Datasets:

ArXiv:
License:
adwaitagashe commited on
Commit
f06e4c9
·
1 Parent(s): 7428fe2

update relevance filtering to allow non relevant only mode

Browse files
Files changed (2) hide show
  1. README.md +4 -8
  2. bordirlines.py +25 -31
README.md CHANGED
@@ -134,11 +134,7 @@ The **control** language is English, and contains the queries for all 251 territ
134
 
135
  The dataset contains two types of relevance annotations:
136
 
137
- 1. **Human Annotations**:
138
-
139
- - Provided by three annotators for a subset of query-document pairs.
140
- - Relevance is determined by majority vote across annotators.
141
- - Territories are listed per annotator, capturing individual perspectives.
142
 
143
  2. **LLM Annotations**:
144
  - Includes two modes:
@@ -227,10 +223,10 @@ ds_m3_zhs1 = load_dataset("borderlines/bordirlines", "zhs", split="m3.en")
227
  ds_m3_zhs2 = load_dataset("borderlines/bordirlines", "zhs", split="m3.qlang")
228
 
229
  # Load Dataset for English, relevant-only with human annotations
230
- ds_human_en = load_dataset("borderlines/bordirlines", "en", relevant_only=True, annotation_type="human")
231
 
232
- # Load Dataset for Simplified Chinese, few-shot LLM mode
233
- ds_llm_fewshot_zhs = load_dataset("borderlines/bordirlines", "zhs", relevant_only=True, annotation_type="llm", llm_mode="fewshot")
234
  ```
235
 
236
  ## Citation
 
134
 
135
  The dataset contains two types of relevance annotations:
136
 
137
+ 1. **Human Annotations**: Provided by multiple annotators for a subset of query-document pairs and relevance is determined by majority vote across annotators.
 
 
 
 
138
 
139
  2. **LLM Annotations**:
140
  - Includes two modes:
 
223
  ds_m3_zhs2 = load_dataset("borderlines/bordirlines", "zhs", split="m3.qlang")
224
 
225
  # Load Dataset for English, relevant-only with human annotations
226
+ ds_human_en = load_dataset("borderlines/bordirlines", "en", relevance_filter="relevant", annotation_type="human")
227
 
228
+ # Load Dataset for Simplified Chinese, few-shot LLM mode, only non-relevant
229
+ ds_llm_fewshot_zhs = load_dataset("borderlines/bordirlines", "zhs", relevance_filter="non-relevant", annotation_type="llm", llm_mode="fewshot")
230
  ```
231
 
232
  ## Citation
bordirlines.py CHANGED
@@ -95,11 +95,11 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
95
  for lang in SUPPORTED_LANGUAGES
96
  ]
97
 
98
- def __init__(self, *args, relevant_only=False, annotation_type=None, llm_mode="fewshot", **kwargs):
99
  super().__init__(*args, **kwargs)
100
- self.relevant_only = relevant_only
101
  self.annotation_type = annotation_type
102
- self.llm_mode = llm_mode # Choose between "zeroshot" and "fewshot". Default: "fewshot".
103
 
104
  def _info(self):
105
  return datasets.DatasetInfo(
@@ -116,7 +116,7 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
116
  "doc_text": datasets.Value("string"),
117
  "doc_lang": datasets.Value("string"),
118
  "relevant_human": datasets.Value("bool"),
119
- "territory_human": datasets.Sequence(datasets.Value("string")),
120
  "relevant_llm_zeroshot": datasets.Value("bool"),
121
  "relevant_llm_fewshot": datasets.Value("bool"),
122
  }
@@ -195,27 +195,12 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
195
 
196
  # Get Human Data
197
  human_data = human_map.get((query_id, doc_id), {})
198
- # Parse relevant_human_votes manually
199
- raw_votes = human_data.get("relevant_human", "[]")
200
- relevant_human_votes = [
201
- True if v.strip() == "True" else False if v.strip() == "False" else False
202
- for v in raw_votes.strip("[]").split(",")
203
- if v.strip()
204
- ]
205
-
206
- # Parse territory_human manually
207
- raw_territories = human_data.get("territory_human", "[]")
208
- territory_human = [
209
- v.strip().strip("'").strip('"') # Remove extra quotes and whitespace
210
- for v in raw_territories.strip("[]").split(",")
211
- if v.strip()
212
- ]
213
-
214
- # Calculate majority relevance
215
- majority_relevant_human = (
216
- sum(relevant_human_votes) > len(relevant_human_votes) / 2 if relevant_human_votes else False
217
- )
218
 
