \quad \text{and} \quad
241
+ \mathbf{v}_1 = (0, 1) \;,
242
+ $$
243
+
244
+ one can obtain the position of the third vertex by solving the weight system equation from
245
+ before:
246
+
247
+ $$
248
+ \mathbf{v}_2 = - \frac{q_0 \mathbf{v}_0 + q_1 \mathbf{v}_1}{q_2} \;.
249
+ $$
250
+
251
+ The resulting polytopes and their duals are depicted below. Lattice points are indicated
252
+ by dots.
253
+ <img src="pictures/ws-2d.png" style="display: block; margin-left: auto; margin-right: auto; width:520px;">
254
+
255
+ One may notice that a simpler description could be obtained by fixing \\(\mathbf{v}_2 =
256
+ (1, 0)\\) instead of \\(\mathbf{v}_0\\), which would avoid fractional vertex coordinates.
257
+ However, this approach would not illustrate the general case in higher dimensions, where
258
+ this is not possible since there is not always a weight equal to 1.
259
+
260
+ ### General Dimension
261
+
262
+ In higher dimensions, the situation becomes more complex. Not all IP polytopes are
263
+ reflexive, and generally, \\(\Delta \neq \nabla^*\\).
264
+
265
+ This example shows the construction of the three-dimensional polytope \\(\Delta\\) with
266
+ weight system (2, 3, 4, 5) and its dual \\(\Delta^{\!*}\\). Lattice points lying on the
267
+ polytopes are indicated by dots. \\(\Delta\\) has 7 vertices and 13 lattice points,
268
+ \\(\Delta^{\!*}\\) also has 7 vertices, but 16 lattice points.
269
+ <img src="pictures/ws-3d-2-3-4-5.png" style="display: block; margin-left: auto; margin-right: auto; width:450px;">
270
+
271
+ The counts of reflexive single-weight-system polytopes by dimension \\(n\\) are:
272
+
273
+ | \\(n\\) | reflexive single-weight-system polytopes |
274
+ |--------:|-----------------------------------------:|
275
+ | 2 | 3 |
276
+ | 3 | 95 |
277
+ | 4 | 184,026 |
278
+ | 5 | (this dataset) 185,269,499,015 |
pictures/Makefile ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ SOURCES = $(wildcard *.tex)
2
+ PNGS = $(SOURCES:.tex=.png)
3
+ PDFS = $(SOURCES:.tex=.pdf)
4
+
5
+ png: $(PNGS)
6
+ pdf: $(PDFS)
7
+
8
+ %.pdf: %.tex
9
+ pdflatex $<
10
+ rm $(<:.tex=.aux) $(<:.tex=.log)
11
+
12
+ %.png: %.pdf
13
+ convert -density 600 $< -flatten $@
14
+
15
+ .PHONY: clean
16
+ clean:
17
+ rm -rf auto *.aux *.log *.synctex.gz
18
+
19
+ .PHONY: cleanall
20
+ cleanall: clean
21
+ rm -rf *.png *.pdf
pictures/ws-2d.png ADDED

Git LFS Details

  • SHA256: 291cf0abe87b5343189a67c9fe36c9cb0ad7ddc0e46a39009f54f759c017b735
  • Pointer size: 131 Bytes
  • Size of remote file: 134 kB
pictures/ws-2d.tex ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ \documentclass[tikz,11pt]{standalone}
2
+
3
+ \usepackage{tikz}
4
+
5
+ \pgfmathsetmacro{\gridLineWidth}{0.6pt}
6
+ \pgfmathsetmacro{\polytopeLineWidth}{1.2pt}
7
+ \pgfmathsetmacro{\dotSize}{0.5mm}
8
+ \definecolor{fillColor}{rgb}{0.8,0.8,0.8}
9
+ \pgfmathsetmacro{\opacity}{0.7}
10
+
11
+ \begin{document}
12
