Datasets:

ArXiv:
POPGym-Arcade / sweep.py
Wendakang's picture
update arcade
3e10edb
import itertools
import os
import subprocess
from typing import Any, Dict
from wandb.apis.public import Api
# Configuration - customize these mappings
WANDB_PROJECT = "Arcade-NIPS"
WANDB_ENTITY = "bolt-um" # Optional, unless you're in a team
MAX_JOBS = (
500 # Maximum number of jobs to run before terminating (useful for HPC/SLURM)
)
TRAIN_PATH = "/home/smorad/code/popgym_arcade/popgym_arcade/train.py"
algorithm_families = ["PQN", "PPO"]
models = ["lru", "mingru", "mlp"]
seeds = [0, 1, 2, 3, 4]
environments_config = {
"CartPoleEasy": {
"PPO": int(1e7),
"PQN": int(1e7),
"TOTAL_TIMESTEPS_DECAY": int(1e6), # can also be 2e6
},
"CartPoleMedium": {
"PPO": int(1e7),
"PQN": int(1e7),
"TOTAL_TIMESTEPS_DECAY": int(1e6),
},
"CartPoleHard": {
"PPO": int(1e7),
"PQN": int(1e7),
"TOTAL_TIMESTEPS_DECAY": int(1e6),
},
"NoisyCartPoleEasy": {
"PPO": int(1e7),
"PQN": int(1e7),
"TOTAL_TIMESTEPS_DECAY": int(1e6),
},
"NoisyCartPoleMedium": {
"PPO": int(1e7),
"PQN": int(1e7),
"TOTAL_TIMESTEPS_DECAY": int(1e6),
},
"NoisyCartPoleHard": {
"PPO": int(1e7),
"PQN": int(1e7),
"TOTAL_TIMESTEPS_DECAY": int(1e6),
},
"BattleShipEasy": {
"PPO": int(2e7), # Different timesteps for PPO
"PQN": int(2e7), # Different timesteps for PQN
"TOTAL_TIMESTEPS_DECAY": int(2e6), # New decay parameter for PQN
},
"BattleShipMedium": {
"PPO": int(2e7),
"PQN": int(2e7),
"TOTAL_TIMESTEPS_DECAY": int(2e6),
},
"BattleShipHard": {
"PPO": int(2e7),
"PQN": int(2e7),
"TOTAL_TIMESTEPS_DECAY": int(2e6),
},
"CountRecallEasy": {
"PPO": int(2e7),
"PQN": int(2e7),
"TOTAL_TIMESTEPS_DECAY": int(2e6),
},
"CountRecallMedium": {
"PPO": int(2e7),
"PQN": int(2e7),
"TOTAL_TIMESTEPS_DECAY": int(2e6),
},
"CountRecallHard": {
"PPO": int(2e7),
"PQN": int(2e7),
"TOTAL_TIMESTEPS_DECAY": int(2e6),
},
"NavigatorEasy": {
"PPO": int(1e7),
"PQN": int(1e7),
"TOTAL_TIMESTEPS_DECAY": int(2e6),
},
"NavigatorMedium": {
"PPO": int(1e7),
"PQN": int(1e7),
"TOTAL_TIMESTEPS_DECAY": int(2e6),
},
"NavigatorHard": {
"PPO": int(1e7),
"PQN": int(1e7),
"TOTAL_TIMESTEPS_DECAY": int(2e6),
},
"MineSweeperEasy": {
"PPO": int(1e7),
"PQN": int(1e7),
"TOTAL_TIMESTEPS_DECAY": int(2e6),
},
"MineSweeperMedium": {
"PPO": int(1e7),
"PQN": int(1e7),
"TOTAL_TIMESTEPS_DECAY": int(2e6),
},
"MineSweeperHard": {
"PPO": int(1e7),
"PQN": int(1e7),
"TOTAL_TIMESTEPS_DECAY": int(2e6),
},
"AutoEncodeEasy": {
"PPO": int(1e7),
"PQN": int(1e7),
"TOTAL_TIMESTEPS_DECAY": int(2e6),
},
"AutoEncodeMedium": {
"PPO": int(1e7),
"PQN": int(1e7),
"TOTAL_TIMESTEPS_DECAY": int(2e6),
},
"AutoEncodeHard": {
"PPO": int(1e7),
"PQN": int(1e7),
"TOTAL_TIMESTEPS_DECAY": int(2e6),
},
}
partial_flags = [True, False]
def is_rnn(model_str):
return "mlp" not in model_str
def generate_experiment_key(experiment: Dict[str, Any]) -> str:
"""Create a unique key for an experiment configuration"""
return (
f"{experiment['algorithm']}_{experiment['model']}_"
f"{experiment['seed']}_{experiment['environment']}_"
f"{experiment['partial']}"
)
def get_wandb_runs() -> set:
"""Get completed or running experiments from WandB"""
api = Api()
runs = (
api.runs(f"{WANDB_ENTITY}/{WANDB_PROJECT}")
if WANDB_ENTITY
else api.runs(WANDB_PROJECT)
)
existing = set()
for run in runs:
