Upload airbnb_embed.ipynb
Browse files- airbnb_embed.ipynb +85 -0
airbnb_embed.ipynb
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"### How to generate the dataset\n",
|
8 |
+
"\n",
|
9 |
+
"1. Use PyGen.AI with prompt: \"Generate code to read dataset bstraehle/airbnb-san-francisco-202403 from Hugging Face. Process line by line to embed field 'description' using OpenAI model 'text-embedding-3-small', then append the line and embedded field 'description_embedding' to file 'c:\\temp\\airbnb-san-francisco-202403-embed.jsonl'.\n",
|
10 |
+
"2. Replace hard-coded OpenAI API key with getpass\n",
|
11 |
+
"3. Fix embedding code, see https://platform.openai.com/docs/guides/embeddings/how-to-get-embeddings"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": null,
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"!pip install openai transformers"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "code",
|
25 |
+
"execution_count": null,
|
26 |
+
"metadata": {},
|
27 |
+
"outputs": [],
|
28 |
+
"source": [
|
29 |
+
"# Execution time: ~34 minutes\n",
|
30 |
+
"\n",
|
31 |
+
"from datasets import load_dataset\n",
|
32 |
+
"from openai import OpenAI\n",
|
33 |
+
"import json, getpass\n",
|
34 |
+
"\n",
|
35 |
+
"dataset = load_dataset(\"bstraehle/airbnb-san-francisco-202403\")\n",
|
36 |
+
"\n",
|
37 |
+
"client = OpenAI(api_key = getpass.getpass(\"OpenAI API Key\"))\n",
|
38 |
+
"\n",
|
39 |
+
"def embed_text(text):\n",
|
40 |
+
" \"\"\"Function to embed text using OpenAI's text-embedding-3-small model.\"\"\"\n",
|
41 |
+
" response = client.embeddings.create(\n",
|
42 |
+
" input=text,\n",
|
43 |
+
" model=\"text-embedding-3-small\"\n",
|
44 |
+
" )\n",
|
45 |
+
" return response.data[0].embedding\n",
|
46 |
+
"\n",
|
47 |
+
"def process_dataset(dataset):\n",
|
48 |
+
" \"\"\"Process each row in the dataset, embed 'description', and write to a new file.\"\"\"\n",
|
49 |
+
" with open(\"c:\\\\temp\\\\airbnb-san-francisco-202403-embed.jsonl\", \"w\") as f:\n",
|
50 |
+
" for item in dataset:\n",
|
51 |
+
" description = item[\"description\"]\n",
|
52 |
+
"\n",
|
53 |
+
" if description:\n",
|
54 |
+
" embedding = embed_text(description)\n",
|
55 |
+
" new_item = {**item, \"description_embedding\": embedding}\n",
|
56 |
+
" f.write(json.dumps(new_item) + '\\n')\n",
|
57 |
+
"\n",
|
58 |
+
"process_dataset(dataset['train'])\n",
|
59 |
+
"\n",
|
60 |
+
"print(\"Processing completed.\")"
|
61 |
+
]
|
62 |
+
}
|
63 |
+
],
|
64 |
+
"metadata": {
|
65 |
+
"kernelspec": {
|
66 |
+
"display_name": "Python 3",
|
67 |
+
"language": "python",
|
68 |
+
"name": "python3"
|
69 |
+
},
|
70 |
+
"language_info": {
|
71 |
+
"codemirror_mode": {
|
72 |
+
"name": "ipython",
|
73 |
+
"version": 3
|
74 |
+
},
|
75 |
+
"file_extension": ".py",
|
76 |
+
"mimetype": "text/x-python",
|
77 |
+
"name": "python",
|
78 |
+
"nbconvert_exporter": "python",
|
79 |
+
"pygments_lexer": "ipython3",
|
80 |
+
"version": "3.9.13"
|
81 |
+
}
|
82 |
+
},
|
83 |
+
"nbformat": 4,
|
84 |
+
"nbformat_minor": 2
|
85 |
+
}
|