+ \begin{tikzpicture}
13
+ % (1, 1, 1)
14
+ \begin{scope}[yshift=5.2cm, scale=0.7]
15
+ \node at (-5, 0) {$\mathbf{q} = (1, 1, 1)$};
16
+
17
+ \begin{scope}
18
+ \node at (0, -3.3) {$\nabla = \Delta^{\!*}$};
19
+
20
+ \clip (0,0) circle (2.7);
21
+
22
+ \path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (1, 0) --(0, 1) --(-1, -1) --cycle;
23
+
24
+ \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
25
+ \path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
26
+
27
+ \foreach \i in {-2,...,2}
28
+ \foreach \j in {-2,...,2}{
29
+ \node at (\i, \j) [circle, fill, inner sep=\dotSize] {};
30
+ };
31
+ \end{scope}
32
+
33
+ \begin{scope}[xshift=6.5cm]
34
+ \node at (0, -3.3) {$\nabla^* = \Delta$};
35
+
36
+ \clip (0,0) circle (2.7);
37
+ \begin{scope}
38
+ \path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (-1, 2) --(2, -1) --(-1, -1) --cycle;
39
+
40
+ \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
41
+ \path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
42
+
43
+ \foreach \i in {-2,...,2}
44
+ \foreach \j in {-2,...,2}{
45
+ \node at (\i, \j) [circle, fill, inner sep=\dotSize] {};
46
+ };
47
+ \end{scope}
48
+ \end{scope}
49
+ \end{scope}
50
+
51
+ % (1, 1, 2)
52
+ \begin{scope}[yshift=0cm, scale=0.7]
53
+ \node at (-5, 0) {$\mathbf{q} = (1, 1, 2)$};
54
+
55
+ \begin{scope}
56
+ \node at (0, -3.3) {$\nabla = \Delta^{\!*}$};
57
+
58
+ \clip (0,0) circle (2.7);
59
+ \begin{scope}[scale=1.4142] % sqrt(2)
60
+ \path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (1, 0) --(0, 1) --(-1/2, -1/2) --cycle;
61
+
62
+ \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
63
+ \path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
64
+
65
+ \foreach \i in {-2,...,2}
66
+ \foreach \j in {-2,...,2}{
67
+ \node at (\i / 2 - \j / 2, \i / 2 + \j / 2) [circle, fill, inner sep=\dotSize] {};
68
+ };
69
+ \end{scope}
70
+ \end{scope}
71
+
72
+ \begin{scope}[xshift=6.5cm]
73
+ \node at (0, -3.3) {$\nabla^* = \Delta$};
74
+
75
+ \clip (0,0) circle (2.7);
76
+ \begin{scope}[scale=0.707]
77
+ \path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (-1, 3) --(3, -1) --(-1, -1) --cycle;
78
+
79
+ \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
80
+ \path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
81
+
82
+ \foreach \i in {-2,...,2}
83
+ \foreach \j in {-2,...,2}{
84
+ \node at (\i - \j, \i + \j) [circle, fill, inner sep=\dotSize] {};
85
+ };
86
+ \end{scope}
87
+ \end{scope}
88
+ \end{scope}
89
+
90
+ % (1, 2, 3)
91
+ \begin{scope}[yshift=-5.2cm, scale=0.7]
92
+ \node at (-5, 0) {$\mathbf{q} = (1, 2, 3)$};
93
+
94
+ \begin{scope}
95
+ \node at (0, -3.3) {$\nabla = \Delta^{\!*}$};
96
+
97
+ \clip (0,0) circle (2.7);
98
+ \begin{scope}[scale=1.732] % sqrt(3)
99
+ \path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (1, 0) --(0, 1) --(-1/3, -2/3) --cycle;
100
+
101
+ \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
