Datasets:

Languages:
Turkish
License:
squad_tr / squad_tr.py
e-budur's picture
Update squad_tr.py
e3ddcb9
raw
history blame
7.71 kB
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This file is based off of the dataset loader script for the original SQuAD2.0
# dataset.
#
# https://huggingface.co/datasets/squad_v2
# Lint as: python3
"""SQuAD-TR Dataset"""
import json
import datasets
from datasets.tasks import QuestionAnsweringExtractive
logger = datasets.logging.get_logger(__name__)
_HOMEPAGE = "https://github.com/boun-tabi/squad-tr"
_CITATION = """\
@article{
budur2023squadtr,
title={Building Efficient and Effective OpenQA Systems for Low-Resource Languages},
author={todo},
journal={todo},
year={2023}
}
"""
_DESCRIPTION = """\
SQuAD-TR is a machine translated version of the original SQuAD2.0 dataset into
Turkish.
"""
_VERSION = "1.0.0"
_DATA_URL = _HOMEPAGE + "/raw/beta/data"
_DATA_URLS = {
"default": {
"train": f"{_DATA_URL}/squad-tr-train-v{_VERSION}.json.gz",
"dev": f"{_DATA_URL}/squad-tr-dev-v{_VERSION}.json.gz",
},
"excluded": {
"train": f"{_DATA_URL}/squad-tr-train-v{_VERSION}-excluded.json.gz",
"dev": f"{_DATA_URL}/squad-tr-dev-v{_VERSION}-excluded.json.gz",
}
}
class SquadTRConfig(datasets.BuilderConfig):
"""BuilderConfig for SQuAD-TR."""
def __init__(self, **kwargs):
"""BuilderConfig for SQuAD-TR.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(SquadTRConfig, self).__init__(**kwargs)
class SquadTR(datasets.GeneratorBasedBuilder):
"""SQuAD-TR: Machine translated version of the original SQuAD2.0 dataset into Turkish."""
VERSION = datasets.Version(_VERSION)
BUILDER_CONFIGS = [
SquadTRConfig(
name="default",
version=datasets.Version(_VERSION),
description="SQuAD-TR default version.",
),
SquadTRConfig(
name="excluded",
version=datasets.Version(_VERSION),
description="SQuAD-TR excluded version.",
),
SquadTRConfig(
name="openqa",
version=datasets.Version(_VERSION),
description="SQuAD-TR OpenQA version.",
),
]
DEFAULT_CONFIG_NAME = "default"
def _info(self):
# We change the contents of the "answers" field based on the
# configuration selected. Specifically, we are excluding the
# "answer_start" field for the "excluded" and "openqa" configurations.
if self.config.name in ["excluded", "openqa"]:
answers_feature = datasets.features.Sequence({
"text": datasets.Value("string"),
})
else:
answers_feature = datasets.features.Sequence({
"text": datasets.Value("string"),
"answer_start": datasets.Value("int32"),
})
# Constructing our dataset features.
features = datasets.Features({
"id": datasets.Value("string"),
"title": datasets.Value("string"),
"context": datasets.Value("string"),
"question": datasets.Value("string"),
"answers": answers_feature
})
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
task_templates=[
QuestionAnsweringExtractive(question_column="question", context_column="context", answers_column="answers")
],
)
def _split_generators(self, dl_manager):
# If the configuration selected is "default" or "excluded", we directly
# load the files from the URLs in _DATA_URLS. For the "openqa"
# configuration, we combine the datapints from the two different files
# used in the "default" and "excluded" configurations.
if self.config.name == "openqa":
default_files = dl_manager.download_and_extract(_DATA_URLS["default"])
excluded_files = dl_manager.download_and_extract(_DATA_URLS["excluded"])
train_file_paths = [default_files["train"], excluded_files["train"]]
dev_file_paths = [default_files["dev"], excluded_files["dev"]]
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath_list": train_file_paths}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath_list": dev_file_paths}),
]
else:
config_urls = _DATA_URLS[self.config.name]
downloaded_files = dl_manager.download_and_extract(config_urls)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
]
def _generate_examples(self, filepath=None, filepath_list=None):
"""This function returns the examples in the raw (text) form."""
assert filepath or filepath_list
if filepath:
filepath_list = [filepath]
# Combining the generators for the different filepaths
generators = [self._generate_examples_from_filepath(f) for f in filepath_list]
for generator in generators:
for element in generator:
yield element
def _generate_examples_from_filepath(self, filepath):
logger.info("generating examples from = %s", filepath)
key = 0
with open(filepath, encoding="utf-8") as f:
squad = json.load(f)
for article in squad["data"]:
title = article.get("title", "")
for paragraph in article["paragraphs"]:
context = paragraph["context"] # Do not strip leading blank spaces GH-2585
for qa in paragraph["qas"]:
# Constructing our answers dictonary. Note that the
# answers_dictionary won't include the answer_start
# field in the "excluded" and "openqa" modes.
answers_dictionary = {
"text": [answer["text"] for answer in qa["answers"]],
}
if self.config.name not in ["excluded", "openqa"]:
answers_dictionary["answer_start"] = [answer["answer_start"] for answer in qa["answers"]]
# Constructing our datapoint
datapoint = {
"title": title,
"context": context,
"question": qa["question"],
"id": qa["id"],
"answers": answers_dictionary,
}
# Features currently used are "context", "question", and "answers".
# Others are extracted here for the ease of future expansions.
yield key, datapoint
key += 1