Datasets:

system HF staff commited on
Commit
c1cd661
0 Parent(s):

Update files from the datasets library (from 1.1.3)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.1.3

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"snli_tr": {"description": "The Natural Language Inference in Turkish (NLI-TR) is a set of two large scale datasets that were obtained by translating the foundational NLI corpora (SNLI and MNLI) using Amazon Translate.\n", "citation": "@inproceedings{budur-etal-2020-data,\n title = \"Data and Representation for Turkish Natural Language Inference\",\n author = \"Budur, Emrah and\n \"{O}z\u00e7elik, R\u0131za and\n G\"{u}ng\"{o}r, Tunga\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n abstract = \"Large annotated datasets in NLP are overwhelmingly in English. This is an obstacle to progress in other languages. Unfortunately, obtaining new annotated resources for each task in each language would be prohibitively expensive. At the same time, commercial machine translation systems are now robust. Can we leverage these systems to translate English-language datasets automatically? In this paper, we offer a positive response for natural language inference (NLI) in Turkish. We translated two large English NLI datasets into Turkish and had a team of experts validate their translation quality and fidelity to the original labels. Using these datasets, we address core issues of representation for Turkish NLI. We find that in-language embeddings are essential and that morphological parsing can be avoided where the training set is large. Finally, we show that models trained on our machine-translated datasets are successful on human-translated evaluation sets. We share all code, models, and data publicly.\",\n}\n", "homepage": "https://github.com/boun-tabi/NLI-TR", "license": "", "features": {"idx": {"dtype": "int32", "id": null, "_type": "Value"}, "premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "nli_tr", "config_name": "snli_tr", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 71175743, "num_examples": 550152, "dataset_name": "nli_tr"}, "validation": {"name": "validation", "num_bytes": 1359639, "num_examples": 10000, "dataset_name": "nli_tr"}, "test": {"name": "test", "num_bytes": 1355409, "num_examples": 10000, "dataset_name": "nli_tr"}}, "download_checksums": {"https://tabilab.cmpe.boun.edu.tr/datasets/nli_datasets/snli_tr_1.0.zip": {"num_bytes": 40328942, "checksum": "c8ecee6c532ada2a1a6f7b9c29f618c6737662dde12d18f21c437682b2bdd851"}}, "download_size": 40328942, "post_processing_size": null, "dataset_size": 73890791, "size_in_bytes": 114219733}, "multinli_tr": {"description": "The Natural Language Inference in Turkish (NLI-TR) is a set of two large scale datasets that were obtained by translating the foundational NLI corpora (SNLI and MNLI) using Amazon Translate.\n", "citation": "@inproceedings{budur-etal-2020-data,\n title = \"Data and Representation for Turkish Natural Language Inference\",\n author = \"Budur, Emrah and\n \"{O}z\u00e7elik, R\u0131za and\n G\"{u}ng\"{o}r, Tunga\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n abstract = \"Large annotated datasets in NLP are overwhelmingly in English. This is an obstacle to progress in other languages. Unfortunately, obtaining new annotated resources for each task in each language would be prohibitively expensive. At the same time, commercial machine translation systems are now robust. Can we leverage these systems to translate English-language datasets automatically? In this paper, we offer a positive response for natural language inference (NLI) in Turkish. We translated two large English NLI datasets into Turkish and had a team of experts validate their translation quality and fidelity to the original labels. Using these datasets, we address core issues of representation for Turkish NLI. We find that in-language embeddings are essential and that morphological parsing can be avoided where the training set is large. Finally, we show that models trained on our machine-translated datasets are successful on human-translated evaluation sets. We share all code, models, and data publicly.\",\n}\n", "homepage": "https://github.com/boun-tabi/NLI-TR", "license": "", "features": {"idx": {"dtype": "int32", "id": null, "_type": "Value"}, "premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "nli_tr", "config_name": "multinli_tr", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 75524150, "num_examples": 392702, "dataset_name": "nli_tr"}, "validation_matched": {"name": "validation_matched", "num_bytes": 1908283, "num_examples": 10000, "dataset_name": "nli_tr"}, "validation_mismatched": {"name": "validation_mismatched", "num_bytes": 2039392, "num_examples": 10000, "dataset_name": "nli_tr"}}, "download_checksums": {"https://tabilab.cmpe.boun.edu.tr/datasets/nli_datasets/multinli_tr_1.0.zip": {"num_bytes": 75518512, "checksum": "1fed6bb08ecac39cfa998296f5c77b1ca90a1634aa0351e3ef93d2de6f126aca"}}, "download_size": 75518512, "post_processing_size": null, "dataset_size": 79471825, "size_in_bytes": 154990337}}
dummy/multinli_tr/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:897611e60d756f85891c548e50ca9784021bcc0c41549ed9459421ba6d20adca
3
+ size 6857
dummy/snli_tr/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edcd6839980eb61d7f819ceb3b106c2684d198e171c2c4f1f31e3841a7cbaa42
3
+ size 3156
nli_tr.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """NLI-TR: The Turkish translation of SNLI and MultiNLI datasets using Amazon Translate."""