 
 
 
 
 
219
 
220
  # Get LLM Data
221
  llm_data = llm_map.get((query_id, doc_id), {})
@@ -224,15 +209,25 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
224
  if self.llm_mode == "fewshot"
225
  else llm_data.get("relevant_zeroshot", None)
226
  )
227
- # Filtering logic
228
- if self.relevant_only:
229
- if self.annotation_type == "human" and not majority_relevant_human:
 
230
  continue
231
  elif self.annotation_type == "llm" and not (relevant_llm is True):
232
  continue
233
- elif not majority_relevant_human and not (relevant_llm is True):
 
 
 
 
 
 
 
 
234
  continue
235
 
 
236
 
237
  yield (
238
  counter,
@@ -246,11 +241,10 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
246
  "doc_id": doc_id,
247
  "doc_text": docs[doc_lang][doc_id],
248
  "doc_lang": doc_lang,
249
- "relevant_human": majority_relevant_human,
250
  "territory_human": territory_human,
251
  "relevant_llm_zeroshot": llm_data.get("relevant_zeroshot", None),
252
  "relevant_llm_fewshot": llm_data.get("relevant_fewshot", None),
253
  },
254
  )
255
-
256
- counter += 1
 
95
  for lang in SUPPORTED_LANGUAGES
96
  ]
97
 
98
+ def __init__(self, *args, relevance_filter="all", annotation_type=None, llm_mode="fewshot", **kwargs):
99
  super().__init__(*args, **kwargs)
100
+ self.relevance_filter = relevance_filter # "relevant", "non-relevant", or "all"
101
  self.annotation_type = annotation_type
102
+ self.llm_mode = llm_mode # Default to "fewshot"
103
 
104
  def _info(self):
105
  return datasets.DatasetInfo(
 
116
  "doc_text": datasets.Value("string"),
117
  "doc_lang": datasets.Value("string"),
118
  "relevant_human": datasets.Value("bool"),
119
+ "territory_human": datasets.Value("string"),
120
  "relevant_llm_zeroshot": datasets.Value("bool"),
121
  "relevant_llm_fewshot": datasets.Value("bool"),
122
  }
 
195
 
196
  # Get Human Data
197
  human_data = human_map.get((query_id, doc_id), {})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198
 
199
+ # Directly use the new 'relevant' column (no need for tie-breaking)
200
+ relevant_human = human_data.get("relevant", False) # Default to False if missing
201
+
202
+ # Directly use the 'territory' column instead of processing 'territory_human'
203
+ territory_human = human_data.get("territory", "")
204
 
205
  # Get LLM Data
206
  llm_data = llm_map.get((query_id, doc_id), {})
 
209
  if self.llm_mode == "fewshot"
210
  else llm_data.get("relevant_zeroshot", None)
211
  )
212
+
213
+ # Filtering logic based on relevance preference
214
+ if self.relevance_filter == "relevant":
215
+ if self.annotation_type == "human" and not relevant_human:
216
  continue
217
  elif self.annotation_type == "llm" and not (relevant_llm is True):
218
  continue
219
+ elif not relevant_human and not (relevant_llm is True):
220
+ continue
221
+
222
+ elif self.relevance_filter == "non-relevant":
223
+ if self.annotation_type == "human" and relevant_human:
224
+ continue
225
+ elif self.annotation_type == "llm" and relevant_llm is True:
226
+ continue
227
+ elif relevant_human or relevant_llm is True:
228
  continue
229
 
230
+ # If "all", do not filter anything
231
 
232
  yield (
233
  counter,
 
241
  "doc_id": doc_id,
242
  "doc_text": docs[doc_lang][doc_id],
243
  "doc_lang": doc_lang,
244
+ "relevant_human": relevant_human,
245
  "territory_human": territory_human,
246
  "relevant_llm_zeroshot": llm_data.get("relevant_zeroshot", None),
247
  "relevant_llm_fewshot": llm_data.get("relevant_fewshot", None),
248
  },
249
  )
250
+ counter+=1