Datasets:

Modalities:
Tabular
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
schoeller commited on
Commit
8a68e83
1 Parent(s): 3f05605

remove 2d polytope construction notes

Browse files
Files changed (3) hide show
  1. README.md +1 -25
  2. pictures/ws-2d.png +2 -2
  3. pictures/ws-2d.tex +6 -6
README.md CHANGED
@@ -229,33 +229,9 @@ There are exactly three IP weight systems that define two-dimensional polytopes
229
  | (1, 1, 2) | 5 | 9 |
230
  | (1, 2, 3) | 7 | 7 |
231
 
232
- We will now construct these polytopes from their corresponding weight system. Fixing the
233
- first two vertices of the polytopes
234
-
235
- $$
236
- \mathbf{v}_0 = (1, 0) \quad \text{and} \quad
237
- \mathbf{v}_1 = (0, 1) \;,
238
- $$
239
-
240
- one can obtain the position of the third vertex by solving the weight system equation from
241
- before:
242
-
243
- $$
244
- \mathbf{v}_2 = - \frac{q_0 \mathbf{v}_0 + q_1 \mathbf{v}_1}{q_2} \;.
245
- $$
246
-
247
- The resulting polytopes and their duals are depicted below. Lattice points are indicated
248
- by dots.
249
  <img src="pictures/ws-2d.png" style="display: block; margin-left: auto; margin-right: auto; width:520px;">
250
 
251
- One may notice that a simpler description could be obtained by fixing \\(\mathbf{v}_2 =
252
- (1, 0)\\) instead of \\(\mathbf{v}_0\\), which would avoid fractional vertex coordinates.
253
- However, this approach would not illustrate the construction of the lattice. This is
254
- because, in this scenario, the lattice points would invariably align with points having
255
- integer coordinates. In practice, coordinates are often chosen so that lattice points
256
- correspond to those with integer coordinates. In higher dimensions, this is not trivial,
257
- as a weight with a value of one is not always present in a weight system.
258
-
259
  ### General Dimension
260
 
261
  In higher dimensions, the situation becomes more complex. Not all IP polytopes are
 
229
  | (1, 1, 2) | 5 | 9 |
230
  | (1, 2, 3) | 7 | 7 |
231
 
232
+ The polytopes and their duals are depicted below. Lattice points are indicated by dots.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
233
  <img src="pictures/ws-2d.png" style="display: block; margin-left: auto; margin-right: auto; width:520px;">
234
 
 
 
 
 
 
 
 
 
235
  ### General Dimension
236
 
237
  In higher dimensions, the situation becomes more complex. Not all IP polytopes are
pictures/ws-2d.png CHANGED

Git LFS Details

  • SHA256: 291cf0abe87b5343189a67c9fe36c9cb0ad7ddc0e46a39009f54f759c017b735
  • Pointer size: 131 Bytes
  • Size of remote file: 134 kB

Git LFS Details

  • SHA256: ae7033a5c0e82428e81de9dbd4f30e604fd953e2a390ccf8311572502c09e745
  • Pointer size: 131 Bytes
  • Size of remote file: 102 kB
pictures/ws-2d.tex CHANGED
@@ -21,7 +21,7 @@
21
 
22
  \path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (1, 0) --(0, 1) --(-1, -1) --cycle;
23
 
24
- \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
25
  \path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
26
 
27
  \foreach \i in {-2,...,2}
@@ -37,7 +37,7 @@
37
  \begin{scope}
38
  \path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (-1, 2) --(2, -1) --(-1, -1) --cycle;
39
 
40
- \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
41
  \path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
42
 
43
  \foreach \i in {-2,...,2}
@@ -59,7 +59,7 @@
59
  \begin{scope}[scale=1.4142] % sqrt(2)
60
  \path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (1, 0) --(0, 1) --(-1/2, -1/2) --cycle;
61
 
62
- \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
63
  \path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
64
 
65
  \foreach \i in {-2,...,2}
@@ -76,7 +76,7 @@
76
  \begin{scope}[scale=0.707]
77
  \path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (-1, 3) --(3, -1) --(-1, -1) --cycle;
78
 
79
- \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
80
  \path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
81
 
82
  \foreach \i in {-2,...,2}
@@ -98,7 +98,7 @@
98
  \begin{scope}[scale=1.732] % sqrt(3)
99
  \path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (1, 0) --(0, 1) --(-1/3, -2/3) --cycle;
100
 
101
- \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
102
  \path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
103
 
104
  \foreach \i in {-2,...,2}
@@ -116,7 +116,7 @@
116
  \begin{scope}[xshift=-2cm]
117
  \path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (5, -1) --(-1, 2) --(-1, -1) --cycle;
118
 
119
- \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
120
  \path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
121
 
122
  \foreach \i in {-1,...,3}
 
21
 
22
  \path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (1, 0) --(0, 1) --(-1, -1) --cycle;
23
 
24
+ % \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
25
  \path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
26
 
27
  \foreach \i in {-2,...,2}
 
37
  \begin{scope}
38
  \path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (-1, 2) --(2, -1) --(-1, -1) --cycle;
39
 
40
+ % \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
41
  \path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
42
 
43
  \foreach \i in {-2,...,2}
 
59
  \begin{scope}[scale=1.4142] % sqrt(2)
60
  \path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (1, 0) --(0, 1) --(-1/2, -1/2) --cycle;
61
 
62
+ % \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
63
  \path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
64
 
65
  \foreach \i in {-2,...,2}
 
76
  \begin{scope}[scale=0.707]
77
  \path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (-1, 3) --(3, -1) --(-1, -1) --cycle;
78
 
79
+ % \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
80
  \path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
81
 
82
  \foreach \i in {-2,...,2}
 
98
  \begin{scope}[scale=1.732] % sqrt(3)
99
  \path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (1, 0) --(0, 1) --(-1/3, -2/3) --cycle;
100
 
101
+ % \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
102
  \path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
103
 
104
  \foreach \i in {-2,...,2}
 
116
  \begin{scope}[xshift=-2cm]
117
  \path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (5, -1) --(-1, 2) --(-1, -1) --cycle;
118
 
119
+ % \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
120
  \path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
121
 
122
  \foreach \i in {-1,...,3}