16
+
17
+ from __future__ import absolute_import, division, print_function
18
+
19
+ import codecs
20
+ import json
21
+ import os
22
+
23
+ import datasets
24
+
25
+
26
+ _CITATION = """\
27
+ @inproceedings{budur-etal-2020-data,
28
+ title = "Data and Representation for Turkish Natural Language Inference",
29
+ author = "Budur, Emrah and
30
+ \"{O}zçelik, Rıza and
31
+ G\"{u}ng\"{o}r, Tunga",
32
+ booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
33
+ month = nov,
34
+ year = "2020",
35
+ address = "Online",
36
+ publisher = "Association for Computational Linguistics",
37
+ abstract = "Large annotated datasets in NLP are overwhelmingly in English. This is an obstacle to progress in other languages. Unfortunately, obtaining new annotated resources for each task in each language would be prohibitively expensive. At the same time, commercial machine translation systems are now robust. Can we leverage these systems to translate English-language datasets automatically? In this paper, we offer a positive response for natural language inference (NLI) in Turkish. We translated two large English NLI datasets into Turkish and had a team of experts validate their translation quality and fidelity to the original labels. Using these datasets, we address core issues of representation for Turkish NLI. We find that in-language embeddings are essential and that morphological parsing can be avoided where the training set is large. Finally, we show that models trained on our machine-translated datasets are successful on human-translated evaluation sets. We share all code, models, and data publicly.",
38
+ }
39
+ """
40
+
41
+ _DESCRIPTION = """\
42
+ The Natural Language Inference in Turkish (NLI-TR) is a set of two large scale datasets that were obtained by translating the foundational NLI corpora (SNLI and MNLI) using Amazon Translate.
43
+ """
44
+
45
+ _HOMEPAGE = "https://github.com/boun-tabi/NLI-TR"
46
+
47
+
48
+ class NLITRConfig(datasets.BuilderConfig):
49
+ """ BuilderConfig for NLI-TR"""
50
+
51
+ def __init__(self, version=None, data_url=None, **kwargs):
52
+ super(NLITRConfig, self).__init__(version=datasets.Version(version, ""), **kwargs)
53
+ self.data_url = data_url
54
+
55
+
56
+ class NliTr(datasets.GeneratorBasedBuilder):
57
+ """NLI-TR: The Turkish translation of SNLI and MultiNLI datasets using Amazon Translate."""