102
+ \path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
103
+
104
+ \foreach \i in {-2,...,2}
105
+ \foreach \j in {-4,...,4}{
106
+ \node at (\i / 3 - \j / 3, \i * 2 / 3 + \j / 3) [circle, fill, inner sep=\dotSize] {};
107
+ };
108
+ \end{scope}
109
+ \end{scope}
110
+
111
+ \begin{scope}[xshift=6.5cm]
112
+ \node at (0, -3.3) {$\nabla^* = \Delta$};
113
+
114
+ \clip (0,0) circle (2.7);
115
+ \begin{scope}[scale=0.577]
116
+ \begin{scope}[xshift=-2cm]
117
+ \path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (5, -1) --(-1, 2) --(-1, -1) --cycle;
118
+
119
+ \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
120
+ \path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
121
+
122
+ \foreach \i in {-1,...,3}
123
+ \foreach \j in {-4,...,4}{
124
+ \node at (3 * \i + \j, \j) [circle, fill, inner sep=\dotSize] {};
125
+ };
126
+ \end{scope}
127
+ \end{scope}
128
+ \end{scope}
129
+ \end{scope}
130
+
131
+ \end{tikzpicture}
132
+ \end{document}
pictures/ws-3d-2-3-4-5.png ADDED

Git LFS Details

  • SHA256: bff66bfefd639786609f3e9201851782aba62dc4b362f827756b7e03141f197a
  • Pointer size: 131 Bytes
  • Size of remote file: 227 kB
pictures/ws-3d-2-3-4-5.tex ADDED
@@ -0,0 +1,266 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ \documentclass[tikz,11pt]{standalone}
2
+
3
+ \usepackage{tikz}
4
+ \usepackage{tikz-3dplot}
5
+
6
+ \usetikzlibrary{arrows.meta}
7
+
8
+ \pgfmathsetmacro{\polytopeLineWidth}{1.2pt}
9
+ \pgfmathsetmacro{\dotSize}{0.5mm}
10
+ \definecolor{fillColor}{rgb}{0.8,0.8,0.8}
11
+ \pgfmathsetmacro{\opacity}{0.7}
12
+ \pgfmathsetmacro{\rotation}{72}
13
+ \pgfmathsetmacro{\zRotation}{30}
14
+ % \pgfmathsetmacro{\rotation}{100}
15
+ % \pgfmathsetmacro{\zRotation}{30}
16
+
17
+ \newcommand{\point}[1]{
18
+ \path (#1) node[fill, black, circle, inner sep=\dotSize] {};
19
+ }
20
+
21
+ \begin{document}
22
+
23
+ \begin{tikzpicture}[line join=bevel, line width=\polytopeLineWidth, scale=1.1]
24
+ \begin{scope}
25
+ \path [draw, -Stealth] (1.7, 2.4) -- node [above] {dual} (3.7, 2.4);
26
+ \path [draw, -Stealth] (5, -0.5) -- node [right] {convex hull} (5, -1.5);
27
+
28
+ \node at (0, 0) {$\nabla$};
29
+
30
+ \tdplotsetmaincoords{\rotation}{-\zRotation}
31
+ \tdplotsetrotatedcoords{0}{90}{90}
32
+
33
+ % \begin{tikzpicture}[tdplot_main_coords]
34
+ % \draw[thick,->] (0,0,0) -- (1,0,0) node[anchor=north east]{$x$};
35
+ % \draw[thick,->] (0,0,0) -- (0,1,0) node[anchor=north west]{$y$};
36
+ % \draw[thick,->] (0,0,0) -- (0,0,1) node[anchor=south]{$z$};
37
+ % \end{tikzpicture}
38
+
39
+ \begin{scope}[tdplot_rotated_coords, xshift=0.2cm, yshift=3.4cm]
40
+ % back faces
41
+ \path [draw, fill opacity=\opacity, fill=fillColor] (2.,0.,-1.)--(0.,0.,1.)--(-3.,-2.,-1.)--cycle;
42
+ \path [draw, fill opacity=\opacity, fill=fillColor] (0.,1.,0.)--(0.,0.,1.)--(2.,0.,-1.)--cycle;
43
+
44
+ % back points
45
+ \point{1,0,0};
46
+ \point{0.,0.,0.}; % inside
