remove 2d polytope construction notes
Browse files- README.md +1 -25
- pictures/ws-2d.png +2 -2
- pictures/ws-2d.tex +6 -6
README.md
CHANGED
@@ -229,33 +229,9 @@ There are exactly three IP weight systems that define two-dimensional polytopes
|
|
229 |
| (1, 1, 2) | 5 | 9 |
|
230 |
| (1, 2, 3) | 7 | 7 |
|
231 |
|
232 |
-
|
233 |
-
first two vertices of the polytopes
|
234 |
-
|
235 |
-
$$
|
236 |
-
\mathbf{v}_0 = (1, 0) \quad \text{and} \quad
|
237 |
-
\mathbf{v}_1 = (0, 1) \;,
|
238 |
-
$$
|
239 |
-
|
240 |
-
one can obtain the position of the third vertex by solving the weight system equation from
|
241 |
-
before:
|
242 |
-
|
243 |
-
$$
|
244 |
-
\mathbf{v}_2 = - \frac{q_0 \mathbf{v}_0 + q_1 \mathbf{v}_1}{q_2} \;.
|
245 |
-
$$
|
246 |
-
|
247 |
-
The resulting polytopes and their duals are depicted below. Lattice points are indicated
|
248 |
-
by dots.
|
249 |
<img src="pictures/ws-2d.png" style="display: block; margin-left: auto; margin-right: auto; width:520px;">
|
250 |
|
251 |
-
One may notice that a simpler description could be obtained by fixing \\(\mathbf{v}_2 =
|
252 |
-
(1, 0)\\) instead of \\(\mathbf{v}_0\\), which would avoid fractional vertex coordinates.
|
253 |
-
However, this approach would not illustrate the construction of the lattice. This is
|
254 |
-
because, in this scenario, the lattice points would invariably align with points having
|
255 |
-
integer coordinates. In practice, coordinates are often chosen so that lattice points
|
256 |
-
correspond to those with integer coordinates. In higher dimensions, this is not trivial,
|
257 |
-
as a weight with a value of one is not always present in a weight system.
|
258 |
-
|
259 |
### General Dimension
|
260 |
|
261 |
In higher dimensions, the situation becomes more complex. Not all IP polytopes are
|
|
|
229 |
| (1, 1, 2) | 5 | 9 |
|
230 |
| (1, 2, 3) | 7 | 7 |
|
231 |
|
232 |
+
The polytopes and their duals are depicted below. Lattice points are indicated by dots.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
<img src="pictures/ws-2d.png" style="display: block; margin-left: auto; margin-right: auto; width:520px;">
|
234 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
### General Dimension
|
236 |
|
237 |
In higher dimensions, the situation becomes more complex. Not all IP polytopes are
|
pictures/ws-2d.png
CHANGED
Git LFS Details
|
Git LFS Details
|
pictures/ws-2d.tex
CHANGED
@@ -21,7 +21,7 @@
|
|
21 |
|
22 |
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (1, 0) --(0, 1) --(-1, -1) --cycle;
|
23 |
|
24 |
-
\draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
25 |
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
26 |
|
27 |
\foreach \i in {-2,...,2}
|
@@ -37,7 +37,7 @@
|
|
37 |
\begin{scope}
|
38 |
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (-1, 2) --(2, -1) --(-1, -1) --cycle;
|
39 |
|
40 |
-
\draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
41 |
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
42 |
|
43 |
\foreach \i in {-2,...,2}
|
@@ -59,7 +59,7 @@
|
|
59 |
\begin{scope}[scale=1.4142] % sqrt(2)
|
60 |
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (1, 0) --(0, 1) --(-1/2, -1/2) --cycle;
|
61 |
|
62 |
-
\draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
63 |
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
64 |
|
65 |
\foreach \i in {-2,...,2}
|
@@ -76,7 +76,7 @@
|
|
76 |
\begin{scope}[scale=0.707]
|
77 |
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (-1, 3) --(3, -1) --(-1, -1) --cycle;
|
78 |
|
79 |
-
\draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
80 |
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
81 |
|
82 |
\foreach \i in {-2,...,2}
|
@@ -98,7 +98,7 @@
|
|
98 |
\begin{scope}[scale=1.732] % sqrt(3)
|
99 |
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (1, 0) --(0, 1) --(-1/3, -2/3) --cycle;
|
100 |
|
101 |
-
\draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
102 |
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
103 |
|
104 |
\foreach \i in {-2,...,2}
|
@@ -116,7 +116,7 @@
|
|
116 |
\begin{scope}[xshift=-2cm]
|
117 |
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (5, -1) --(-1, 2) --(-1, -1) --cycle;
|
118 |
|
119 |
-
\draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
120 |
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
121 |
|
122 |
\foreach \i in {-1,...,3}
|
|
|
21 |
|
22 |
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (1, 0) --(0, 1) --(-1, -1) --cycle;
|
23 |
|
24 |
+
% \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
25 |
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
26 |
|
27 |
\foreach \i in {-2,...,2}
|
|
|
37 |
\begin{scope}
|
38 |
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (-1, 2) --(2, -1) --(-1, -1) --cycle;
|
39 |
|
40 |
+
% \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
41 |
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
42 |
|
43 |
\foreach \i in {-2,...,2}
|
|
|
59 |
\begin{scope}[scale=1.4142] % sqrt(2)
|
60 |
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (1, 0) --(0, 1) --(-1/2, -1/2) --cycle;
|
61 |
|
62 |
+
% \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
63 |
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
64 |
|
65 |
\foreach \i in {-2,...,2}
|
|
|
76 |
\begin{scope}[scale=0.707]
|
77 |
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (-1, 3) --(3, -1) --(-1, -1) --cycle;
|
78 |
|
79 |
+
% \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
80 |
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
81 |
|
82 |
\foreach \i in {-2,...,2}
|
|
|
98 |
\begin{scope}[scale=1.732] % sqrt(3)
|
99 |
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (1, 0) --(0, 1) --(-1/3, -2/3) --cycle;
|
100 |
|
101 |
+
% \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
102 |
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
103 |
|
104 |
\foreach \i in {-2,...,2}
|
|
|
116 |
\begin{scope}[xshift=-2cm]
|
117 |
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (5, -1) --(-1, 2) --(-1, -1) --cycle;
|
118 |
|
119 |
+
% \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
120 |
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
121 |
|
122 |
\foreach \i in {-1,...,3}
|