58
+
59
+ VERSION = datasets.Version("1.0.0")
60
+ BUILDER_CONFIG_CLASS = NLITRConfig
61
+ BUILDER_CONFIGS = [
62
+ NLITRConfig(
63
+ name="snli_tr",
64
+ version="1.0.0",
65
+ data_url="https://tabilab.cmpe.boun.edu.tr/datasets/nli_datasets/snli_tr_1.0.zip",
66
+ ),
67
+ NLITRConfig(
68
+ name="multinli_tr",
69
+ version="1.0.0",
70
+ data_url="https://tabilab.cmpe.boun.edu.tr/datasets/nli_datasets/multinli_tr_1.0.zip",
71
+ ),
72
+ ]
73
+
74
+ def _info(self):
75
+ features = datasets.Features(
76
+ {
77
+ "idx": datasets.Value("int32"),
78
+ "premise": datasets.Value("string"),
79
+ "hypothesis": datasets.Value("string"),
80
+ "label": datasets.features.ClassLabel(names=["entailment", "neutral", "contradiction"]),
81
+ }
82
+ )
83
+ return datasets.DatasetInfo(
84
+ description=_DESCRIPTION,
85
+ features=datasets.Features(features),
86
+ supervised_keys=None,
87
+ homepage=_HOMEPAGE,
88
+ citation=_CITATION,
89
+ )
90
+
91
+ def _split_generators(self, dl_manager):
92
+ """Returns SplitGenerators."""
93
+
94
+ dl_dir = dl_manager.download_and_extract(self.config.data_url)
95
+ data_dir = os.path.join(dl_dir)
96
+
97
+ if self.config.name == "multinli_tr":
98
+ return [
99
+ datasets.SplitGenerator(
100
+ name=datasets.Split.TRAIN,
101
+ # These kwargs will be passed to _generate_examples
102
+ gen_kwargs={
103
+ "filepath": os.path.join(data_dir, "multinli_tr_1.0_train.jsonl"),
104
+ "split": "train",
105
+ },
106
+ ),
107
+ datasets.SplitGenerator(
108
+ name="validation_matched",
109
+ # These kwargs will be passed to _generate_examples
110
+ gen_kwargs={
111
+ "filepath": os.path.join(data_dir, "multinli_tr_1.0_dev_matched.jsonl"),
112
+ "split": "dev",
113
+ },
114
+ ),
115
+ datasets.SplitGenerator(
116
+ name="validation_mismatched",
117
+ # These kwargs will be passed to _generate_examples
118
+ gen_kwargs={
119
+ "filepath": os.path.join(data_dir, "multinli_tr_1.0_dev_mismatched.jsonl"),
120
+ "split": "dev",
121
+ },
122
+ ),
123
+ ]
124
+
125
+ if self.config.name == "snli_tr":
126
+ return [
127
+ datasets.SplitGenerator(
128
+ name=datasets.Split.TRAIN,
129
+ # These kwargs will be passed to _generate_examples
130
+ gen_kwargs={
131
+ "filepath": os.path.join(data_dir, "snli_tr_1.0_train.jsonl"),
132
+ "split": "train",
133
+ },
134
+ ),
135
+ datasets.SplitGenerator(
136
+ name=datasets.Split.VALIDATION,
137
+ # These kwargs will be passed to _generate_examples
138
+ gen_kwargs={
139
+ "filepath": os.path.join(data_dir, "snli_tr_1.0_dev.jsonl"),
140
+ "split": "validation",
141
+ },
142
+ ),
143
+ datasets.SplitGenerator(
144
+ name=datasets.Split.TEST,
145
+ # These kwargs will be passed to _generate_examples
146
+ gen_kwargs={
147
+ "filepath": os.path.join(data_dir, "snli_tr_1.0_test.jsonl"),
148
+ "split": "test",
149
+ },
150
+ ),
151
+ ]
152
+
153
+ def _generate_examples(self, filepath, split):
154
+ """ Yields examples. """
155
+
156
+ with codecs.open(filepath, encoding="utf-8") as f:
157
+ for idx, row in enumerate(f):
158
+ data = json.loads(row)
159
+ example = {"idx": idx, "premise": data["sentence1"], "hypothesis": data["sentence2"]}
160
+
161
+ if "gold_label" in data:
162
+ if data["gold_label"] != "-":
163
+ example["label"] = data["gold_label"]
164
+ else:
165
+ example["label"] = -1
166
+
167
+ yield idx, example