47
+
48
+ % front faces
49
+ \path [draw, fill opacity=\opacity, fill=fillColor] (0.,1.,0.)--(2.,0.,-1.)--(-3.,-2.,-1.)--cycle;
50
+ \path [draw, fill opacity=\opacity, fill=fillColor] (0.,0.,1.)--(0.,1.,0.)--(-3.,-2.,-1.)--cycle;
51
+
52
+ % front points
53
+ \point{2.,0.,-1.};
54
+ \point{0.,1.,0.};
55
+ \point{0.,0.,1.};
56
+ \point{-3.,-2.,-1.};
57
+ \end{scope}
58
+ \end{scope}
59
+
60
+ % \begin{scope}
61
+ % \path [draw, -Stealth] (1.7, 2.4) --(3.7, 2.4);
62
+ % \path [draw, -Stealth] (5, -0.5) --(5, -1.5);
63
+
64
+ % \node at (0, 0) {$\nabla$};
65
+
66
+ % \tdplotsetmaincoords{\rotation}{180 - \zRotation}
67
+ % \tdplotsetrotatedcoords{0}{90}{90}
68
+
69
+ % \begin{scope}[tdplot_rotated_coords, xshift=0.2cm, yshift=3.4cm]
70
+ % % \begin{scope}[tdplot_rotated_coords]
71
+ % % \draw[thick,->] (0,0,0) -- (1,0,0) node[anchor=north east]{$x$};
72
+ % % \draw[thick,->] (0,0,0) -- (0,1,0) node[anchor=north west]{$y$};
73
+ % % \draw[thick,->] (0,0,0) -- (0,0,1) node[anchor=south]{$z$};
74
+ % % \end{scope}
75
+
76
+ % % back faces
77
+ % \path [draw, fill opacity=\opacity, fill=fillColor] (0.,1.,0.)--(2.,0.,-1.)--(-3.,-2.,-1.)--cycle;
78
+ % \path [draw, fill opacity=\opacity, fill=fillColor] (0.,0.,1.)--(0.,1.,0.)--(-3.,-2.,-1.)--cycle;
79
+
80
+ % % back points
81
+ % \point{2.,0.,-1.};
82
+ % \point{0.,1.,0.};
83
+ % \point{0.,0.,1.};
84
+ % \point{-3.,-2.,-1.};
85
+ % \point{0.,0.,0.}; % inside
86
+
87
+ % % front faces
88
+ % \path [draw, fill opacity=\opacity, fill=fillColor] (2.,0.,-1.)--(0.,0.,1.)--(-3.,-2.,-1.)--cycle;
89
+ % \path [draw, fill opacity=\opacity, fill=fillColor] (0.,1.,0.)--(0.,0.,1.)--(2.,0.,-1.)--cycle;
90
+
91
+ % % front points
92
+ % \point{1,0,0};
93
+ % \end{scope}
94
+ % \end{scope}
95
+
96
+ \begin{scope}[xshift=5cm]
97
+ \node at (0, 0) {$\nabla^*$};
98
+
99
+ \tdplotsetmaincoords{\rotation}{180 - \zRotation}
100
+ \tdplotsetrotatedcoords{0}{90}{90}
101
+ \begin{scope}[tdplot_rotated_coords, yshift=1.8cm]
102
+ % back faces
103
+ \path [draw, fill opacity=0.7, fill=fillColor] (1.333,-1.,-1.)--(-1.,-1.,-1.)--(-1.,2.5,-1.)--cycle;
104
+ \path [draw, fill opacity=0.7, fill=fillColor] (-1.,-1.,-1.)--(0.4,-1.,1.8)--(-1.,2.5,-1.)--cycle;
105
+ \path [draw, fill opacity=0.7, fill=fillColor] (0.4,-1.,1.8)--(-1.,-1.,-1.)--(1.333,-1.,-1.)--cycle;
106
+
107
+ % back points
108
+ \point{-1.,-1.,-1.};
109
+ \point{0.,-1.,-1.};
110
+ \point{1.,-1.,-1.};
111
+ \point{-1.,0.,-1.};
112
+ \point{-1.,1.,-1.};
113
+ \point{-1.,2.,-1.};
114
+ \point{0.,-1.,1.};
115
+ \point{0.,0.,-1.}; % on face
116
+ \point{0.,-1.,0.}; % on face
117
+ \point{0.,0.,0.}; % inside
118
+
119
+ % front faces
120
+ \path [draw, fill opacity=0.7, fill=fillColor] (0.4,-1.,1.8)--(1.333,-1.,-1.)--(-1.,2.5,-1.)--cycle;
121
+
122
+ % front points
123
+ \point{0.,1.,-1.};
124
+ \point{0.,0.,1.};
125
+ \point{1.,-1.,0.};
126
+ \end{scope}
127
+ \end{scope}
128
+
129