config = {k: v for k, v in run.config.items() if not k.startswith("_")}
key = generate_experiment_key(
{
"algorithm": config["TRAIN_TYPE"].replace("_RNN", ""),
"model": config.get("MEMORY_TYPE", "mlp").lower(),
"seed": config["SEED"],
"environment": config["ENV_NAME"],
"partial": config["PARTIAL"],
}
)
if run.state in ["finished", "running"]:
existing.add(key)
return existing
def build_base_command(experiment: Dict[str, Any]) -> list:
"""Construct the appropriate command based on model type"""
algo = experiment["algorithm"]
algo += "_RNN" if is_rnn(experiment["model"]) else ""
base_cmd = [
"python",
TRAIN_PATH,
algo,
"--PROJECT",
WANDB_PROJECT,
"--SEED",
str(experiment["seed"]),
"--ENV_NAME",
experiment["environment"],
"--TOTAL_TIMESTEPS",
str(experiment["total_timesteps"]),
]
base_cmd += ["--PARTIAL"] if experiment["partial"] else []
if experiment["algorithm"] in ["PQN", "PQN_RNN"]:
base_cmd += [
"--TOTAL_TIMESTEPS_DECAY",
str(experiment["total_timesteps_decay"]),
]
if is_rnn(experiment["model"]):
base_cmd += ["--MEMORY_TYPE", experiment["model"]]
return base_cmd
def get_all_experiments():
"""Return all possible experiments"""
all_experiments = []
for env, config in environments_config.items():
combinations = itertools.product(
seeds, algorithm_families, models, partial_flags
)
for seed, family, model, partial in combinations:
# Get timesteps specific to algorithm family
total_timesteps = config[family] # PPO or PQN
all_experiments.append(
{
"algorithm": family,
"model": model,
"total_timesteps": total_timesteps,
"total_timesteps_decay": config[
"TOTAL_TIMESTEPS_DECAY"
], # Include in config
"seed": seed,
"environment": env,
"partial": partial,
}
)
return all_experiments
def get_pending_experiments(all_experiments):
"""Return experiments that we plan to run"""
# Generate all possible experiment combinations
# Get completed/running experiments from WandB
completed_or_running = get_wandb_runs()
# Find pending experiments
pending_experiments = [
exp
for exp in all_experiments
if generate_experiment_key(exp) not in completed_or_running
]
return completed_or_running, pending_experiments
def main():
all_experiments = get_all_experiments()
# Run experiments sequentially
for i in range(MAX_JOBS):
# for i, experiment in enumerate(pending_experiments):
completed_or_running, pending_experiments = get_pending_experiments(
all_experiments
)
print("Currently running or completed experiments:")
print(completed_or_running)
if not pending_experiments:
print("All experiments have been completed or are running!")
break
# Run experiment
experiment = pending_experiments[0]
print(
f"Found {len(pending_experiments)} pending experiments out of {len(all_experiments)} total"
)
print(f"\n=== Starting experiment {i + 1}/{len(pending_experiments)} ===")
print("Configuration:", experiment)
# Build command
base_cmd = build_base_command(experiment)
# Run experiment
print("Command:", " ".join(base_cmd))
result = subprocess.run(
base_cmd,
check=False,
env={**os.environ, "XLA_PYTHON_CLIENT_PREALLOCATE": "false"},
)
if result.returncode != 0:
print(f"Experiment failed with exit code {result.returncode}")
# Handle failure as needed
if i + 1 == MAX_JOBS:
print(f"Reached maximum number of jobs ({MAX_JOBS}), terminating")
break
i += 1
if __name__ == "__main__":
main()