+ \begin{scope}[xshift=5cm, yshift=-6.5cm]
130
+ \node at (0, 0) {$\Delta$};
131
+
132
+ \tdplotsetmaincoords{\rotation}{180 - \zRotation}
133
+ \tdplotsetrotatedcoords{0}{90}{90}
134
+ \begin{scope}[tdplot_rotated_coords, xshift=-0.2cm, yshift=1.8cm]
135
+ % back edges
136
+ \path [draw, densely dotted] (0.4,-1.,1.8)--(1.333,-1.,-1.);
137
+ \path [draw, densely dotted] (1.333,-1.,-1.)--(-1.,2.5,-1.);
138
+ \path [draw, densely dotted] (-1.,2.5,-1.)--(0.4,-1.,1.8);
139
+ \path [draw, densely dotted] (1.333,-1.,-1.)--(-1.,-1.,-1.);
140
+ \path [draw, densely dotted] (-1.,-1.,-1.)--(-1.,2.5,-1.);
141
+ \path [draw, densely dotted] (-1.,-1.,-1.)--(0.4,-1.,1.8);
142
+
143
+ % back faces
144
+ \path [draw, fill opacity=\opacity, fill=fillColor] (-1.,-1.,-1.)--(0.,-1.,1.)--(0.,0.,1.)--(-1.,2.,-1.)--cycle;
145
+ \path [draw, fill opacity=\opacity, fill=fillColor] (-1.,-1.,-1.)--(-1.,2.,-1.)--(0.,1.,-1.)--(1.,-1.,-1.)--cycle;
146
+ \path [draw, fill opacity=\opacity, fill=fillColor] (0.,-1.,1.)--(-1.,-1.,-1.)--(1.,-1.,-1.)--(1.,-1.,0.)--cycle;
147
+
148
+ % back points
149
+ \point{-1.,-1.,-1.};
150
+ \point{-1.,0.,-1.};
151
+ \point{-1.,1.,-1.};
152
+ \point{0.,-1.,-1.};
153
+ \point{0.,-1.,0.}; % on face
154
+ \point{0.,0.,-1.}; % on face
155
+ \point{0.,0.,0.}; % inside
156
+
157
+ % front faces
158
+ \path [draw, fill opacity=\opacity, fill=fillColor] (0.,0.,1.)--(0.,1.,-1.)--(-1.,2.,-1.)--cycle;
159
+ \path [draw, fill opacity=\opacity, fill=fillColor] (0.,1.,-1.)--(1.,-1.,0.)--(1.,-1.,-1.)--cycle;
160
+ \path [draw, fill opacity=\opacity, fill=fillColor] (1.,-1.,0.)--(0.,1.,-1.)--(0.,0.,1.)--cycle;
161
+ \path [draw, fill opacity=\opacity, fill=fillColor] (1.,-1.,0.)--(0.,0.,1.)--(0.,-1.,1.)--cycle;
162
+
163
+ % front points
164
+ \point{1.,-1.,-1.};
165
+ \point{1.,-1.,0.};
166
+ \point{0.,1.,-1.};
167
+ \point{0.,-1.,1.};
168
+ \point{0.,0.,1.};
169
+ \point{-1.,2.,-1.};
170
+ \end{scope}
171
+ \end{scope}
172
+
173
+ \begin{scope}[yshift=-6.5cm]
174
+ \path [draw, -Stealth] (3.7, 2.7) -- node [above] {dual} (1.7, 2.7);
175
+
176
+ \node at (0, 0) {$\Delta^{\!*}$};
177
+
178
+ \tdplotsetmaincoords{\rotation}{-\zRotation}
179
+ \tdplotsetrotatedcoords{0}{90}{90}
180
+ \begin{scope}[tdplot_rotated_coords, xshift=0.2cm, yshift=3.4cm]
181
+ % back edges
182
+ \path [draw, fill opacity=\opacity, fill=fillColor] (0.,0.,1.)--(-2.,-2.,-1.)--(2.,0.,-1.) --cycle;
183
+ \path [draw, fill opacity=\opacity, fill=fillColor] (-3.,-2.,-1.)--(-2.,-2.,-1.)--(0.,0.,1.)--(-2.,-1.,0.) --cycle;
184
+ \path [draw, fill opacity=\opacity, fill=fillColor] (0.,1.,0.)--(0.,0.,1.)--(2.,0.,-1.) --cycle;
185
+
186
+ % back faces
187
+ \path [draw, densely dotted] (2.,0.,-1.)--(-3.,-2.,-1.);
188
+ \path [draw, densely dotted] (-3.,-2.,-1.)--(0.,1.,0.);
189
+ \path [draw, densely dotted] (0.,0.,1.)--(-3.,-2.,-1.);
190
+
191
+ % back points
192
+ \point{-1.,-1.,0.};
193
+ \point{1.,0.,0.};
194
+ \point{0.,0.,0.}; % inside
195
+
196
+ % front faces
197
+ \path [draw, fill opacity=\opacity, fill=fillColor] (-1.,0.,-1.)--(-3.,-2.,-1.)--(-2.,-1.,0.)--(0.,1.,0.) --cycle;
198
+ \path [draw, fill opacity=\opacity, fill=fillColor] (-1.,0.,-1.)--(0.,1.,0.)--(2.,0.,-1.) --cycle;
199
+ \path [draw, fill opacity=\opacity, fill=fillColor] (-1.,0.,-1.)--(2.,0.,-1.)--(-2.,-2.,-1.)--(-3.,-2.,-1.) --cycle;
200
+ \path [draw, fill opacity=\opacity, fill=fillColor] (-2.,-1.,0.)--(0.,0.,1.)--(0.,1.,0.) --cycle;
201
+
202
+ % front points
203
+ \point{-3.,-2.,-1.};
204
+ \point{-2.,-2.,-1.};
205
+ \point{-2.,-1.,-1.};
206
+ \point{-2.,-1.,0.};
207
+ \point{-1.,0.,-1.};
208
+ \point{-1.,0.,0.};
209
+ \point{0.,-1.,-1.};
210
+ \point{0.,0.,-1.};
211
+ \point{0.,0.,1.};
212
+ \point{0.,1.,0.};
213
+ \point{1.,0.,-1.};
214
+ \point{2.,0.,-1.};
215
+ \point{-1.,-1.,-1.}; % on face
216
+ \end{scope}
217
+ \end{scope}
218
+
219
+ % \begin{scope}[yshift=-6.5cm]
220
+ % \path [draw, -Stealth] (3.7, 2.7) --(1.7, 2.7);
221
+
222
+ % \node at (0, 0) {$\Delta^{\!*}$};
223
+
224
+ % \tdplotsetmaincoords{\rotation}{180 - \zRotation}
225
+ % \tdplotsetrotatedcoords{0}{90}{90}
226
+ % \begin{scope}[tdplot_rotated_coords, xshift=0.2cm, yshift=3.4cm]
227
+ % % back faces
228
+ % \path [draw, fill opacity=\opacity, fill=fillColor] (-1.,0.,-1.)--(-3.,-2.,-1.)--(-2.,-1.,0.)--(0.,1.,0.) --cycle;
229
+ % \path [draw, fill opacity=\opacity, fill=fillColor] (-1.,0.,-1.)--(0.,1.,0.)--(2.,0.,-1.) --cycle;
230
+ % \path [draw, fill opacity=\opacity, fill=fillColor] (-1.,0.,-1.)--(2.,0.,-1.)--(-2.,-2.,-1.)--(-3.,-2.,-1.) --cycle;
231
+ % \path [draw, fill opacity=\opacity, fill=fillColor] (-2.,-1.,0.)--(0.,0.,1.)--(0.,1.,0.) --cycle;
232
+
233
+ % % back points
234
+ % \point{-3.,-2.,-1.};
235
+ % \point{-2.,-2.,-1.};
236
+ % \point{-2.,-1.,-1.};
237
+ % \point{-2.,-1.,0.};
238
+ % \point{-1.,0.,-1.};
239
+ % \point{-1.,0.,0.};
240
+ % \point{0.,-1.,-1.};
241
+ % \point{0.,0.,-1.};
242
+ % \point{0.,0.,1.};
243
+ % \point{0.,1.,0.};
244
+ % \point{1.,0.,-1.};
245
+ % \point{2.,0.,-1.};
246
+ % \point{-1.,-1.,-1.}; % on face
247
+ % \point{0.,0.,0.}; % inside
248
+
249
+ % % front edges
250
+ % \path [draw, fill opacity=\opacity, fill=fillColor] (0.,0.,1.)--(-2.,-2.,-1.)--(2.,0.,-1.) --cycle;
251
+ % \path [draw, fill opacity=\opacity, fill=fillColor] (-3.,-2.,-1.)--(-2.,-2.,-1.)--(0.,0.,1.)--(-2.,-1.,0.) --cycle;
252
+ % \path [draw, fill opacity=\opacity, fill=fillColor] (0.,1.,0.)--(0.,0.,1.)--(2.,0.,-1.) --cycle;
253
+
254
+ % % front faces
255
+ % \path [draw, densely dotted] (2.,0.,-1.)--(-3.,-2.,-1.);
256
+ % \path [draw, densely dotted] (-3.,-2.,-1.)--(0.,1.,0.);
257
+ % \path [draw, densely dotted] (0.,0.,1.)--(-3.,-2.,-1.);
258
+
259
+ % % front points
260
+ % \point{-1.,-1.,0.};
261
+ % \point{1.,0.,0.};
262
+ % \end{scope}
263
+ % \end{scope}
264
+ \end{tikzpicture}
265
+
266
+ \end{document}